reactos/drivers/storage/floppy/floppy.c
Pierre Schweitzer 4b34e44782
[FLOPPY] Don't wait forever while trying to determine media type.
This should fix some virtual machines and real hardware machine with empty floopy drive
not being able to boot ReactOS (stuck while initializing floppy.sys).
This fixes a regression introduced in r70746.
It could be generalized to other interrupts, floppy controllers not being reliable.

For more information: http://wiki.osdev.org/Floppy_Disk_Controller

CORE-7935
CORE-12908
CORE-13080
2017-11-21 10:22:50 +01:00

1215 lines
45 KiB
C

/*
* ReactOS Floppy Driver
* Copyright (C) 2004, Vizzini (vizzini@plasmic.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* PROJECT: ReactOS Floppy Driver
* FILE: floppy.c
* PURPOSE: Main floppy driver routines
* PROGRAMMER: Vizzini (vizzini@plasmic.com)
* REVISIONS:
* 15-Feb-2004 vizzini - Created
* NOTES:
* - This driver is only designed to work with ISA-bus floppy controllers. This
* won't work on PCI-based controllers or on anything else with level-sensitive
* interrupts without modification. I don't think these controllers exist.
*
* ---- General to-do items ----
* TODO: Figure out why CreateClose isn't called any more. Seems to correspond
* with the driver not being unloadable.
* TODO: Think about StopDpcQueued -- could be a race; too tired atm to tell
* TODO: Clean up drive start/stop responsibilities (currently a mess...)
*
* ---- Support for proper media detection ----
* TODO: Handle MFM flag
* TODO: Un-hardcode the data rate from various places
* TODO: Proper media detection (right now we're hardcoded to 1.44)
* TODO: Media detection based on sector 1
*/
#include "precomp.h"
#include <ntddk.h>
#include <debug.h>
#include "ioctl.h"
#include "readwrite.h"
/*
* Global controller info structures. Each controller gets one. Since the system
* will probably have only one, with four being a very unlikely maximum, a static
* global array is easiest to deal with.
*/
static CONTROLLER_INFO gControllerInfo[MAX_CONTROLLERS];
static ULONG gNumberOfControllers = 0;
/* Queue thread management */
static KEVENT QueueThreadTerminate;
static PVOID QueueThreadObject;
static VOID NTAPI
MotorStopDpcFunc(PKDPC UnusedDpc, PVOID DeferredContext, PVOID SystemArgument1, PVOID SystemArgument2)
/*
* FUNCTION: Stop the floppy motor
* ARGUMENTS:
* UnusedDpc: DPC object that's going off
* DeferredContext: called with DRIVE_INFO for drive to turn off
* SystemArgument1: unused
* SystemArgument2: unused
* NOTES:
* - Must set an event to let other threads know we're done turning off the motor
* - Called back at DISPATCH_LEVEL
*/
{
PCONTROLLER_INFO ControllerInfo = (PCONTROLLER_INFO)DeferredContext;
UNREFERENCED_PARAMETER(SystemArgument1);
UNREFERENCED_PARAMETER(SystemArgument2);
UNREFERENCED_PARAMETER(UnusedDpc);
ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
ASSERT(ControllerInfo);
TRACE_(FLOPPY, "MotorStopDpcFunc called\n");
HwTurnOffMotor(ControllerInfo);
ControllerInfo->StopDpcQueued = FALSE;
KeSetEvent(&ControllerInfo->MotorStoppedEvent, EVENT_INCREMENT, FALSE);
}
VOID NTAPI
StartMotor(PDRIVE_INFO DriveInfo)
/*
* FUNCTION: Start the motor, taking into account proper handling of the timer race
* ARGUMENTS:
* DriveInfo: drive to start
* NOTES:
* - Never call HwTurnOnMotor() directly
* - This protocol manages a race between the cancel timer and the requesting thread.
* You wouldn't want to turn on the motor and then cancel the timer, because the
* cancel dpc might fire in the meantime, and that'd un-do what you just did. If you
* cancel the timer first, but KeCancelTimer returns false, the dpc is already running,
* so you have to wait until the dpc is completely done running, or else you'll race
* with the turner-offer
* - PAGED_CODE because we wait
*/
{
PAGED_CODE();
ASSERT(DriveInfo);
TRACE_(FLOPPY, "StartMotor called\n");
if(DriveInfo->ControllerInfo->StopDpcQueued && !KeCancelTimer(&DriveInfo->ControllerInfo->MotorTimer))
{
/* Motor turner-offer is already running; wait for it to finish */
INFO_(FLOPPY, "StartMotor: motor turner-offer is already running; waiting for it\n");
KeWaitForSingleObject(&DriveInfo->ControllerInfo->MotorStoppedEvent, Executive, KernelMode, FALSE, NULL);
INFO_(FLOPPY, "StartMotor: wait satisfied\n");
}
DriveInfo->ControllerInfo->StopDpcQueued = FALSE;
if(HwTurnOnMotor(DriveInfo) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "StartMotor(): warning: HwTurnOnMotor failed\n");
}
}
VOID NTAPI
StopMotor(PCONTROLLER_INFO ControllerInfo)
/*
* FUNCTION: Stop all motors on the controller
* ARGUMENTS:
* DriveInfo: Drive to stop
* NOTES:
* - Never call HwTurnOffMotor() directly
* - This manages the timer cancelation race (see StartMotor for details).
* All we have to do is set up a timer.
*/
{
LARGE_INTEGER StopTime;
ASSERT(ControllerInfo);
TRACE_(FLOPPY, "StopMotor called\n");
/* one relative second, in 100-ns units */
StopTime.QuadPart = 10000000;
StopTime.QuadPart *= -1;
KeClearEvent(&ControllerInfo->MotorStoppedEvent);
KeSetTimer(&ControllerInfo->MotorTimer, StopTime, &ControllerInfo->MotorStopDpc);
ControllerInfo->StopDpcQueued = TRUE;
}
NTSTATUS NTAPI
WaitForControllerInterrupt(PCONTROLLER_INFO ControllerInfo, PLARGE_INTEGER Timeout)
/*
* FUNCTION: Wait for the controller to interrupt, and then clear the event
* ARGUMENTS:
* ControllerInfo: Controller to wait for
* Timeout: How long to wait for
* NOTES:
* - There is a small chance that an unexpected or spurious interrupt could
* be lost with this clear/wait/clear scheme used in this driver. This is
* deemed to be an acceptable risk due to the unlikeliness of the scenario,
* and the fact that it'll probably work fine next time.
* - PAGED_CODE because it waits
*/
{
NTSTATUS Status;
PAGED_CODE();
ASSERT(ControllerInfo);
Status = KeWaitForSingleObject(&ControllerInfo->SynchEvent, Executive, KernelMode, FALSE, Timeout);
KeClearEvent(&ControllerInfo->SynchEvent);
return Status;
}
static DRIVER_DISPATCH CreateClose;
static NTSTATUS NTAPI CreateClose(PDEVICE_OBJECT DeviceObject,
PIRP Irp)
/*
* FUNCTION: Dispatch function called for Create and Close IRPs
* ARGUMENTS:
* DeviceObject: DeviceObject that is the target of the IRP
* Irp: IRP to process
* RETURNS:
* STATUS_SUCCESS in all cases
* NOTES:
* - The Microsoft sample drivers tend to return FILE_OPENED in Information, so I do too.
* - No reason to fail the device open
* - No state to track, so this routine is easy
* - Can be called <= DISPATCH_LEVEL
*
* TODO: Figure out why this isn't getting called
*/
{
UNREFERENCED_PARAMETER(DeviceObject);
TRACE_(FLOPPY, "CreateClose called\n");
Irp->IoStatus.Status = STATUS_SUCCESS;
Irp->IoStatus.Information = FILE_OPENED;
IoCompleteRequest(Irp, IO_DISK_INCREMENT);
return STATUS_SUCCESS;
}
static NTSTATUS NTAPI
Recalibrate(PDRIVE_INFO DriveInfo)
/*
* FUNCTION: Start the recalibration process
* ARGUMENTS:
* DriveInfo: Pointer to the driveinfo struct associated with the targeted drive
* RETURNS:
* STATUS_SUCCESS on successful starting of the process
* STATUS_IO_DEVICE_ERROR if it fails
* NOTES:
* - Sometimes you have to do two recalibrations, particularly if the disk has <80 tracks.
* - PAGED_CODE because we wait
*/
{
NTSTATUS Status;
ULONG i;
PAGED_CODE();
ASSERT(DriveInfo);
/* first turn on the motor */
/* Must stop after every start, prior to return */
StartMotor(DriveInfo);
/* set the data rate */
WARN_(FLOPPY, "FIXME: UN-HARDCODE DATA RATE\n");
if(HwSetDataRate(DriveInfo->ControllerInfo, 0) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "Recalibrate: HwSetDataRate failed\n");
StopMotor(DriveInfo->ControllerInfo);
return STATUS_IO_DEVICE_ERROR;
}
/* clear the event just in case the last call forgot */
KeClearEvent(&DriveInfo->ControllerInfo->SynchEvent);
/* sometimes you have to do this twice; we'll just do it twice all the time since
* we don't know if the people calling this Recalibrate routine expect a disk to
* even be in the drive, and if so, if that disk is formatted.
*/
for(i = 0; i < 2; i++)
{
/* Send the command */
Status = HwRecalibrate(DriveInfo);
if(Status != STATUS_SUCCESS)
{
WARN_(FLOPPY, "Recalibrate: HwRecalibrate returned error\n");
continue;
}
WaitForControllerInterrupt(DriveInfo->ControllerInfo, NULL);
/* Get the results */
Status = HwRecalibrateResult(DriveInfo->ControllerInfo);
if(Status != STATUS_SUCCESS)
{
WARN_(FLOPPY, "Recalibrate: HwRecalibrateResult returned error\n");
break;
}
}
KeClearEvent(&DriveInfo->ControllerInfo->SynchEvent);
/* Must stop after every start, prior to return */
StopMotor(DriveInfo->ControllerInfo);
return Status;
}
NTSTATUS NTAPI
ResetChangeFlag(PDRIVE_INFO DriveInfo)
/*
* FUNCTION: Reset the drive's change flag (as reflected in the DIR)
* ARGUMENTS:
* DriveInfo: the drive to reset
* RETURNS:
* STATUS_SUCCESS if the changeline is cleared
* STATUS_NO_MEDIA_IN_DEVICE if the changeline cannot be cleared
* STATUS_IO_DEVICE_ERROR if the controller cannot be communicated with
* NOTES:
* - Change reset procedure: recalibrate, seek 1, seek 0
* - If the line is still set after that, there's clearly no disk in the
* drive, so we return STATUS_NO_MEDIA_IN_DEVICE
* - PAGED_CODE because we wait
*/
{
BOOLEAN DiskChanged;
PAGED_CODE();
ASSERT(DriveInfo);
TRACE_(FLOPPY, "ResetChangeFlag called\n");
/* Try to recalibrate. We don't care if it works. */
Recalibrate(DriveInfo);
/* clear spurious interrupts in prep for seeks */
KeClearEvent(&DriveInfo->ControllerInfo->SynchEvent);
/* must re-start the drive because Recalibrate() stops it */
StartMotor(DriveInfo);
/* Seek to 1 */
if(HwSeek(DriveInfo, 1) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "ResetChangeFlag(): HwSeek failed; returning STATUS_IO_DEVICE_ERROR\n");
StopMotor(DriveInfo->ControllerInfo);
return STATUS_IO_DEVICE_ERROR;
}
WaitForControllerInterrupt(DriveInfo->ControllerInfo, NULL);
if(HwSenseInterruptStatus(DriveInfo->ControllerInfo) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "ResetChangeFlag(): HwSenseInterruptStatus failed; bailing out\n");
StopMotor(DriveInfo->ControllerInfo);
return STATUS_IO_DEVICE_ERROR;
}
/* Seek back to 0 */
if(HwSeek(DriveInfo, 0) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "ResetChangeFlag(): HwSeek failed; returning STATUS_IO_DEVICE_ERROR\n");
StopMotor(DriveInfo->ControllerInfo);
return STATUS_IO_DEVICE_ERROR;
}
WaitForControllerInterrupt(DriveInfo->ControllerInfo, NULL);
if(HwSenseInterruptStatus(DriveInfo->ControllerInfo) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "ResetChangeFlag(): HwSenseInterruptStatus #2 failed; bailing\n");
StopMotor(DriveInfo->ControllerInfo);
return STATUS_IO_DEVICE_ERROR;
}
/* Check the change bit */
if(HwDiskChanged(DriveInfo, &DiskChanged) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "ResetChangeFlag(): HwDiskChanged failed; returning STATUS_IO_DEVICE_ERROR\n");
StopMotor(DriveInfo->ControllerInfo);
return STATUS_IO_DEVICE_ERROR;
}
StopMotor(DriveInfo->ControllerInfo);
/* if the change flag is still set, there's probably no media in the drive. */
if(DiskChanged)
return STATUS_NO_MEDIA_IN_DEVICE;
/* else we're done! */
return STATUS_SUCCESS;
}
static VOID NTAPI
Unload(PDRIVER_OBJECT DriverObject)
/*
* FUNCTION: Unload the driver from memory
* ARGUMENTS:
* DriverObject - The driver that is being unloaded
*/
{
ULONG i,j;
PAGED_CODE();
UNREFERENCED_PARAMETER(DriverObject);
TRACE_(FLOPPY, "unloading\n");
KeSetEvent(&QueueThreadTerminate, 0, FALSE);
KeWaitForSingleObject(QueueThreadObject, Executive, KernelMode, FALSE, 0);
ObDereferenceObject(QueueThreadObject);
for(i = 0; i < gNumberOfControllers; i++)
{
if(!gControllerInfo[i].Initialized)
continue;
for(j = 0; j < gControllerInfo[i].NumberOfDrives; j++)
{
if(!gControllerInfo[i].DriveInfo[j].Initialized)
continue;
if(gControllerInfo[i].DriveInfo[j].DeviceObject)
{
UNICODE_STRING Link;
RtlInitUnicodeString(&Link, gControllerInfo[i].DriveInfo[j].SymLinkBuffer);
IoDeleteSymbolicLink(&Link);
RtlInitUnicodeString(&Link, gControllerInfo[i].DriveInfo[j].ArcPathBuffer);
IoDeassignArcName(&Link);
IoDeleteDevice(gControllerInfo[i].DriveInfo[j].DeviceObject);
}
}
IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
/* Power down the controller */
if(HwPowerOff(&gControllerInfo[i]) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "unload: warning: HwPowerOff failed\n");
}
}
}
static NTSTATUS NTAPI
ConfigCallback(PVOID Context,
PUNICODE_STRING PathName,
INTERFACE_TYPE BusType,
ULONG BusNumber,
PKEY_VALUE_FULL_INFORMATION *BusInformation,
CONFIGURATION_TYPE ControllerType,
ULONG ControllerNumber,
PKEY_VALUE_FULL_INFORMATION *ControllerInformation,
CONFIGURATION_TYPE PeripheralType,
ULONG PeripheralNumber,
PKEY_VALUE_FULL_INFORMATION *PeripheralInformation)
/*
* FUNCTION: Callback to IoQueryDeviceDescription, which tells us about our controllers
* ARGUMENTS:
* Context: Unused
* PathName: Unused
* BusType: Type of the bus that our controller is on
* BusNumber: Number of the bus that our controller is on
* BusInformation: Unused
* ControllerType: Unused
* ControllerNumber: Number of the controller that we're adding
* ControllerInformation: Full configuration information for our controller
* PeripheralType: Unused
* PeripheralNumber: Unused
* PeripheralInformation: Full configuration information for each drive on our controller
* RETURNS:
* STATUS_SUCCESS in all cases
* NOTES:
* - The only documentation I've found about the contents of these structures is
* from the various Microsoft floppy samples and from the DDK headers. They're
* very vague, though, so I'm only mostly sure that this stuff is correct, as
* the MS samples do things completely differently than I have done them. Seems
* to work in my VMWare, though.
* - Basically, the function gets all of the information (port, dma, irq) about the
* controller, and then loops through all of the drives presented in PeripheralInformation.
* - Each controller has a CONTROLLER_INFO created for it, and each drive has a DRIVE_INFO.
* - Device objects are created for each drive (not controller), as that's the targeted
* device in the eyes of the rest of the OS. Each DRIVE_INFO points to a single CONTROLLER_INFO.
* - We only support up to four controllers in the whole system, each of which supports up to four
* drives.
*/
{
PKEY_VALUE_FULL_INFORMATION ControllerFullDescriptor = ControllerInformation[IoQueryDeviceConfigurationData];
PCM_FULL_RESOURCE_DESCRIPTOR ControllerResourceDescriptor = (PCM_FULL_RESOURCE_DESCRIPTOR)((PCHAR)ControllerFullDescriptor +
ControllerFullDescriptor->DataOffset);
PKEY_VALUE_FULL_INFORMATION PeripheralFullDescriptor = PeripheralInformation[IoQueryDeviceConfigurationData];
PCM_FULL_RESOURCE_DESCRIPTOR PeripheralResourceDescriptor = (PCM_FULL_RESOURCE_DESCRIPTOR)((PCHAR)PeripheralFullDescriptor +
PeripheralFullDescriptor->DataOffset);
PCM_PARTIAL_RESOURCE_DESCRIPTOR PartialDescriptor;
PCM_FLOPPY_DEVICE_DATA FloppyDeviceData;
UCHAR i;
PAGED_CODE();
UNREFERENCED_PARAMETER(PeripheralType);
UNREFERENCED_PARAMETER(PeripheralNumber);
UNREFERENCED_PARAMETER(BusInformation);
UNREFERENCED_PARAMETER(Context);
UNREFERENCED_PARAMETER(ControllerType);
UNREFERENCED_PARAMETER(PathName);
TRACE_(FLOPPY, "ConfigCallback called with ControllerNumber %d\n", ControllerNumber);
gControllerInfo[gNumberOfControllers].ControllerNumber = ControllerNumber;
gControllerInfo[gNumberOfControllers].InterfaceType = BusType;
gControllerInfo[gNumberOfControllers].BusNumber = BusNumber;
/* Get controller interrupt level/vector, dma channel, and port base */
for(i = 0; i < ControllerResourceDescriptor->PartialResourceList.Count; i++)
{
KeInitializeEvent(&gControllerInfo[gNumberOfControllers].SynchEvent, NotificationEvent, FALSE);
PartialDescriptor = &ControllerResourceDescriptor->PartialResourceList.PartialDescriptors[i];
if(PartialDescriptor->Type == CmResourceTypeInterrupt)
{
gControllerInfo[gNumberOfControllers].Level = PartialDescriptor->u.Interrupt.Level;
gControllerInfo[gNumberOfControllers].Vector = PartialDescriptor->u.Interrupt.Vector;
if(PartialDescriptor->Flags & CM_RESOURCE_INTERRUPT_LATCHED)
gControllerInfo[gNumberOfControllers].InterruptMode = Latched;
else
gControllerInfo[gNumberOfControllers].InterruptMode = LevelSensitive;
}
else if(PartialDescriptor->Type == CmResourceTypePort)
{
PHYSICAL_ADDRESS TranslatedAddress;
ULONG AddressSpace = 0x1; /* I/O Port Range */
if(!HalTranslateBusAddress(BusType, BusNumber, PartialDescriptor->u.Port.Start, &AddressSpace, &TranslatedAddress))
{
WARN_(FLOPPY, "HalTranslateBusAddress failed; returning\n");
return STATUS_IO_DEVICE_ERROR;
}
if(AddressSpace == 0)
gControllerInfo[gNumberOfControllers].BaseAddress = MmMapIoSpace(TranslatedAddress, FDC_PORT_BYTES, MmNonCached);
else
gControllerInfo[gNumberOfControllers].BaseAddress = (PUCHAR)(ULONG_PTR)TranslatedAddress.QuadPart;
}
else if(PartialDescriptor->Type == CmResourceTypeDma)
gControllerInfo[gNumberOfControllers].Dma = PartialDescriptor->u.Dma.Channel;
}
/* Start with 0 drives, then go looking */
gControllerInfo[gNumberOfControllers].NumberOfDrives = 0;
/* learn about drives attached to controller */
for(i = 0; i < PeripheralResourceDescriptor->PartialResourceList.Count; i++)
{
PDRIVE_INFO DriveInfo = &gControllerInfo[gNumberOfControllers].DriveInfo[i];
PartialDescriptor = &PeripheralResourceDescriptor->PartialResourceList.PartialDescriptors[i];
if(PartialDescriptor->Type != CmResourceTypeDeviceSpecific)
continue;
FloppyDeviceData = (PCM_FLOPPY_DEVICE_DATA)(PartialDescriptor + 1);
DriveInfo->ControllerInfo = &gControllerInfo[gNumberOfControllers];
DriveInfo->UnitNumber = i;
DriveInfo->FloppyDeviceData.MaxDensity = FloppyDeviceData->MaxDensity;
DriveInfo->FloppyDeviceData.MountDensity = FloppyDeviceData->MountDensity;
DriveInfo->FloppyDeviceData.StepRateHeadUnloadTime = FloppyDeviceData->StepRateHeadUnloadTime;
DriveInfo->FloppyDeviceData.HeadLoadTime = FloppyDeviceData->HeadLoadTime;
DriveInfo->FloppyDeviceData.MotorOffTime = FloppyDeviceData->MotorOffTime;
DriveInfo->FloppyDeviceData.SectorLengthCode = FloppyDeviceData->SectorLengthCode;
DriveInfo->FloppyDeviceData.SectorPerTrack = FloppyDeviceData->SectorPerTrack;
DriveInfo->FloppyDeviceData.ReadWriteGapLength = FloppyDeviceData->ReadWriteGapLength;
DriveInfo->FloppyDeviceData.FormatGapLength = FloppyDeviceData->FormatGapLength;
DriveInfo->FloppyDeviceData.FormatFillCharacter = FloppyDeviceData->FormatFillCharacter;
DriveInfo->FloppyDeviceData.HeadSettleTime = FloppyDeviceData->HeadSettleTime;
DriveInfo->FloppyDeviceData.MotorSettleTime = FloppyDeviceData->MotorSettleTime;
DriveInfo->FloppyDeviceData.MaximumTrackValue = FloppyDeviceData->MaximumTrackValue;
DriveInfo->FloppyDeviceData.DataTransferLength = FloppyDeviceData->DataTransferLength;
/* Once it's all set up, acknowledge its existence in the controller info object */
gControllerInfo[gNumberOfControllers].NumberOfDrives++;
}
gControllerInfo[gNumberOfControllers].Populated = TRUE;
gNumberOfControllers++;
return STATUS_SUCCESS;
}
static BOOLEAN NTAPI
Isr(PKINTERRUPT Interrupt, PVOID ServiceContext)
/*
* FUNCTION: Interrupt service routine for the controllers
* ARGUMENTS:
* Interrupt: Interrupt object representing the interrupt that occured
* ServiceContext: Pointer to the ControllerInfo object that caused the interrupt
* RETURNS:
* TRUE in all cases (see notes)
* NOTES:
* - We should always be the target of the interrupt, being an edge-triggered ISA interrupt, but
* this won't be the case with a level-sensitive system like PCI
* - Note that it probably doesn't matter if the interrupt isn't dismissed, as it's edge-triggered.
* It probably won't keep re-interrupting.
* - There are two different ways to dismiss a floppy interrupt. If the command has a result phase
* (see intel datasheet), you dismiss the interrupt by reading the first data byte. If it does
* not, you dismiss the interrupt by doing a Sense Interrupt command. Again, because it's edge-
* triggered, this is safe to not do here, as we can just wait for the DPC.
* - Either way, we don't want to do this here. The controller shouldn't interrupt again, so we'll
* schedule a DPC to take care of it.
* - This driver really cannot share interrupts, as I don't know how to conclusively say
* whether it was our controller that interrupted or not. I just have to assume that any time
* my ISR gets called, it was my board that called it. Dumb design, yes, but it goes back to
* the semantics of ISA buses. That, and I don't know much about ISA drivers. :-)
* UPDATE: The high bit of Status Register A seems to work on non-AT controllers.
* - Called at DIRQL
*/
{
PCONTROLLER_INFO ControllerInfo = (PCONTROLLER_INFO)ServiceContext;
UNREFERENCED_PARAMETER(Interrupt);
ASSERT(ControllerInfo);
TRACE_(FLOPPY, "ISR called\n");
/*
* Due to the stupidity of the drive/controller relationship on the floppy drive, only one device object
* can have an active interrupt pending. Due to the nature of these IRPs, though, there will only ever
* be one thread expecting an interrupt at a time, and furthermore, Interrupts (outside of spurious ones)
* won't ever happen unless a thread is expecting them. Therefore, all we have to do is signal an event
* and we're done. Queue a DPC and leave.
*/
KeInsertQueueDpc(&ControllerInfo->Dpc, NULL, NULL);
return TRUE;
}
VOID NTAPI
DpcForIsr(PKDPC UnusedDpc, PVOID Context, PVOID SystemArgument1, PVOID SystemArgument2)
/*
* FUNCTION: This DPC gets queued by every ISR. Does the real per-interrupt work.
* ARGUMENTS:
* UnusedDpc: Pointer to the DPC object that represents our function
* DeviceObject: Device that this DPC is running for
* Irp: Unused
* Context: Pointer to our ControllerInfo struct
* NOTES:
* - This function just kicks off whatever the SynchEvent is and returns. We depend on
* the thing that caused the drive to interrupt to handle the work of clearing the interrupt.
* This enables us to get back to PASSIVE_LEVEL and not hog system time on a really stupid,
* slow, screwed-up piece of hardware.
* - If nothing is waiting for us to set the event, the interrupt is effectively lost and will
* never be dismissed. I wonder if this will become a problem.
* - Called at DISPATCH_LEVEL
*/
{
PCONTROLLER_INFO ControllerInfo = (PCONTROLLER_INFO)Context;
UNREFERENCED_PARAMETER(UnusedDpc);
UNREFERENCED_PARAMETER(SystemArgument1);
UNREFERENCED_PARAMETER(SystemArgument2);
ASSERT(ControllerInfo);
TRACE_(FLOPPY, "DpcForIsr called\n");
KeSetEvent(&ControllerInfo->SynchEvent, EVENT_INCREMENT, FALSE);
}
static NTSTATUS NTAPI
InitController(PCONTROLLER_INFO ControllerInfo)
/*
* FUNCTION: Initialize a newly-found controller
* ARGUMENTS:
* ControllerInfo: pointer to the controller to be initialized
* RETURNS:
* STATUS_SUCCESS if the controller is successfully initialized
* STATUS_IO_DEVICE_ERROR otherwise
*/
{
int i;
UCHAR HeadLoadTime;
UCHAR HeadUnloadTime;
UCHAR StepRateTime;
UCHAR ControllerVersion;
PAGED_CODE();
ASSERT(ControllerInfo);
TRACE_(FLOPPY, "InitController called with Controller 0x%p\n", ControllerInfo);
/* Get controller in a known state */
if(HwConfigure(ControllerInfo, FALSE, TRUE, TRUE, 0, 0) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "InitController: unable to configure controller\n");
return STATUS_IO_DEVICE_ERROR;
}
/* Get the controller version */
ControllerVersion = HwGetVersion(ControllerInfo);
KeClearEvent(&ControllerInfo->SynchEvent);
/* Reset the controller */
if(HwReset(ControllerInfo) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "InitController: unable to reset controller\n");
return STATUS_IO_DEVICE_ERROR;
}
INFO_(FLOPPY, "InitController: waiting for initial interrupt\n");
/* Wait for an interrupt */
WaitForControllerInterrupt(ControllerInfo, NULL);
/* Reset means you have to clear each of the four interrupts (one per drive) */
for(i = 0; i < MAX_DRIVES_PER_CONTROLLER; i++)
{
INFO_(FLOPPY, "InitController: Sensing interrupt %d\n", i);
if(HwSenseInterruptStatus(ControllerInfo) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "InitController: Unable to clear interrupt 0x%x\n", i);
return STATUS_IO_DEVICE_ERROR;
}
}
INFO_(FLOPPY, "InitController: done sensing interrupts\n");
/* Next, see if we have the right version to do implied seek */
if(ControllerVersion == VERSION_ENHANCED)
{
/* If so, set that up -- all defaults below except first TRUE for EIS */
if(HwConfigure(ControllerInfo, TRUE, TRUE, TRUE, 0, 0) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "InitController: unable to set up implied seek\n");
ControllerInfo->ImpliedSeeks = FALSE;
}
else
{
INFO_(FLOPPY, "InitController: implied seeks set!\n");
ControllerInfo->ImpliedSeeks = TRUE;
}
/*
* FIXME: Figure out the answer to the below
*
* I must admit that I'm really confused about the Model 30 issue. At least one
* important bit (the disk change bit in the DIR) is flipped if this is a Model 30
* controller. However, at least one other floppy driver believes that there are only
* two computers that are guaranteed to have a Model 30 controller:
* - IBM Thinkpad 750
* - IBM PS2e
*
* ...and another driver only lists a config option for "thinkpad", that flips
* the change line. A third driver doesn't mention the Model 30 issue at all.
*
* What I can't tell is whether or not the average, run-of-the-mill computer now has
* a Model 30 controller. For the time being, I'm going to wire this to FALSE,
* and just not support the computers mentioned above, while I try to figure out
* how ubiquitous these newfangled 30 thingies are.
*/
//ControllerInfo->Model30 = TRUE;
ControllerInfo->Model30 = FALSE;
}
else
{
INFO_(FLOPPY, "InitController: enhanced version not supported; disabling implied seeks\n");
ControllerInfo->ImpliedSeeks = FALSE;
ControllerInfo->Model30 = FALSE;
}
/* Specify */
WARN_(FLOPPY, "FIXME: Figure out speed\n");
HeadLoadTime = SPECIFY_HLT_500K;
HeadUnloadTime = SPECIFY_HUT_500K;
StepRateTime = SPECIFY_SRT_500K;
INFO_(FLOPPY, "InitController: setting data rate\n");
/* Set data rate */
if(HwSetDataRate(ControllerInfo, DRSR_DSEL_500KBPS) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "InitController: unable to set data rate\n");
return STATUS_IO_DEVICE_ERROR;
}
INFO_(FLOPPY, "InitController: issuing specify command to controller\n");
/* Don't disable DMA --> enable dma (dumb & confusing) */
if(HwSpecify(ControllerInfo, HeadLoadTime, HeadUnloadTime, StepRateTime, FALSE) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "InitController: unable to specify options\n");
return STATUS_IO_DEVICE_ERROR;
}
/* Init the stop stuff */
KeInitializeDpc(&ControllerInfo->MotorStopDpc, MotorStopDpcFunc, ControllerInfo);
KeInitializeTimer(&ControllerInfo->MotorTimer);
KeInitializeEvent(&ControllerInfo->MotorStoppedEvent, NotificationEvent, FALSE);
ControllerInfo->StopDpcQueued = FALSE;
/*
* Recalibrate each drive on the controller (depends on StartMotor, which depends on the timer stuff above)
* We don't even know if there is a disk in the drive, so this may not work, but that's OK.
*/
for(i = 0; i < ControllerInfo->NumberOfDrives; i++)
{
INFO_(FLOPPY, "InitController: recalibrating drive 0x%x on controller 0x%p\n", i, ControllerInfo);
Recalibrate(&ControllerInfo->DriveInfo[i]);
}
INFO_(FLOPPY, "InitController: done initializing; returning STATUS_SUCCESS\n");
return STATUS_SUCCESS;
}
static BOOLEAN NTAPI
AddControllers(PDRIVER_OBJECT DriverObject)
/*
* FUNCTION: Called on initialization to find our controllers and build device and controller objects for them
* ARGUMENTS:
* DriverObject: Our driver's DriverObject (so we can create devices against it)
* RETURNS:
* FALSE if we can't allocate a device, adapter, or interrupt object, or if we fail to find any controllers
* TRUE otherwise (i.e. we have at least one fully-configured controller)
* NOTES:
* - Currently we only support ISA buses.
* - BUG: Windows 2000 seems to clobber the response from the IoQueryDeviceDescription callback, so now we
* just test a boolean value in the first object to see if it was completely populated. The same value
* is tested for each controller before we build device objects for it.
* TODO:
* - Report resource usage to the HAL
*/
{
INTERFACE_TYPE InterfaceType = Isa;
CONFIGURATION_TYPE ControllerType = DiskController;
CONFIGURATION_TYPE PeripheralType = FloppyDiskPeripheral;
KAFFINITY Affinity;
DEVICE_DESCRIPTION DeviceDescription;
UCHAR i;
UCHAR j;
PAGED_CODE();
/* Find our controllers on all ISA buses */
IoQueryDeviceDescription(&InterfaceType, 0, &ControllerType, 0, &PeripheralType, 0, ConfigCallback, 0);
/*
* w2k breaks the return val from ConfigCallback, so we have to hack around it, rather than just
* looking for a return value from ConfigCallback. We expect at least one controller.
*/
if(!gControllerInfo[0].Populated)
{
WARN_(FLOPPY, "AddControllers: failed to get controller info from registry\n");
return FALSE;
}
/* Now that we have a controller, set it up with the system */
for(i = 0; i < gNumberOfControllers && gControllerInfo[i].NumberOfDrives > 0; i++)
{
/* 0: Report resource usage to the kernel, to make sure they aren't assigned to anyone else */
/* FIXME: Implement me. */
/* 1: Set up interrupt */
gControllerInfo[i].MappedVector = HalGetInterruptVector(gControllerInfo[i].InterfaceType, gControllerInfo[i].BusNumber,
gControllerInfo[i].Level, gControllerInfo[i].Vector,
&gControllerInfo[i].MappedLevel, &Affinity);
/* Must set up the DPC before we connect the interrupt */
KeInitializeDpc(&gControllerInfo[i].Dpc, DpcForIsr, &gControllerInfo[i]);
INFO_(FLOPPY, "Connecting interrupt %d to controller%d (object 0x%p)\n", gControllerInfo[i].MappedVector,
i, &gControllerInfo[i]);
/* NOTE: We cannot share our interrupt, even on level-triggered buses. See Isr() for details. */
if(IoConnectInterrupt(&gControllerInfo[i].InterruptObject, Isr, &gControllerInfo[i], 0, gControllerInfo[i].MappedVector,
gControllerInfo[i].MappedLevel, gControllerInfo[i].MappedLevel, gControllerInfo[i].InterruptMode,
FALSE, Affinity, 0) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "AddControllers: unable to connect interrupt\n");
continue;
}
/* 2: Set up DMA */
memset(&DeviceDescription, 0, sizeof(DeviceDescription));
DeviceDescription.Version = DEVICE_DESCRIPTION_VERSION;
DeviceDescription.DmaChannel = gControllerInfo[i].Dma;
DeviceDescription.InterfaceType = gControllerInfo[i].InterfaceType;
DeviceDescription.BusNumber = gControllerInfo[i].BusNumber;
DeviceDescription.MaximumLength = 2*18*512; /* based on a 1.44MB floppy */
/* DMA 0,1,2,3 are 8-bit; 4,5,6,7 are 16-bit (4 is chain i think) */
DeviceDescription.DmaWidth = gControllerInfo[i].Dma > 3 ? Width16Bits: Width8Bits;
gControllerInfo[i].AdapterObject = HalGetAdapter(&DeviceDescription, &gControllerInfo[i].MapRegisters);
if(!gControllerInfo[i].AdapterObject)
{
WARN_(FLOPPY, "AddControllers: unable to allocate an adapter object\n");
IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
continue;
}
/* 2b: Initialize the new controller */
if(InitController(&gControllerInfo[i]) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "AddControllers(): Unable to set up controller %d - initialization failed\n", i);
IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
continue;
}
/* 2c: Set the controller's initialized flag so we know to release stuff in Unload */
gControllerInfo[i].Initialized = TRUE;
/* 3: per-drive setup */
for(j = 0; j < gControllerInfo[i].NumberOfDrives; j++)
{
WCHAR DeviceNameBuf[MAX_DEVICE_NAME];
UNICODE_STRING DeviceName;
UNICODE_STRING LinkName;
UNICODE_STRING ArcPath;
UCHAR DriveNumber;
INFO_(FLOPPY, "AddControllers(): Configuring drive %d on controller %d\n", i, j);
/*
* 3a: create a device object for the drive
* Controllers and drives are 0-based, so the combos are:
* 0: 0,0
* 1: 0,1
* 2: 0,2
* 3: 0,3
* 4: 1,0
* 5: 1,1
* ...
* 14: 3,2
* 15: 3,3
*/
DriveNumber = (UCHAR)(i*4 + j); /* loss of precision is OK; there are only 16 of 'em */
RtlZeroMemory(&DeviceNameBuf, MAX_DEVICE_NAME * sizeof(WCHAR));
swprintf(DeviceNameBuf, L"\\Device\\Floppy%d", DriveNumber);
RtlInitUnicodeString(&DeviceName, DeviceNameBuf);
if(IoCreateDevice(DriverObject, sizeof(PVOID), &DeviceName,
FILE_DEVICE_DISK, FILE_REMOVABLE_MEDIA | FILE_FLOPPY_DISKETTE, FALSE,
&gControllerInfo[i].DriveInfo[j].DeviceObject) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "AddControllers: unable to register a Device object\n");
IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
continue; /* continue on to next drive */
}
INFO_(FLOPPY, "AddControllers: New device: %S (0x%p)\n", DeviceNameBuf, gControllerInfo[i].DriveInfo[j].DeviceObject);
/* 3b.5: Create an ARC path in case we're booting from this drive */
swprintf(gControllerInfo[i].DriveInfo[j].ArcPathBuffer,
L"\\ArcName\\multi(%d)disk(%d)fdisk(%d)", gControllerInfo[i].BusNumber, i, DriveNumber);
RtlInitUnicodeString(&ArcPath, gControllerInfo[i].DriveInfo[j].ArcPathBuffer);
IoAssignArcName(&ArcPath, &DeviceName);
/* 3c: Set flags up */
gControllerInfo[i].DriveInfo[j].DeviceObject->Flags |= DO_DIRECT_IO;
/* 3d: Create a symlink */
swprintf(gControllerInfo[i].DriveInfo[j].SymLinkBuffer, L"\\DosDevices\\%c:", DriveNumber + 'A');
RtlInitUnicodeString(&LinkName, gControllerInfo[i].DriveInfo[j].SymLinkBuffer);
if(IoCreateSymbolicLink(&LinkName, &DeviceName) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "AddControllers: Unable to create a symlink for drive %d\n", DriveNumber);
IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
IoDeassignArcName(&ArcPath);
continue; /* continue to next drive */
}
/* 3e: Increase global floppy drives count */
IoGetConfigurationInformation()->FloppyCount++;
/* 3f: Set up the DPC */
IoInitializeDpcRequest(gControllerInfo[i].DriveInfo[j].DeviceObject, (PIO_DPC_ROUTINE)DpcForIsr);
/* 3g: Point the device extension at our DriveInfo struct */
gControllerInfo[i].DriveInfo[j].DeviceObject->DeviceExtension = &gControllerInfo[i].DriveInfo[j];
/* 3h: neat comic strip */
/* 3i: set the initial media type to unknown */
memset(&gControllerInfo[i].DriveInfo[j].DiskGeometry, 0, sizeof(DISK_GEOMETRY));
gControllerInfo[i].DriveInfo[j].DiskGeometry.MediaType = Unknown;
/* 3j: Now that we're done, set the Initialized flag so we know to free this in Unload */
gControllerInfo[i].DriveInfo[j].Initialized = TRUE;
/* 3k: Clear the DO_DEVICE_INITIALIZING flag */
gControllerInfo[i].DriveInfo[j].DeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;
/* 3l: Attempt to get drive info - if a floppy is already present */
StartMotor(&gControllerInfo[i].DriveInfo[j]);
RWDetermineMediaType(&gControllerInfo[i].DriveInfo[j], TRUE);
StopMotor(gControllerInfo[i].DriveInfo[j].ControllerInfo);
}
}
INFO_(FLOPPY, "AddControllers: --------------------------------------------> finished adding controllers\n");
return (IoGetConfigurationInformation()->FloppyCount != 0);
}
VOID NTAPI
SignalMediaChanged(PDEVICE_OBJECT DeviceObject, PIRP Irp)
/*
* FUNCTION: Process an IRP when the media has changed, and possibly notify the user
* ARGUMENTS:
* DeviceObject: DeviceObject associated with the IRP
* Irp: IRP that we're failing due to change
* NOTES:
* - This procedure is documented in the DDK by "Notifying the File System of Possible Media Changes",
* "IoSetHardErrorOrVerifyDevice", and by "Responding to Check-Verify Requests from the File System".
* - Callable at <= DISPATCH_LEVEL
*/
{
PDRIVE_INFO DriveInfo = DeviceObject->DeviceExtension;
TRACE_(FLOPPY, "SignalMediaChanged called\n");
DriveInfo->DiskChangeCount++;
/* If volume is not mounted, do NOT set verify and return STATUS_IO_DEVICE_ERROR */
if(!(DeviceObject->Vpb->Flags & VPB_MOUNTED))
{
Irp->IoStatus.Status = STATUS_IO_DEVICE_ERROR;
Irp->IoStatus.Information = 0;
return;
}
/* Notify the filesystem that it will need to verify the volume */
DeviceObject->Flags |= DO_VERIFY_VOLUME;
Irp->IoStatus.Status = STATUS_VERIFY_REQUIRED;
Irp->IoStatus.Information = 0;
/*
* If this is a user-based, threaded request, let the IO manager know to pop up a box asking
* the user to supply the correct media, but only if the error (which we just picked out above)
* is deemed by the IO manager to be "user induced". The reason we don't just unconditionally
* call IoSetHardError... is because MS might change the definition of "user induced" some day,
* and we don't want to have to remember to re-code this.
*/
if(Irp->Tail.Overlay.Thread && IoIsErrorUserInduced(Irp->IoStatus.Status))
IoSetHardErrorOrVerifyDevice(Irp, DeviceObject);
}
static VOID NTAPI
QueueThread(PVOID Context)
/*
* FUNCTION: Thread that manages the queue and dispatches any queued requests
* ARGUMENTS:
* Context: unused
*/
{
PIRP Irp;
PIO_STACK_LOCATION Stack;
PDEVICE_OBJECT DeviceObject;
PVOID Objects[2];
PAGED_CODE();
UNREFERENCED_PARAMETER(Context);
Objects[0] = &QueueSemaphore;
Objects[1] = &QueueThreadTerminate;
for(;;)
{
KeWaitForMultipleObjects(2, Objects, WaitAny, Executive, KernelMode, FALSE, NULL, NULL);
if(KeReadStateEvent(&QueueThreadTerminate))
{
INFO_(FLOPPY, "QueueThread terminating\n");
return;
}
INFO_(FLOPPY, "QueueThread: servicing an IRP\n");
Irp = IoCsqRemoveNextIrp(&Csq, 0);
/* we won't get an irp if it was canceled */
if(!Irp)
{
INFO_(FLOPPY, "QueueThread: IRP queue empty\n");
continue;
}
DeviceObject = (PDEVICE_OBJECT)Irp->Tail.Overlay.DriverContext[0];
ASSERT(DeviceObject);
Stack = IoGetCurrentIrpStackLocation(Irp);
/* Decide what to do with the IRP */
switch(Stack->MajorFunction)
{
case IRP_MJ_READ:
case IRP_MJ_WRITE:
ReadWritePassive(DeviceObject->DeviceExtension, Irp);
break;
case IRP_MJ_DEVICE_CONTROL:
DeviceIoctlPassive(DeviceObject->DeviceExtension, Irp);
break;
default:
WARN_(FLOPPY, "QueueThread(): Unrecognized irp: mj: 0x%x\n", Stack->MajorFunction);
Irp->IoStatus.Status = STATUS_NOT_SUPPORTED;
Irp->IoStatus.Information = 0;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
}
}
}
NTSTATUS NTAPI
DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)
/*
* FUNCTION: Entry-point for the driver
* ARGUMENTS:
* DriverObject: Our driver object
* RegistryPath: Unused
* RETURNS:
* STATUS_SUCCESS on successful initialization of at least one drive
* STATUS_NO_SUCH_DEVICE if we didn't find even one drive
* STATUS_UNSUCCESSFUL otherwise
*/
{
HANDLE ThreadHandle;
UNREFERENCED_PARAMETER(RegistryPath);
/*
* Set up dispatch routines
*/
DriverObject->MajorFunction[IRP_MJ_CREATE] = (PDRIVER_DISPATCH)CreateClose;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = (PDRIVER_DISPATCH)CreateClose;
DriverObject->MajorFunction[IRP_MJ_READ] = (PDRIVER_DISPATCH)ReadWrite;
DriverObject->MajorFunction[IRP_MJ_WRITE] = (PDRIVER_DISPATCH)ReadWrite;
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = (PDRIVER_DISPATCH)DeviceIoctl;
DriverObject->DriverUnload = Unload;
/*
* We depend on some zeroes in these structures. I know this is supposed to be
* initialized to 0 by the complier but this makes me feel beter.
*/
memset(&gControllerInfo, 0, sizeof(gControllerInfo));
/*
* Set up queue. This routine cannot fail (trust me, I wrote it).
*/
IoCsqInitialize(&Csq, CsqInsertIrp, CsqRemoveIrp, CsqPeekNextIrp,
CsqAcquireLock, CsqReleaseLock, CsqCompleteCanceledIrp);
/*
* ...and its lock
*/
KeInitializeSpinLock(&IrpQueueLock);
/*
* ...and the queue list itself
*/
InitializeListHead(&IrpQueue);
/*
* The queue is counted by a semaphore. The queue management thread
* blocks on this semaphore, so if requests come in faster than the queue
* thread can handle them, the semaphore count goes up.
*/
KeInitializeSemaphore(&QueueSemaphore, 0, 0x7fffffff);
/*
* Event to terminate that thread
*/
KeInitializeEvent(&QueueThreadTerminate, NotificationEvent, FALSE);
/*
* Create the queue processing thread. Save its handle in the global variable
* ThreadHandle so we can wait on its termination during Unload.
*/
if(PsCreateSystemThread(&ThreadHandle, THREAD_ALL_ACCESS, 0, 0, 0, QueueThread, 0) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "Unable to create system thread; failing init\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
if(ObReferenceObjectByHandle(ThreadHandle, STANDARD_RIGHTS_ALL, *PsThreadType, KernelMode, &QueueThreadObject, NULL) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "Unable to reference returned thread handle; failing init\n");
return STATUS_UNSUCCESSFUL;
}
/*
* Close the handle, now that we have the object pointer and a reference of our own.
* The handle will certainly not be valid in the context of the caller next time we
* need it, as handles are process-specific.
*/
ZwClose(ThreadHandle);
/*
* Start the device discovery process. Returns STATUS_SUCCESS if
* it finds even one drive attached to one controller.
*/
if(!AddControllers(DriverObject))
return STATUS_NO_SUCH_DEVICE;
return STATUS_SUCCESS;
}