mirror of
https://github.com/reactos/reactos.git
synced 2024-11-07 15:10:53 +00:00
c2d0d784c7
- Create a branch to do a proper merge of USB work from a trunk base instead of from cmake-bringup - In the future, DO NOT under any circumstances branch another branch. This leads to merge problems! svn path=/branches/usb-bringup-trunk/; revision=55018
1369 lines
33 KiB
C
1369 lines
33 KiB
C
/*
|
|
* FXT1 codec
|
|
* Version: 1.1
|
|
*
|
|
* Copyright (C) 2004 Daniel Borca All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* DANIEL BORCA BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
|
|
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "types.h"
|
|
#include "internal.h"
|
|
#include "fxt1.h"
|
|
|
|
|
|
/***************************************************************************\
|
|
* FXT1 encoder
|
|
*
|
|
* The encoder was built by reversing the decoder,
|
|
* and is vaguely based on Texus2 by 3dfx. Note that this code
|
|
* is merely a proof of concept, since it is highly UNoptimized;
|
|
* moreover, it is sub-optimal due to initial conditions passed
|
|
* to Lloyd's algorithm (the interpolation modes are even worse).
|
|
\***************************************************************************/
|
|
|
|
|
|
#define MAX_COMP 4 /* ever needed maximum number of components in texel */
|
|
#define MAX_VECT 4 /* ever needed maximum number of base vectors to find */
|
|
#define N_TEXELS 32 /* number of texels in a block (always 32) */
|
|
#define LL_N_REP 50 /* number of iterations in lloyd's vq */
|
|
#define LL_RMS_D 10 /* fault tolerance (maximum delta) */
|
|
#define LL_RMS_E 255 /* fault tolerance (maximum error) */
|
|
#define ALPHA_TS 2 /* alpha threshold: (255 - ALPHA_TS) deemed opaque */
|
|
#define ISTBLACK(v) (*((dword *)(v)) == 0)
|
|
#define COPY_4UBV(DST, SRC) *((dword *)(DST)) = *((dword *)(SRC))
|
|
|
|
|
|
static int
|
|
fxt1_bestcol (float vec[][MAX_COMP], int nv,
|
|
byte input[MAX_COMP], int nc)
|
|
{
|
|
int i, j, best = -1;
|
|
float err = 1e9; /* big enough */
|
|
|
|
for (j = 0; j < nv; j++) {
|
|
float e = 0.0F;
|
|
for (i = 0; i < nc; i++) {
|
|
e += (vec[j][i] - input[i]) * (vec[j][i] - input[i]);
|
|
}
|
|
if (e < err) {
|
|
err = e;
|
|
best = j;
|
|
}
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
|
|
static int
|
|
fxt1_worst (float vec[MAX_COMP],
|
|
byte input[N_TEXELS][MAX_COMP], int nc, int n)
|
|
{
|
|
int i, k, worst = -1;
|
|
float err = -1.0F; /* small enough */
|
|
|
|
for (k = 0; k < n; k++) {
|
|
float e = 0.0F;
|
|
for (i = 0; i < nc; i++) {
|
|
e += (vec[i] - input[k][i]) * (vec[i] - input[k][i]);
|
|
}
|
|
if (e > err) {
|
|
err = e;
|
|
worst = k;
|
|
}
|
|
}
|
|
|
|
return worst;
|
|
}
|
|
|
|
|
|
static int
|
|
fxt1_variance (double variance[MAX_COMP],
|
|
byte input[N_TEXELS][MAX_COMP], int nc, int n)
|
|
{
|
|
int i, k, best = 0;
|
|
dword sx, sx2;
|
|
double var, maxvar = -1; /* small enough */
|
|
double teenth = 1.0 / n;
|
|
|
|
for (i = 0; i < nc; i++) {
|
|
sx = sx2 = 0;
|
|
for (k = 0; k < n; k++) {
|
|
int t = input[k][i];
|
|
sx += t;
|
|
sx2 += t * t;
|
|
}
|
|
var = sx2 * teenth - sx * sx * teenth * teenth;
|
|
if (maxvar < var) {
|
|
maxvar = var;
|
|
best = i;
|
|
}
|
|
if (variance) {
|
|
variance[i] = var;
|
|
}
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
|
|
static int
|
|
fxt1_choose (float vec[][MAX_COMP], int nv,
|
|
byte input[N_TEXELS][MAX_COMP], int nc, int n)
|
|
{
|
|
#if 0
|
|
/* Choose colors from a grid.
|
|
*/
|
|
int i, j;
|
|
|
|
for (j = 0; j < nv; j++) {
|
|
int m = j * (n - 1) / (nv - 1);
|
|
for (i = 0; i < nc; i++) {
|
|
vec[j][i] = input[m][i];
|
|
}
|
|
}
|
|
#else
|
|
/* Our solution here is to find the darkest and brightest colors in
|
|
* the 8x4 tile and use those as the two representative colors.
|
|
* There are probably better algorithms to use (histogram-based).
|
|
*/
|
|
int i, j, k;
|
|
int minSum = 2000; /* big enough */
|
|
int maxSum = -1; /* small enough */
|
|
int minCol = 0; /* phoudoin: silent compiler! */
|
|
int maxCol = 0; /* phoudoin: silent compiler! */
|
|
|
|
struct {
|
|
int flag;
|
|
dword key;
|
|
int freq;
|
|
int idx;
|
|
} hist[N_TEXELS];
|
|
int lenh = 0;
|
|
|
|
memset(hist, 0, sizeof(hist));
|
|
|
|
for (k = 0; k < n; k++) {
|
|
int l;
|
|
dword key = 0;
|
|
int sum = 0;
|
|
for (i = 0; i < nc; i++) {
|
|
key <<= 8;
|
|
key |= input[k][i];
|
|
sum += input[k][i];
|
|
}
|
|
for (l = 0; l < n; l++) {
|
|
if (!hist[l].flag) {
|
|
/* alloc new slot */
|
|
hist[l].flag = !0;
|
|
hist[l].key = key;
|
|
hist[l].freq = 1;
|
|
hist[l].idx = k;
|
|
lenh = l + 1;
|
|
break;
|
|
} else if (hist[l].key == key) {
|
|
hist[l].freq++;
|
|
break;
|
|
}
|
|
}
|
|
if (minSum > sum) {
|
|
minSum = sum;
|
|
minCol = k;
|
|
}
|
|
if (maxSum < sum) {
|
|
maxSum = sum;
|
|
maxCol = k;
|
|
}
|
|
}
|
|
|
|
if (lenh <= nv) {
|
|
for (j = 0; j < lenh; j++) {
|
|
for (i = 0; i < nc; i++) {
|
|
vec[j][i] = (float)input[hist[j].idx][i];
|
|
}
|
|
}
|
|
for (; j < nv; j++) {
|
|
for (i = 0; i < nc; i++) {
|
|
vec[j][i] = vec[0][i];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
for (j = 0; j < nv; j++) {
|
|
for (i = 0; i < nc; i++) {
|
|
vec[j][i] = ((nv - 1 - j) * input[minCol][i] + j * input[maxCol][i] + (nv - 1) / 2) / (float)(nv - 1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return !0;
|
|
}
|
|
|
|
|
|
static int
|
|
fxt1_lloyd (float vec[][MAX_COMP], int nv,
|
|
byte input[N_TEXELS][MAX_COMP], int nc, int n)
|
|
{
|
|
/* Use the generalized lloyd's algorithm for VQ:
|
|
* find 4 color vectors.
|
|
*
|
|
* for each sample color
|
|
* sort to nearest vector.
|
|
*
|
|
* replace each vector with the centroid of it's matching colors.
|
|
*
|
|
* repeat until RMS doesn't improve.
|
|
*
|
|
* if a color vector has no samples, or becomes the same as another
|
|
* vector, replace it with the color which is farthest from a sample.
|
|
*
|
|
* vec[][MAX_COMP] initial vectors and resulting colors
|
|
* nv number of resulting colors required
|
|
* input[N_TEXELS][MAX_COMP] input texels
|
|
* nc number of components in input / vec
|
|
* n number of input samples
|
|
*/
|
|
|
|
int sum[MAX_VECT][MAX_COMP]; /* used to accumulate closest texels */
|
|
int cnt[MAX_VECT]; /* how many times a certain vector was chosen */
|
|
float error, lasterror = 1e9;
|
|
|
|
int i, j, k, rep;
|
|
|
|
/* the quantizer */
|
|
for (rep = 0; rep < LL_N_REP; rep++) {
|
|
/* reset sums & counters */
|
|
for (j = 0; j < nv; j++) {
|
|
for (i = 0; i < nc; i++) {
|
|
sum[j][i] = 0;
|
|
}
|
|
cnt[j] = 0;
|
|
}
|
|
error = 0;
|
|
|
|
/* scan whole block */
|
|
for (k = 0; k < n; k++) {
|
|
#if 1
|
|
int best = -1;
|
|
float err = 1e9; /* big enough */
|
|
/* determine best vector */
|
|
for (j = 0; j < nv; j++) {
|
|
float e = (vec[j][0] - input[k][0]) * (vec[j][0] - input[k][0]) +
|
|
(vec[j][1] - input[k][1]) * (vec[j][1] - input[k][1]) +
|
|
(vec[j][2] - input[k][2]) * (vec[j][2] - input[k][2]);
|
|
if (nc == 4) {
|
|
e += (vec[j][3] - input[k][3]) * (vec[j][3] - input[k][3]);
|
|
}
|
|
if (e < err) {
|
|
err = e;
|
|
best = j;
|
|
}
|
|
}
|
|
#else
|
|
int best = fxt1_bestcol(vec, nv, input[k], nc, &err);
|
|
#endif
|
|
/* add in closest color */
|
|
for (i = 0; i < nc; i++) {
|
|
sum[best][i] += input[k][i];
|
|
}
|
|
/* mark this vector as used */
|
|
cnt[best]++;
|
|
/* accumulate error */
|
|
error += err;
|
|
}
|
|
|
|
/* check RMS */
|
|
if ((error < LL_RMS_E) ||
|
|
((error < lasterror) && ((lasterror - error) < LL_RMS_D))) {
|
|
return !0; /* good match */
|
|
}
|
|
lasterror = error;
|
|
|
|
/* move each vector to the barycenter of its closest colors */
|
|
for (j = 0; j < nv; j++) {
|
|
if (cnt[j]) {
|
|
float div = 1.0F / cnt[j];
|
|
for (i = 0; i < nc; i++) {
|
|
vec[j][i] = div * sum[j][i];
|
|
}
|
|
} else {
|
|
/* this vec has no samples or is identical with a previous vec */
|
|
int worst = fxt1_worst(vec[j], input, nc, n);
|
|
for (i = 0; i < nc; i++) {
|
|
vec[j][i] = input[worst][i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0; /* could not converge fast enough */
|
|
}
|
|
|
|
|
|
static void
|
|
fxt1_quantize_CHROMA (dword *cc,
|
|
byte input[N_TEXELS][MAX_COMP])
|
|
{
|
|
const int n_vect = 4; /* 4 base vectors to find */
|
|
const int n_comp = 3; /* 3 components: R, G, B */
|
|
float vec[MAX_VECT][MAX_COMP];
|
|
int i, j, k;
|
|
qword hi; /* high quadword */
|
|
dword lohi, lolo; /* low quadword: hi dword, lo dword */
|
|
|
|
if (fxt1_choose(vec, n_vect, input, n_comp, N_TEXELS) != 0) {
|
|
fxt1_lloyd(vec, n_vect, input, n_comp, N_TEXELS);
|
|
}
|
|
|
|
Q_MOV32(hi, 4); /* cc-chroma = "010" + unused bit */
|
|
for (j = n_vect - 1; j >= 0; j--) {
|
|
for (i = 0; i < n_comp; i++) {
|
|
/* add in colors */
|
|
Q_SHL(hi, 5);
|
|
Q_OR32(hi, (dword)(vec[j][i] / 8.0F));
|
|
}
|
|
}
|
|
((qword *)cc)[1] = hi;
|
|
|
|
lohi = lolo = 0;
|
|
/* right microtile */
|
|
for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
|
|
lohi <<= 2;
|
|
lohi |= fxt1_bestcol(vec, n_vect, input[k], n_comp);
|
|
}
|
|
/* left microtile */
|
|
for (; k >= 0; k--) {
|
|
lolo <<= 2;
|
|
lolo |= fxt1_bestcol(vec, n_vect, input[k], n_comp);
|
|
}
|
|
cc[1] = lohi;
|
|
cc[0] = lolo;
|
|
}
|
|
|
|
|
|
static void
|
|
fxt1_quantize_ALPHA0 (dword *cc,
|
|
byte input[N_TEXELS][MAX_COMP],
|
|
byte reord[N_TEXELS][MAX_COMP], int n)
|
|
{
|
|
const int n_vect = 3; /* 3 base vectors to find */
|
|
const int n_comp = 4; /* 4 components: R, G, B, A */
|
|
float vec[MAX_VECT][MAX_COMP];
|
|
int i, j, k;
|
|
qword hi; /* high quadword */
|
|
dword lohi, lolo; /* low quadword: hi dword, lo dword */
|
|
|
|
/* the last vector indicates zero */
|
|
for (i = 0; i < n_comp; i++) {
|
|
vec[n_vect][i] = 0;
|
|
}
|
|
|
|
/* the first n texels in reord are guaranteed to be non-zero */
|
|
if (fxt1_choose(vec, n_vect, reord, n_comp, n) != 0) {
|
|
fxt1_lloyd(vec, n_vect, reord, n_comp, n);
|
|
}
|
|
|
|
Q_MOV32(hi, 6); /* alpha = "011" + lerp = 0 */
|
|
for (j = n_vect - 1; j >= 0; j--) {
|
|
/* add in alphas */
|
|
Q_SHL(hi, 5);
|
|
Q_OR32(hi, (dword)(vec[j][ACOMP] / 8.0F));
|
|
}
|
|
for (j = n_vect - 1; j >= 0; j--) {
|
|
for (i = 0; i < n_comp - 1; i++) {
|
|
/* add in colors */
|
|
Q_SHL(hi, 5);
|
|
Q_OR32(hi, (dword)(vec[j][i] / 8.0F));
|
|
}
|
|
}
|
|
((qword *)cc)[1] = hi;
|
|
|
|
lohi = lolo = 0;
|
|
/* right microtile */
|
|
for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
|
|
lohi <<= 2;
|
|
lohi |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp);
|
|
}
|
|
/* left microtile */
|
|
for (; k >= 0; k--) {
|
|
lolo <<= 2;
|
|
lolo |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp);
|
|
}
|
|
cc[1] = lohi;
|
|
cc[0] = lolo;
|
|
}
|
|
|
|
|
|
static void
|
|
fxt1_quantize_ALPHA1 (dword *cc,
|
|
byte input[N_TEXELS][MAX_COMP])
|
|
{
|
|
const int n_vect = 3; /* highest vector number in each microtile */
|
|
const int n_comp = 4; /* 4 components: R, G, B, A */
|
|
float vec[1 + 1 + 1][MAX_COMP]; /* 1.5 extrema for each sub-block */
|
|
float b, iv[MAX_COMP]; /* interpolation vector */
|
|
int i, j, k;
|
|
qword hi; /* high quadword */
|
|
dword lohi, lolo; /* low quadword: hi dword, lo dword */
|
|
|
|
int minSum;
|
|
int maxSum;
|
|
int minColL = 0, maxColL = 0;
|
|
int minColR = 0, maxColR = 0;
|
|
int sumL = 0, sumR = 0;
|
|
|
|
/* Our solution here is to find the darkest and brightest colors in
|
|
* the 4x4 tile and use those as the two representative colors.
|
|
* There are probably better algorithms to use (histogram-based).
|
|
*/
|
|
minSum = 2000; /* big enough */
|
|
maxSum = -1; /* small enough */
|
|
for (k = 0; k < N_TEXELS / 2; k++) {
|
|
int sum = 0;
|
|
for (i = 0; i < n_comp; i++) {
|
|
sum += input[k][i];
|
|
}
|
|
if (minSum > sum) {
|
|
minSum = sum;
|
|
minColL = k;
|
|
}
|
|
if (maxSum < sum) {
|
|
maxSum = sum;
|
|
maxColL = k;
|
|
}
|
|
sumL += sum;
|
|
}
|
|
minSum = 2000; /* big enough */
|
|
maxSum = -1; /* small enough */
|
|
for (; k < N_TEXELS; k++) {
|
|
int sum = 0;
|
|
for (i = 0; i < n_comp; i++) {
|
|
sum += input[k][i];
|
|
}
|
|
if (minSum > sum) {
|
|
minSum = sum;
|
|
minColR = k;
|
|
}
|
|
if (maxSum < sum) {
|
|
maxSum = sum;
|
|
maxColR = k;
|
|
}
|
|
sumR += sum;
|
|
}
|
|
|
|
/* choose the common vector (yuck!) */
|
|
{
|
|
int j1, j2;
|
|
int v1 = 0, v2 = 0;
|
|
float err = 1e9; /* big enough */
|
|
float tv[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */
|
|
for (i = 0; i < n_comp; i++) {
|
|
tv[0][i] = input[minColL][i];
|
|
tv[1][i] = input[maxColL][i];
|
|
tv[2][i] = input[minColR][i];
|
|
tv[3][i] = input[maxColR][i];
|
|
}
|
|
for (j1 = 0; j1 < 2; j1++) {
|
|
for (j2 = 2; j2 < 4; j2++) {
|
|
float e = 0.0F;
|
|
for (i = 0; i < n_comp; i++) {
|
|
e += (tv[j1][i] - tv[j2][i]) * (tv[j1][i] - tv[j2][i]);
|
|
}
|
|
if (e < err) {
|
|
err = e;
|
|
v1 = j1;
|
|
v2 = j2;
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < n_comp; i++) {
|
|
vec[0][i] = tv[1 - v1][i];
|
|
vec[1][i] = (tv[v1][i] * sumL + tv[v2][i] * sumR) / (sumL + sumR);
|
|
vec[2][i] = tv[5 - v2][i];
|
|
}
|
|
}
|
|
|
|
/* left microtile */
|
|
cc[0] = 0;
|
|
if (minColL != maxColL) {
|
|
/* compute interpolation vector */
|
|
MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]);
|
|
|
|
/* add in texels */
|
|
lolo = 0;
|
|
for (k = N_TEXELS / 2 - 1; k >= 0; k--) {
|
|
int texel;
|
|
/* interpolate color */
|
|
CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
|
|
/* add in texel */
|
|
lolo <<= 2;
|
|
lolo |= texel;
|
|
}
|
|
|
|
cc[0] = lolo;
|
|
}
|
|
|
|
/* right microtile */
|
|
cc[1] = 0;
|
|
if (minColR != maxColR) {
|
|
/* compute interpolation vector */
|
|
MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[1]);
|
|
|
|
/* add in texels */
|
|
lohi = 0;
|
|
for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
|
|
int texel;
|
|
/* interpolate color */
|
|
CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
|
|
/* add in texel */
|
|
lohi <<= 2;
|
|
lohi |= texel;
|
|
}
|
|
|
|
cc[1] = lohi;
|
|
}
|
|
|
|
Q_MOV32(hi, 7); /* alpha = "011" + lerp = 1 */
|
|
for (j = n_vect - 1; j >= 0; j--) {
|
|
/* add in alphas */
|
|
Q_SHL(hi, 5);
|
|
Q_OR32(hi, (dword)(vec[j][ACOMP] / 8.0F));
|
|
}
|
|
for (j = n_vect - 1; j >= 0; j--) {
|
|
for (i = 0; i < n_comp - 1; i++) {
|
|
/* add in colors */
|
|
Q_SHL(hi, 5);
|
|
Q_OR32(hi, (dword)(vec[j][i] / 8.0F));
|
|
}
|
|
}
|
|
((qword *)cc)[1] = hi;
|
|
}
|
|
|
|
|
|
static void
|
|
fxt1_quantize_HI (dword *cc,
|
|
byte input[N_TEXELS][MAX_COMP],
|
|
byte reord[N_TEXELS][MAX_COMP], int n)
|
|
{
|
|
const int n_vect = 6; /* highest vector number */
|
|
const int n_comp = 3; /* 3 components: R, G, B */
|
|
float b = 0.0F; /* phoudoin: silent compiler! */
|
|
float iv[MAX_COMP]; /* interpolation vector */
|
|
int i, k;
|
|
dword hihi; /* high quadword: hi dword */
|
|
|
|
int minSum = 2000; /* big enough */
|
|
int maxSum = -1; /* small enough */
|
|
int minCol = 0; /* phoudoin: silent compiler! */
|
|
int maxCol = 0; /* phoudoin: silent compiler! */
|
|
|
|
/* Our solution here is to find the darkest and brightest colors in
|
|
* the 8x4 tile and use those as the two representative colors.
|
|
* There are probably better algorithms to use (histogram-based).
|
|
*/
|
|
for (k = 0; k < n; k++) {
|
|
int sum = 0;
|
|
for (i = 0; i < n_comp; i++) {
|
|
sum += reord[k][i];
|
|
}
|
|
if (minSum > sum) {
|
|
minSum = sum;
|
|
minCol = k;
|
|
}
|
|
if (maxSum < sum) {
|
|
maxSum = sum;
|
|
maxCol = k;
|
|
}
|
|
}
|
|
|
|
hihi = 0; /* cc-hi = "00" */
|
|
for (i = 0; i < n_comp; i++) {
|
|
/* add in colors */
|
|
hihi <<= 5;
|
|
hihi |= reord[maxCol][i] >> 3;
|
|
}
|
|
for (i = 0; i < n_comp; i++) {
|
|
/* add in colors */
|
|
hihi <<= 5;
|
|
hihi |= reord[minCol][i] >> 3;
|
|
}
|
|
cc[3] = hihi;
|
|
cc[0] = cc[1] = cc[2] = 0;
|
|
|
|
/* compute interpolation vector */
|
|
if (minCol != maxCol) {
|
|
MAKEIVEC(n_vect, n_comp, iv, b, reord[minCol], reord[maxCol]);
|
|
}
|
|
|
|
/* add in texels */
|
|
for (k = N_TEXELS - 1; k >= 0; k--) {
|
|
int t = k * 3;
|
|
dword *kk = (dword *)((byte *)cc + t / 8);
|
|
int texel = n_vect + 1; /* transparent black */
|
|
|
|
if (!ISTBLACK(input[k])) {
|
|
if (minCol != maxCol) {
|
|
/* interpolate color */
|
|
CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
|
|
/* add in texel */
|
|
kk[0] |= texel << (t & 7);
|
|
}
|
|
} else {
|
|
/* add in texel */
|
|
kk[0] |= texel << (t & 7);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
fxt1_quantize_MIXED1 (dword *cc,
|
|
byte input[N_TEXELS][MAX_COMP])
|
|
{
|
|
const int n_vect = 2; /* highest vector number in each microtile */
|
|
const int n_comp = 3; /* 3 components: R, G, B */
|
|
byte vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */
|
|
float b, iv[MAX_COMP]; /* interpolation vector */
|
|
int i, j, k;
|
|
qword hi; /* high quadword */
|
|
dword lohi, lolo; /* low quadword: hi dword, lo dword */
|
|
|
|
int minSum;
|
|
int maxSum;
|
|
int minColL = 0, maxColL = -1;
|
|
int minColR = 0, maxColR = -1;
|
|
|
|
/* Our solution here is to find the darkest and brightest colors in
|
|
* the 4x4 tile and use those as the two representative colors.
|
|
* There are probably better algorithms to use (histogram-based).
|
|
*/
|
|
minSum = 2000; /* big enough */
|
|
maxSum = -1; /* small enough */
|
|
for (k = 0; k < N_TEXELS / 2; k++) {
|
|
if (!ISTBLACK(input[k])) {
|
|
int sum = 0;
|
|
for (i = 0; i < n_comp; i++) {
|
|
sum += input[k][i];
|
|
}
|
|
if (minSum > sum) {
|
|
minSum = sum;
|
|
minColL = k;
|
|
}
|
|
if (maxSum < sum) {
|
|
maxSum = sum;
|
|
maxColL = k;
|
|
}
|
|
}
|
|
}
|
|
minSum = 2000; /* big enough */
|
|
maxSum = -1; /* small enough */
|
|
for (; k < N_TEXELS; k++) {
|
|
if (!ISTBLACK(input[k])) {
|
|
int sum = 0;
|
|
for (i = 0; i < n_comp; i++) {
|
|
sum += input[k][i];
|
|
}
|
|
if (minSum > sum) {
|
|
minSum = sum;
|
|
minColR = k;
|
|
}
|
|
if (maxSum < sum) {
|
|
maxSum = sum;
|
|
maxColR = k;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* left microtile */
|
|
if (maxColL == -1) {
|
|
/* all transparent black */
|
|
cc[0] = ~0UL;
|
|
for (i = 0; i < n_comp; i++) {
|
|
vec[0][i] = 0;
|
|
vec[1][i] = 0;
|
|
}
|
|
} else {
|
|
cc[0] = 0;
|
|
for (i = 0; i < n_comp; i++) {
|
|
vec[0][i] = input[minColL][i];
|
|
vec[1][i] = input[maxColL][i];
|
|
}
|
|
if (minColL != maxColL) {
|
|
/* compute interpolation vector */
|
|
MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]);
|
|
|
|
/* add in texels */
|
|
lolo = 0;
|
|
for (k = N_TEXELS / 2 - 1; k >= 0; k--) {
|
|
int texel = n_vect + 1; /* transparent black */
|
|
if (!ISTBLACK(input[k])) {
|
|
/* interpolate color */
|
|
CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
|
|
}
|
|
/* add in texel */
|
|
lolo <<= 2;
|
|
lolo |= texel;
|
|
}
|
|
cc[0] = lolo;
|
|
}
|
|
}
|
|
|
|
/* right microtile */
|
|
if (maxColR == -1) {
|
|
/* all transparent black */
|
|
cc[1] = ~0UL;
|
|
for (i = 0; i < n_comp; i++) {
|
|
vec[2][i] = 0;
|
|
vec[3][i] = 0;
|
|
}
|
|
} else {
|
|
cc[1] = 0;
|
|
for (i = 0; i < n_comp; i++) {
|
|
vec[2][i] = input[minColR][i];
|
|
vec[3][i] = input[maxColR][i];
|
|
}
|
|
if (minColR != maxColR) {
|
|
/* compute interpolation vector */
|
|
MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[3]);
|
|
|
|
/* add in texels */
|
|
lohi = 0;
|
|
for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
|
|
int texel = n_vect + 1; /* transparent black */
|
|
if (!ISTBLACK(input[k])) {
|
|
/* interpolate color */
|
|
CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
|
|
}
|
|
/* add in texel */
|
|
lohi <<= 2;
|
|
lohi |= texel;
|
|
}
|
|
cc[1] = lohi;
|
|
}
|
|
}
|
|
|
|
Q_MOV32(hi, 9 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2)); /* chroma = "1" */
|
|
for (j = 2 * 2 - 1; j >= 0; j--) {
|
|
for (i = 0; i < n_comp; i++) {
|
|
/* add in colors */
|
|
Q_SHL(hi, 5);
|
|
Q_OR32(hi, vec[j][i] >> 3);
|
|
}
|
|
}
|
|
((qword *)cc)[1] = hi;
|
|
}
|
|
|
|
|
|
static void
|
|
fxt1_quantize_MIXED0 (dword *cc,
|
|
byte input[N_TEXELS][MAX_COMP])
|
|
{
|
|
const int n_vect = 3; /* highest vector number in each microtile */
|
|
const int n_comp = 3; /* 3 components: R, G, B */
|
|
byte vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */
|
|
float b, iv[MAX_COMP]; /* interpolation vector */
|
|
int i, j, k;
|
|
qword hi; /* high quadword */
|
|
dword lohi, lolo; /* low quadword: hi dword, lo dword */
|
|
|
|
int minColL = 0, maxColL = 0;
|
|
int minColR = 0, maxColR = 0;
|
|
#if 0
|
|
int minSum;
|
|
int maxSum;
|
|
|
|
/* Our solution here is to find the darkest and brightest colors in
|
|
* the 4x4 tile and use those as the two representative colors.
|
|
* There are probably better algorithms to use (histogram-based).
|
|
*/
|
|
minSum = 2000; /* big enough */
|
|
maxSum = -1; /* small enough */
|
|
for (k = 0; k < N_TEXELS / 2; k++) {
|
|
int sum = 0;
|
|
for (i = 0; i < n_comp; i++) {
|
|
sum += input[k][i];
|
|
}
|
|
if (minSum > sum) {
|
|
minSum = sum;
|
|
minColL = k;
|
|
}
|
|
if (maxSum < sum) {
|
|
maxSum = sum;
|
|
maxColL = k;
|
|
}
|
|
}
|
|
minSum = 2000; /* big enough */
|
|
maxSum = -1; /* small enough */
|
|
for (; k < N_TEXELS; k++) {
|
|
int sum = 0;
|
|
for (i = 0; i < n_comp; i++) {
|
|
sum += input[k][i];
|
|
}
|
|
if (minSum > sum) {
|
|
minSum = sum;
|
|
minColR = k;
|
|
}
|
|
if (maxSum < sum) {
|
|
maxSum = sum;
|
|
maxColR = k;
|
|
}
|
|
}
|
|
#else
|
|
int minVal;
|
|
int maxVal;
|
|
int maxVarL = fxt1_variance(NULL, input, n_comp, N_TEXELS / 2);
|
|
int maxVarR = fxt1_variance(NULL, &input[N_TEXELS / 2], n_comp, N_TEXELS / 2);
|
|
|
|
/* Scan the channel with max variance for lo & hi
|
|
* and use those as the two representative colors.
|
|
*/
|
|
minVal = 2000; /* big enough */
|
|
maxVal = -1; /* small enough */
|
|
for (k = 0; k < N_TEXELS / 2; k++) {
|
|
int t = input[k][maxVarL];
|
|
if (minVal > t) {
|
|
minVal = t;
|
|
minColL = k;
|
|
}
|
|
if (maxVal < t) {
|
|
maxVal = t;
|
|
maxColL = k;
|
|
}
|
|
}
|
|
minVal = 2000; /* big enough */
|
|
maxVal = -1; /* small enough */
|
|
for (; k < N_TEXELS; k++) {
|
|
int t = input[k][maxVarR];
|
|
if (minVal > t) {
|
|
minVal = t;
|
|
minColR = k;
|
|
}
|
|
if (maxVal < t) {
|
|
maxVal = t;
|
|
maxColR = k;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* left microtile */
|
|
cc[0] = 0;
|
|
for (i = 0; i < n_comp; i++) {
|
|
vec[0][i] = input[minColL][i];
|
|
vec[1][i] = input[maxColL][i];
|
|
}
|
|
if (minColL != maxColL) {
|
|
/* compute interpolation vector */
|
|
MAKEIVEC(n_vect, n_comp, iv, b, vec[0], vec[1]);
|
|
|
|
/* add in texels */
|
|
lolo = 0;
|
|
for (k = N_TEXELS / 2 - 1; k >= 0; k--) {
|
|
int texel;
|
|
/* interpolate color */
|
|
CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
|
|
/* add in texel */
|
|
lolo <<= 2;
|
|
lolo |= texel;
|
|
}
|
|
|
|
/* funky encoding for LSB of green */
|
|
if ((int)((lolo >> 1) & 1) != (((vec[1][GCOMP] ^ vec[0][GCOMP]) >> 2) & 1)) {
|
|
for (i = 0; i < n_comp; i++) {
|
|
vec[1][i] = input[minColL][i];
|
|
vec[0][i] = input[maxColL][i];
|
|
}
|
|
lolo = ~lolo;
|
|
}
|
|
|
|
cc[0] = lolo;
|
|
}
|
|
|
|
/* right microtile */
|
|
cc[1] = 0;
|
|
for (i = 0; i < n_comp; i++) {
|
|
vec[2][i] = input[minColR][i];
|
|
vec[3][i] = input[maxColR][i];
|
|
}
|
|
if (minColR != maxColR) {
|
|
/* compute interpolation vector */
|
|
MAKEIVEC(n_vect, n_comp, iv, b, vec[2], vec[3]);
|
|
|
|
/* add in texels */
|
|
lohi = 0;
|
|
for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
|
|
int texel;
|
|
/* interpolate color */
|
|
CALCCDOT(texel, n_vect, n_comp, iv, b, input[k]);
|
|
/* add in texel */
|
|
lohi <<= 2;
|
|
lohi |= texel;
|
|
}
|
|
|
|
/* funky encoding for LSB of green */
|
|
if ((int)((lohi >> 1) & 1) != (((vec[3][GCOMP] ^ vec[2][GCOMP]) >> 2) & 1)) {
|
|
for (i = 0; i < n_comp; i++) {
|
|
vec[3][i] = input[minColR][i];
|
|
vec[2][i] = input[maxColR][i];
|
|
}
|
|
lohi = ~lohi;
|
|
}
|
|
|
|
cc[1] = lohi;
|
|
}
|
|
|
|
Q_MOV32(hi, 8 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2)); /* chroma = "1" */
|
|
for (j = 2 * 2 - 1; j >= 0; j--) {
|
|
for (i = 0; i < n_comp; i++) {
|
|
/* add in colors */
|
|
Q_SHL(hi, 5);
|
|
Q_OR32(hi, vec[j][i] >> 3);
|
|
}
|
|
}
|
|
((qword *)cc)[1] = hi;
|
|
}
|
|
|
|
|
|
static void
|
|
fxt1_quantize (dword *cc, const byte *lines[], int comps)
|
|
{
|
|
int trualpha;
|
|
byte reord[N_TEXELS][MAX_COMP];
|
|
|
|
byte input[N_TEXELS][MAX_COMP];
|
|
int i, k, l;
|
|
|
|
if (comps == 3) {
|
|
/* make the whole block opaque */
|
|
memset(input, -1, sizeof(input));
|
|
}
|
|
|
|
/* 8 texels each line */
|
|
for (l = 0; l < 4; l++) {
|
|
for (k = 0; k < 4; k++) {
|
|
for (i = 0; i < comps; i++) {
|
|
input[k + l * 4][i] = *lines[l]++;
|
|
}
|
|
}
|
|
for (; k < 8; k++) {
|
|
for (i = 0; i < comps; i++) {
|
|
input[k + l * 4 + 12][i] = *lines[l]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* block layout:
|
|
* 00, 01, 02, 03, 08, 09, 0a, 0b
|
|
* 10, 11, 12, 13, 18, 19, 1a, 1b
|
|
* 04, 05, 06, 07, 0c, 0d, 0e, 0f
|
|
* 14, 15, 16, 17, 1c, 1d, 1e, 1f
|
|
*/
|
|
|
|
/* [dBorca]
|
|
* stupidity flows forth from this
|
|
*/
|
|
l = N_TEXELS;
|
|
trualpha = 0;
|
|
if (comps == 4) {
|
|
/* skip all transparent black texels */
|
|
l = 0;
|
|
for (k = 0; k < N_TEXELS; k++) {
|
|
/* test all components against 0 */
|
|
if (!ISTBLACK(input[k])) {
|
|
/* texel is not transparent black */
|
|
COPY_4UBV(reord[l], input[k]);
|
|
if (reord[l][ACOMP] < (255 - ALPHA_TS)) {
|
|
/* non-opaque texel */
|
|
trualpha = !0;
|
|
}
|
|
l++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
if (trualpha) {
|
|
fxt1_quantize_ALPHA0(cc, input, reord, l);
|
|
} else if (l == 0) {
|
|
cc[0] = cc[1] = cc[2] = -1;
|
|
cc[3] = 0;
|
|
} else if (l < N_TEXELS) {
|
|
fxt1_quantize_HI(cc, input, reord, l);
|
|
} else {
|
|
fxt1_quantize_CHROMA(cc, input);
|
|
}
|
|
(void)fxt1_quantize_ALPHA1;
|
|
(void)fxt1_quantize_MIXED1;
|
|
(void)fxt1_quantize_MIXED0;
|
|
#else
|
|
if (trualpha) {
|
|
fxt1_quantize_ALPHA1(cc, input);
|
|
} else if (l == 0) {
|
|
cc[0] = cc[1] = cc[2] = ~0UL;
|
|
cc[3] = 0;
|
|
} else if (l < N_TEXELS) {
|
|
fxt1_quantize_MIXED1(cc, input);
|
|
} else {
|
|
fxt1_quantize_MIXED0(cc, input);
|
|
}
|
|
(void)fxt1_quantize_ALPHA0;
|
|
(void)fxt1_quantize_HI;
|
|
(void)fxt1_quantize_CHROMA;
|
|
#endif
|
|
}
|
|
|
|
|
|
TAPI int TAPIENTRY
|
|
fxt1_encode (int width, int height, int comps,
|
|
const void *source, int srcRowStride,
|
|
void *dest, int destRowStride)
|
|
{
|
|
int x, y;
|
|
const byte *data;
|
|
dword *encoded = (dword *)dest;
|
|
void *newSource = NULL;
|
|
|
|
/* Replicate image if width is not M8 or height is not M4 */
|
|
if ((width & 7) | (height & 3)) {
|
|
int newWidth = (width + 7) & ~7;
|
|
int newHeight = (height + 3) & ~3;
|
|
newSource = malloc(comps * newWidth * newHeight * sizeof(byte *));
|
|
_mesa_upscale_teximage2d(width, height, newWidth, newHeight,
|
|
comps, (const byte *)source,
|
|
srcRowStride, (byte *)newSource);
|
|
source = newSource;
|
|
width = newWidth;
|
|
height = newHeight;
|
|
srcRowStride = comps * newWidth;
|
|
}
|
|
|
|
data = (const byte *)source;
|
|
destRowStride = (destRowStride - width * 2) / 4;
|
|
for (y = 0; y < height; y += 4) {
|
|
unsigned int offs = 0 + (y + 0) * srcRowStride;
|
|
for (x = 0; x < width; x += 8) {
|
|
const byte *lines[4];
|
|
lines[0] = &data[offs];
|
|
lines[1] = lines[0] + srcRowStride;
|
|
lines[2] = lines[1] + srcRowStride;
|
|
lines[3] = lines[2] + srcRowStride;
|
|
offs += 8 * comps;
|
|
fxt1_quantize(encoded, lines, comps);
|
|
/* 128 bits per 8x4 block */
|
|
encoded += 4;
|
|
}
|
|
encoded += destRowStride;
|
|
}
|
|
|
|
if (newSource != NULL) {
|
|
free(newSource);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/***************************************************************************\
|
|
* FXT1 decoder
|
|
*
|
|
* The decoder is based on GL_3DFX_texture_compression_FXT1
|
|
* specification and serves as a concept for the encoder.
|
|
\***************************************************************************/
|
|
|
|
|
|
/* lookup table for scaling 5 bit colors up to 8 bits */
|
|
static const byte _rgb_scale_5[] = {
|
|
0, 8, 16, 25, 33, 41, 49, 58,
|
|
66, 74, 82, 90, 99, 107, 115, 123,
|
|
132, 140, 148, 156, 165, 173, 181, 189,
|
|
197, 206, 214, 222, 230, 239, 247, 255
|
|
};
|
|
|
|
/* lookup table for scaling 6 bit colors up to 8 bits */
|
|
static const byte _rgb_scale_6[] = {
|
|
0, 4, 8, 12, 16, 20, 24, 28,
|
|
32, 36, 40, 45, 49, 53, 57, 61,
|
|
65, 69, 73, 77, 81, 85, 89, 93,
|
|
97, 101, 105, 109, 113, 117, 121, 125,
|
|
130, 134, 138, 142, 146, 150, 154, 158,
|
|
162, 166, 170, 174, 178, 182, 186, 190,
|
|
194, 198, 202, 206, 210, 215, 219, 223,
|
|
227, 231, 235, 239, 243, 247, 251, 255
|
|
};
|
|
|
|
|
|
#define CC_SEL(cc, which) (((dword *)(cc))[(which) / 32] >> ((which) & 31))
|
|
#define UP5(c) _rgb_scale_5[(c) & 31]
|
|
#define UP6(c, b) _rgb_scale_6[(((c) & 31) << 1) | ((b) & 1)]
|
|
#define LERP(n, t, c0, c1) (((n) - (t)) * (c0) + (t) * (c1) + (n) / 2) / (n)
|
|
#define ZERO_4UBV(v) *((dword *)(v)) = 0
|
|
|
|
|
|
static void
|
|
fxt1_decode_1HI (const byte *code, int t, byte *rgba)
|
|
{
|
|
const dword *cc;
|
|
|
|
t *= 3;
|
|
cc = (const dword *)(code + t / 8);
|
|
t = (cc[0] >> (t & 7)) & 7;
|
|
|
|
if (t == 7) {
|
|
ZERO_4UBV(rgba);
|
|
} else {
|
|
cc = (const dword *)(code + 12);
|
|
if (t == 0) {
|
|
rgba[BCOMP] = UP5(CC_SEL(cc, 0));
|
|
rgba[GCOMP] = UP5(CC_SEL(cc, 5));
|
|
rgba[RCOMP] = UP5(CC_SEL(cc, 10));
|
|
} else if (t == 6) {
|
|
rgba[BCOMP] = UP5(CC_SEL(cc, 15));
|
|
rgba[GCOMP] = UP5(CC_SEL(cc, 20));
|
|
rgba[RCOMP] = UP5(CC_SEL(cc, 25));
|
|
} else {
|
|
rgba[BCOMP] = LERP(6, t, UP5(CC_SEL(cc, 0)), UP5(CC_SEL(cc, 15)));
|
|
rgba[GCOMP] = LERP(6, t, UP5(CC_SEL(cc, 5)), UP5(CC_SEL(cc, 20)));
|
|
rgba[RCOMP] = LERP(6, t, UP5(CC_SEL(cc, 10)), UP5(CC_SEL(cc, 25)));
|
|
}
|
|
rgba[ACOMP] = 255;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
fxt1_decode_1CHROMA (const byte *code, int t, byte *rgba)
|
|
{
|
|
const dword *cc;
|
|
dword kk;
|
|
|
|
cc = (const dword *)code;
|
|
if (t & 16) {
|
|
cc++;
|
|
t &= 15;
|
|
}
|
|
t = (cc[0] >> (t * 2)) & 3;
|
|
|
|
t *= 15;
|
|
cc = (const dword *)(code + 8 + t / 8);
|
|
kk = cc[0] >> (t & 7);
|
|
rgba[BCOMP] = UP5(kk);
|
|
rgba[GCOMP] = UP5(kk >> 5);
|
|
rgba[RCOMP] = UP5(kk >> 10);
|
|
rgba[ACOMP] = 255;
|
|
}
|
|
|
|
|
|
static void
|
|
fxt1_decode_1MIXED (const byte *code, int t, byte *rgba)
|
|
{
|
|
const dword *cc;
|
|
int col[2][3];
|
|
int glsb, selb;
|
|
|
|
cc = (const dword *)code;
|
|
if (t & 16) {
|
|
t &= 15;
|
|
t = (cc[1] >> (t * 2)) & 3;
|
|
/* col 2 */
|
|
col[0][BCOMP] = (*(const dword *)(code + 11)) >> 6;
|
|
col[0][GCOMP] = CC_SEL(cc, 99);
|
|
col[0][RCOMP] = CC_SEL(cc, 104);
|
|
/* col 3 */
|
|
col[1][BCOMP] = CC_SEL(cc, 109);
|
|
col[1][GCOMP] = CC_SEL(cc, 114);
|
|
col[1][RCOMP] = CC_SEL(cc, 119);
|
|
glsb = CC_SEL(cc, 126);
|
|
selb = CC_SEL(cc, 33);
|
|
} else {
|
|
t = (cc[0] >> (t * 2)) & 3;
|
|
/* col 0 */
|
|
col[0][BCOMP] = CC_SEL(cc, 64);
|
|
col[0][GCOMP] = CC_SEL(cc, 69);
|
|
col[0][RCOMP] = CC_SEL(cc, 74);
|
|
/* col 1 */
|
|
col[1][BCOMP] = CC_SEL(cc, 79);
|
|
col[1][GCOMP] = CC_SEL(cc, 84);
|
|
col[1][RCOMP] = CC_SEL(cc, 89);
|
|
glsb = CC_SEL(cc, 125);
|
|
selb = CC_SEL(cc, 1);
|
|
}
|
|
|
|
if (CC_SEL(cc, 124) & 1) {
|
|
/* alpha[0] == 1 */
|
|
|
|
if (t == 3) {
|
|
ZERO_4UBV(rgba);
|
|
} else {
|
|
if (t == 0) {
|
|
rgba[BCOMP] = UP5(col[0][BCOMP]);
|
|
rgba[GCOMP] = UP5(col[0][GCOMP]);
|
|
rgba[RCOMP] = UP5(col[0][RCOMP]);
|
|
} else if (t == 2) {
|
|
rgba[BCOMP] = UP5(col[1][BCOMP]);
|
|
rgba[GCOMP] = UP6(col[1][GCOMP], glsb);
|
|
rgba[RCOMP] = UP5(col[1][RCOMP]);
|
|
} else {
|
|
rgba[BCOMP] = (UP5(col[0][BCOMP]) + UP5(col[1][BCOMP])) / 2;
|
|
rgba[GCOMP] = (UP5(col[0][GCOMP]) + UP6(col[1][GCOMP], glsb)) / 2;
|
|
rgba[RCOMP] = (UP5(col[0][RCOMP]) + UP5(col[1][RCOMP])) / 2;
|
|
}
|
|
rgba[ACOMP] = 255;
|
|
}
|
|
} else {
|
|
/* alpha[0] == 0 */
|
|
|
|
if (t == 0) {
|
|
rgba[BCOMP] = UP5(col[0][BCOMP]);
|
|
rgba[GCOMP] = UP6(col[0][GCOMP], glsb ^ selb);
|
|
rgba[RCOMP] = UP5(col[0][RCOMP]);
|
|
} else if (t == 3) {
|
|
rgba[BCOMP] = UP5(col[1][BCOMP]);
|
|
rgba[GCOMP] = UP6(col[1][GCOMP], glsb);
|
|
rgba[RCOMP] = UP5(col[1][RCOMP]);
|
|
} else {
|
|
rgba[BCOMP] = LERP(3, t, UP5(col[0][BCOMP]), UP5(col[1][BCOMP]));
|
|
rgba[GCOMP] = LERP(3, t, UP6(col[0][GCOMP], glsb ^ selb),
|
|
UP6(col[1][GCOMP], glsb));
|
|
rgba[RCOMP] = LERP(3, t, UP5(col[0][RCOMP]), UP5(col[1][RCOMP]));
|
|
}
|
|
rgba[ACOMP] = 255;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
fxt1_decode_1ALPHA (const byte *code, int t, byte *rgba)
|
|
{
|
|
const dword *cc;
|
|
|
|
cc = (const dword *)code;
|
|
if (CC_SEL(cc, 124) & 1) {
|
|
/* lerp == 1 */
|
|
int col0[4];
|
|
|
|
if (t & 16) {
|
|
t &= 15;
|
|
t = (cc[1] >> (t * 2)) & 3;
|
|
/* col 2 */
|
|
col0[BCOMP] = (*(const dword *)(code + 11)) >> 6;
|
|
col0[GCOMP] = CC_SEL(cc, 99);
|
|
col0[RCOMP] = CC_SEL(cc, 104);
|
|
col0[ACOMP] = CC_SEL(cc, 119);
|
|
} else {
|
|
t = (cc[0] >> (t * 2)) & 3;
|
|
/* col 0 */
|
|
col0[BCOMP] = CC_SEL(cc, 64);
|
|
col0[GCOMP] = CC_SEL(cc, 69);
|
|
col0[RCOMP] = CC_SEL(cc, 74);
|
|
col0[ACOMP] = CC_SEL(cc, 109);
|
|
}
|
|
|
|
if (t == 0) {
|
|
rgba[BCOMP] = UP5(col0[BCOMP]);
|
|
rgba[GCOMP] = UP5(col0[GCOMP]);
|
|
rgba[RCOMP] = UP5(col0[RCOMP]);
|
|
rgba[ACOMP] = UP5(col0[ACOMP]);
|
|
} else if (t == 3) {
|
|
rgba[BCOMP] = UP5(CC_SEL(cc, 79));
|
|
rgba[GCOMP] = UP5(CC_SEL(cc, 84));
|
|
rgba[RCOMP] = UP5(CC_SEL(cc, 89));
|
|
rgba[ACOMP] = UP5(CC_SEL(cc, 114));
|
|
} else {
|
|
rgba[BCOMP] = LERP(3, t, UP5(col0[BCOMP]), UP5(CC_SEL(cc, 79)));
|
|
rgba[GCOMP] = LERP(3, t, UP5(col0[GCOMP]), UP5(CC_SEL(cc, 84)));
|
|
rgba[RCOMP] = LERP(3, t, UP5(col0[RCOMP]), UP5(CC_SEL(cc, 89)));
|
|
rgba[ACOMP] = LERP(3, t, UP5(col0[ACOMP]), UP5(CC_SEL(cc, 114)));
|
|
}
|
|
} else {
|
|
/* lerp == 0 */
|
|
|
|
if (t & 16) {
|
|
cc++;
|
|
t &= 15;
|
|
}
|
|
t = (cc[0] >> (t * 2)) & 3;
|
|
|
|
if (t == 3) {
|
|
ZERO_4UBV(rgba);
|
|
} else {
|
|
dword kk;
|
|
cc = (const dword *)code;
|
|
rgba[ACOMP] = UP5(cc[3] >> (t * 5 + 13));
|
|
t *= 15;
|
|
cc = (const dword *)(code + 8 + t / 8);
|
|
kk = cc[0] >> (t & 7);
|
|
rgba[BCOMP] = UP5(kk);
|
|
rgba[GCOMP] = UP5(kk >> 5);
|
|
rgba[RCOMP] = UP5(kk >> 10);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
TAPI void TAPIENTRY
|
|
fxt1_decode_1 (const void *texture, int stride,
|
|
int i, int j, byte *rgba)
|
|
{
|
|
static void (*decode_1[]) (const byte *, int, byte *) = {
|
|
fxt1_decode_1HI, /* cc-high = "00?" */
|
|
fxt1_decode_1HI, /* cc-high = "00?" */
|
|
fxt1_decode_1CHROMA, /* cc-chroma = "010" */
|
|
fxt1_decode_1ALPHA, /* alpha = "011" */
|
|
fxt1_decode_1MIXED, /* mixed = "1??" */
|
|
fxt1_decode_1MIXED, /* mixed = "1??" */
|
|
fxt1_decode_1MIXED, /* mixed = "1??" */
|
|
fxt1_decode_1MIXED /* mixed = "1??" */
|
|
};
|
|
|
|
const byte *code = (const byte *)texture +
|
|
((j / 4) * (stride / 8) + (i / 8)) * 16;
|
|
int mode = CC_SEL(code, 125);
|
|
int t = i & 7;
|
|
|
|
if (t & 4) {
|
|
t += 12;
|
|
}
|
|
t += (j & 3) * 4;
|
|
|
|
decode_1[mode](code, t, rgba);
|
|
|
|
#if VERBOSE
|
|
{
|
|
extern int cc_chroma;
|
|
extern int cc_alpha;
|
|
extern int cc_high;
|
|
extern int cc_mixed;
|
|
static int *cctype[] = {
|
|
&cc_high,
|
|
&cc_high,
|
|
&cc_chroma,
|
|
&cc_alpha,
|
|
&cc_mixed,
|
|
&cc_mixed,
|
|
&cc_mixed,
|
|
&cc_mixed
|
|
};
|
|
(*cctype[mode])++;
|
|
}
|
|
#endif
|
|
}
|