reactos/win32ss/drivers/displays/vga/vgavideo/vgavideo.c
Hermès Bélusca-Maïto 9393fc320e
[FORMATTING] Remove trailing whitespace. Addendum to 34593d93.
Excluded: 3rd-party code (incl. wine) and most of the win32ss.
2021-09-13 03:52:22 +02:00

958 lines
24 KiB
C

/*
* PROJECT: ReactOS VGA display driver
* LICENSE: GPL - See COPYING in the top level directory
* FILE: win32ss/drivers/displays/vga/vgavideo/vgavideo.c
* PURPOSE:
* PROGRAMMERS:
*/
#include <vgaddi.h>
UCHAR PreCalcReverseByte[256];
int maskbit[640];
int y80[480];
int xconv[640];
int bit8[640];
int startmasks[8];
int endmasks[8];
PBYTE vidmem;
static ULONG UnpackPixel[256];
static unsigned char leftMask;
static int byteCounter;
static unsigned char rightMask;
UCHAR bytesPerPixel(ULONG Format)
{
/* This function is taken from /subsys/win32k/eng/surface.c
* FIXME: GDI bitmaps are supposed to be pixel-packed. Right now if the
* pixel size if < 1 byte we expand it to 1 byte for simplicities sake */
switch (Format)
{
case BMF_1BPP:
return 1;
case BMF_4BPP:
case BMF_4RLE:
return 1;
case BMF_8BPP:
case BMF_8RLE:
return 1;
case BMF_16BPP:
return 2;
case BMF_24BPP:
return 3;
case BMF_32BPP:
return 4;
default:
return 0;
}
}
VOID vgaPreCalc()
{
ULONG j;
startmasks[0] = 255;
startmasks[1] = 1;
startmasks[2] = 3;
startmasks[3] = 7;
startmasks[4] = 15;
startmasks[5] = 31;
startmasks[6] = 63;
startmasks[7] = 127;
endmasks[0] = 0;
endmasks[1] = 128;
endmasks[2] = 192;
endmasks[3] = 224;
endmasks[4] = 240;
endmasks[5] = 248;
endmasks[6] = 252;
endmasks[7] = 254;
for (j = 0; j < 80; j++)
{
maskbit[j*8] = 128;
maskbit[j*8+1] = 64;
maskbit[j*8+2] = 32;
maskbit[j*8+3] = 16;
maskbit[j*8+4] = 8;
maskbit[j*8+5] = 4;
maskbit[j*8+6] = 2;
maskbit[j*8+7] = 1;
bit8[j*8] = 7;
bit8[j*8+1] = 6;
bit8[j*8+2] = 5;
bit8[j*8+3] = 4;
bit8[j*8+4] = 3;
bit8[j*8+5] = 2;
bit8[j*8+6] = 1;
bit8[j*8+7] = 0;
}
for (j = 0; j < SCREEN_Y; j++)
y80[j] = j*80;
for (j = 0; j < SCREEN_X; j++)
xconv[j] = j >> 3;
for (j = 0; j < 256; j++)
{
PreCalcReverseByte[j] =
(((j >> 0) & 0x1) << 7) |
(((j >> 1) & 0x1) << 6) |
(((j >> 2) & 0x1) << 5) |
(((j >> 3) & 0x1) << 4) |
(((j >> 4) & 0x1) << 3) |
(((j >> 5) & 0x1) << 2) |
(((j >> 6) & 0x1) << 1) |
(((j >> 7) & 0x1) << 0);
}
for (j = 0; j < 256; j++)
{
UnpackPixel[j] =
(((j >> 0) & 0x1) << 4) |
(((j >> 1) & 0x1) << 0) |
(((j >> 2) & 0x1) << 12) |
(((j >> 3) & 0x1) << 8) |
(((j >> 4) & 0x1) << 20) |
(((j >> 5) & 0x1) << 16) |
(((j >> 6) & 0x1) << 28) |
(((j >> 7) & 0x1) << 24);
}
}
void
get_masks(int x, int w)
{
register int tmp;
leftMask = rightMask = 0;
byteCounter = w;
/* right margin */
tmp = (x+w) & 7;
if (tmp)
{
byteCounter -= tmp;
rightMask = (unsigned char)(0xff00 >> tmp);
}
/* left margin */
tmp = x & 7;
if (tmp)
{
byteCounter -= (8 - tmp);
leftMask = (0xff >> tmp);
}
/* too small ? */
if (byteCounter < 0)
{
leftMask &= rightMask;
rightMask = 0;
byteCounter = 0;
}
byteCounter /= 8;
}
VOID vgaPutPixel(INT x, INT y, UCHAR c)
{
ULONG offset;
offset = xconv[x]+y80[y];
WRITE_PORT_UCHAR((PUCHAR)GRA_I,0x08);
WRITE_PORT_UCHAR((PUCHAR)GRA_D,maskbit[x]);
READ_REGISTER_UCHAR(vidmem + offset);
WRITE_REGISTER_UCHAR(vidmem + offset, c);
}
VOID vgaPutByte(INT x, INT y, UCHAR c)
{
ULONG offset;
offset = xconv[x]+y80[y];
/* Set the write mode */
WRITE_PORT_UCHAR((PUCHAR)GRA_I,0x08);
WRITE_PORT_UCHAR((PUCHAR)GRA_D,0xff);
WRITE_REGISTER_UCHAR(vidmem + offset, c);
}
VOID vgaGetByte(
IN ULONG offset,
OUT UCHAR *b,
OUT UCHAR *g,
OUT UCHAR *r,
OUT UCHAR *i)
{
WRITE_PORT_USHORT((PUSHORT)GRA_I, 0x0304);
*i = READ_REGISTER_UCHAR(vidmem + offset);
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0x02);
*r = READ_REGISTER_UCHAR(vidmem + offset);
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0x01);
*g = READ_REGISTER_UCHAR(vidmem + offset);
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0x00);
*b = READ_REGISTER_UCHAR(vidmem + offset);
}
INT vgaGetPixel(
IN INT x,
IN INT y)
{
UCHAR mask, b, g, r, i;
ULONG offset;
offset = xconv[x] + y80[y];
vgaGetByte(offset, &b, &g, &r, &i);
mask = maskbit[x];
b = b & mask;
g = g & mask;
r = r & mask;
i = i & mask;
mask = bit8[x];
g = g >> mask;
b = b >> mask;
r = r >> mask;
i = i >> mask;
return (b + 2 * g + 4 * r + 8 * i);
}
BOOL vgaHLine(INT x, INT y, INT len, UCHAR c)
{
ULONG orgx, pre1, midpre1;
//ULONG orgpre1;
LONG ileftpix, imidpix, irightpix;
orgx = x;
/*if ( len < 8 )
{
for (i = x; i < x+len; i++ )
vgaPutPixel ( i, y, c );
return TRUE;
}*/
/* Calculate the left mask pixels, middle bytes and right mask pixel */
ileftpix = 7 - mod8(x-1);
irightpix = mod8(x+len);
imidpix = (len-ileftpix-irightpix) / 8;
pre1 = xconv[(x-1)&~7] + y80[y];
//orgpre1=pre1;
/* check for overlap ( very short line ) */
if ( (ileftpix+irightpix) > len )
{
int mask = startmasks[ileftpix] & endmasks[irightpix];
/* Write left pixels */
WRITE_PORT_UCHAR((PUCHAR)GRA_I,0x08); // set the mask
WRITE_PORT_UCHAR((PUCHAR)GRA_D,mask);
READ_REGISTER_UCHAR(vidmem + pre1);
WRITE_REGISTER_UCHAR(vidmem + pre1, c);
return TRUE;
}
/* Left */
if ( ileftpix > 0 )
{
/* Write left pixels */
WRITE_PORT_UCHAR((PUCHAR)GRA_I,0x08); // set the mask
WRITE_PORT_UCHAR((PUCHAR)GRA_D,startmasks[ileftpix]);
READ_REGISTER_UCHAR(vidmem + pre1);
WRITE_REGISTER_UCHAR(vidmem + pre1, c);
/* Prepare new x for the middle */
x = orgx + 8;
}
if ( imidpix > 0 )
{
midpre1 = xconv[x] + y80[y];
/* Set mask to all pixels in byte */
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x08);
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0xff);
memset(vidmem+midpre1, c, imidpix); // write middle pixels, no need to read in latch because of the width
}
if ( irightpix > 0 )
{
x = orgx + len - irightpix;
pre1 = xconv[x] + y80[y];
/* Write right pixels */
WRITE_PORT_UCHAR((PUCHAR)GRA_I,0x08); // set the mask bits
WRITE_PORT_UCHAR((PUCHAR)GRA_D, endmasks[irightpix]);
READ_REGISTER_UCHAR(vidmem + pre1);
WRITE_REGISTER_UCHAR(vidmem + pre1, c);
}
return TRUE;
}
BOOL vgaVLine(INT x, INT y, INT len, UCHAR c)
{
INT offset, i;
offset = xconv[x]+y80[y];
#ifdef VGA_PERF
vgaSetBitMaskRegister ( maskbit[x] );
#else
WRITE_PORT_UCHAR((PUCHAR)GRA_I,0x08); // set the mask
WRITE_PORT_UCHAR((PUCHAR)GRA_D,maskbit[x]);
#endif
for(i=y; i<y+len; i++)
{
READ_REGISTER_UCHAR(vidmem + offset);
WRITE_REGISTER_UCHAR(vidmem + offset, c);
offset += 80;
}
return TRUE;
}
static const RECTL rclEmpty = { 0, 0, 0, 0 };
BOOL VGADDIIntersectRect(PRECTL prcDst, PRECTL prcSrc1, PRECTL prcSrc2)
{
prcDst->left = max(prcSrc1->left, prcSrc2->left);
prcDst->right = min(prcSrc1->right, prcSrc2->right);
if (prcDst->left < prcDst->right)
{
prcDst->top = max(prcSrc1->top, prcSrc2->top);
prcDst->bottom = min(prcSrc1->bottom, prcSrc2->bottom);
if (prcDst->top < prcDst->bottom)
return TRUE;
}
*prcDst = rclEmpty;
return FALSE;
}
void DIB_BltFromVGA(int x, int y, int w, int h, void *b, int Dest_lDelta)
{
ULONG plane;
ULONG left = x >> 3;
ULONG shift = x - (x & ~0x7);
UCHAR pixel, nextpixel;
LONG rightcount;
INT i, j;
LONG stride = w >> 3;
/* Calculate the number of rightmost bytes not in a dword block. */
if (w >= 8)
{
rightcount = w % 8;
}
else
{
stride = 0;
rightcount = w;
}
rightcount = (rightcount + 1) / 2;
/* Reset the destination. */
for (j = 0; j < h; j++)
memset((PVOID)((ULONG_PTR)b + (j * Dest_lDelta)), 0, abs(Dest_lDelta));
for (plane = 0; plane < 4; plane++)
{
PUCHAR dest = b;
/* Select the plane we are reading in this iteration. */
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x04);
WRITE_PORT_UCHAR((PUCHAR)GRA_D, plane);
for (j = 0; j < h; j++)
{
PULONG destline = (PULONG)dest;
PUCHAR src = vidmem + (y + j) * SCREEN_STRIDE + left;
/* Read the data for one plane for an eight aligned pixel block. */
nextpixel = PreCalcReverseByte[READ_REGISTER_UCHAR(src)];
for (i = 0; i < stride; i++, src++, destline++)
{
/* Form the data for one plane for an aligned block in the destination. */
pixel = nextpixel;
pixel >>= shift;
nextpixel = PreCalcReverseByte[READ_REGISTER_UCHAR(src + 1)];
pixel |= (nextpixel << (8 - shift));
/* Expand the plane data to 'chunky' format and store. */
*destline |= (UnpackPixel[pixel] << plane);
}
/* Handle any pixels not falling into a full block. */
if (rightcount != 0)
{
ULONG row;
/* Form the data for a complete block. */
pixel = nextpixel;
pixel >>= shift;
nextpixel = PreCalcReverseByte[READ_REGISTER_UCHAR(src + 1)];
pixel |= (nextpixel << (8 - shift));
row = UnpackPixel[pixel] << plane;
/* Store the data for each byte in the destination. */
for (i = 0; i < rightcount; i++)
{
((PUCHAR)destline)[i] |= (row & 0xFF);
row >>= 8;
}
}
dest += Dest_lDelta;
}
}
#ifdef VGA_VERIFY
for (j = 0; j < h; j++)
{
for (i = 0; i < w; i += 2)
{
UCHAR c1, c2;
ULONG mask = (i < (w - 1)) ? 0xFF : 0xF0;
c1 = (vgaGetPixel(x + i, y + j) << 4) | (vgaGetPixel(x + i + 1, y + j));
c2 = ((PUCHAR)b)[(j * Dest_lDelta) + (i >> 1)];
if ((c1 & mask) != (c2 & mask))
EngDebugBreak();
}
}
#endif /* VGA_VERIFY */
}
/* DIB blt to the VGA. */
void DIB_BltToVGA(int x, int y, int w, int h, void *b, int Source_lDelta, int StartMod)
{
PUCHAR pb, opb = b;
LONG i, j;
LONG x2 = x + w;
LONG y2 = y + h;
ULONG offset;
for (i = x; i < x2; i++)
{
pb = opb;
offset = xconv[i] + y80[y];
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x08); // set the mask
WRITE_PORT_UCHAR((PUCHAR)GRA_D, maskbit[i]);
if (StartMod == ((i - x) % 2))
{
for (j = y; j < y2; j++)
{
READ_REGISTER_UCHAR(vidmem + offset);
WRITE_REGISTER_UCHAR(vidmem + offset, (*pb & 0xf0) >> 4);
offset += 80;
pb += Source_lDelta;
}
}
else
{
for (j = y; j < y2; j++)
{
READ_REGISTER_UCHAR(vidmem + offset);
WRITE_REGISTER_UCHAR(vidmem + offset, *pb & 0x0f);
offset += 80;
pb += Source_lDelta;
}
}
if (StartMod != ((i - x) % 2))
opb++;
}
}
/* DIB blt to the VGA. */
void DIB_BltToVGAWithXlate(int x, int y, int w, int h, void *b, int Source_lDelta, XLATEOBJ* Xlate)
{
PUCHAR pb, opb = b;
ULONG i, j;
ULONG x2 = x + w;
ULONG y2 = y + h;
ULONG offset;
for (i = x; i < x2; i++)
{
pb = opb;
offset = xconv[i] + y80[y];
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x08); // set the mask
WRITE_PORT_UCHAR((PUCHAR)GRA_D, maskbit[i]);
if (0 == ((i - x) % 2))
{
for (j = y; j < y2; j++)
{
READ_REGISTER_UCHAR(vidmem + offset);
WRITE_REGISTER_UCHAR(vidmem + offset, XLATEOBJ_iXlate(Xlate, (*pb & 0xf0) >> 4));
offset += 80;
pb += Source_lDelta;
}
}
else
{
for (j = y; j < y2; j++)
{
READ_REGISTER_UCHAR(vidmem + offset);
WRITE_REGISTER_UCHAR(vidmem + offset, XLATEOBJ_iXlate(Xlate, *pb & 0x0f));
offset += 80;
pb += Source_lDelta;
}
}
if (0 != ((i - x) % 2))
opb++;
}
}
/* DIB blt to the VGA.
* For now we just do slow writes -- pixel by pixel,
* packing each one into the correct 4BPP format. */
void DIB_TransparentBltToVGA(int x, int y, int w, int h, void *b, int Source_lDelta, ULONG trans)
{
PUCHAR pb = b, opb = b;
BOOLEAN edgePixel = FALSE;
ULONG i, j;
ULONG x2 = x + w;
ULONG y2 = y + h;
UCHAR b1, b2;
/* Check if the width is odd */
if(mod2(w) > 0)
{
edgePixel = TRUE;
x2 -= 1;
}
for (j=y; j<y2; j++)
{
for (i=x; i<x2; i+=2)
{
b1 = (*pb & 0xf0) >> 4;
b2 = *pb & 0x0f;
if(b1 != trans) vgaPutPixel(i, j, b1);
if(b2 != trans) vgaPutPixel(i+1, j, b2);
pb++;
}
if (edgePixel)
{
b1 = *pb;
if(b1 != trans) vgaPutPixel(x2, j, b1);
pb++;
}
opb += Source_lDelta;
pb = opb; // new test code
}
}
// This algorithm goes from left to right, storing each 4BPP pixel
// in an entire byte.
void FASTCALL
vgaReadScan( int x, int y, int w, void *b )
{
unsigned char *vp, *vpP;
unsigned char data, mask, maskP;
unsigned char *bp;
unsigned char plane_mask;
int plane, i;
ASSIGNVP4(x, y, vpP)
ASSIGNMK4(x, y, maskP)
get_masks(x, w);
WRITE_PORT_USHORT((PUSHORT)GRA_I, 0x0005); // read mode 0
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x04); // read map select
memset ( b, 0, w );
for ( plane=0, plane_mask=1; plane < 4; plane++, plane_mask<<=1 )
{
WRITE_PORT_UCHAR((PUCHAR)GRA_D, plane); // read map select
vp = vpP;
bp = b;
if ( leftMask )
{
mask = maskP;
data = *vp++;
do
{
if (data & mask)
*bp |= plane_mask;
bp++;
mask >>= 1;
} while (mask & leftMask);
}
if (byteCounter)
{
for (i=byteCounter; i>0; i--)
{
data = *vp++;
if (data & 0x80) *bp |= plane_mask;
bp++;
if (data & 0x40) *bp |= plane_mask;
bp++;
if (data & 0x20) *bp |= plane_mask;
bp++;
if (data & 0x10) *bp |= plane_mask;
bp++;
if (data & 0x08) *bp |= plane_mask;
bp++;
if (data & 0x04) *bp |= plane_mask;
bp++;
if (data & 0x02) *bp |= plane_mask;
bp++;
if (data & 0x01) *bp |= plane_mask;
bp++;
}
}
if (rightMask)
{
mask = 0x80;
data = *vp;
do
{
if (data & mask)
*bp |= plane_mask;
bp++;
mask >>= 1;
} while (mask & rightMask);
}
}
}
/* This algorithm goes from left to right
* It stores each 4BPP pixel in an entire byte. */
void FASTCALL
vgaWriteScan ( int x, int y, int w, void *b )
{
unsigned char *bp;
unsigned char *vp;
//unsigned char init_mask;
volatile unsigned char dummy;
//int byte_per_line;
int i, j, off, init_off = x&7;
bp = b;
ASSIGNVP4(x, y, vp)
//ASSIGNMK4(x, y, init_mask)
//byte_per_line = SCREEN_X >> 3;
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x05); // write mode 2
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0x02);
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x03); // replace
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0x00);
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x08); // bit mask
for ( j = 0; j < 8; j++)
{
unsigned int mask = 0x80 >> j;
WRITE_PORT_UCHAR ( (PUCHAR)GRA_D, (unsigned char)mask );
i = j - init_off;
off = 0;
if (j < init_off)
i += 8, off++;
while (i < w)
{
/*
* In write mode 2, the incoming data is 4-bit and represents the
* value of entire bytes on each of the 4 memory planes. First, VGA
* performs a logical operation on these bytes and the value of the
* latch register, but in this case there is none. Then, only the
* bits that are set in the bit mask are used from the resulting
* bytes, and the other bits are taken from the latch register.
*
* The latch register always contains the value previously read from
* VGA memory, and therefore, we must first read from vp[off] to
* load the latch register, and then write bp[i] to vp[off], which
* will be converted to 4 bytes of VGA memory as described.
*/
dummy = vp[off];
dummy = bp[i];
vp[off] = dummy;
i += 8;
off++;
}
}
}
/* This algorithm goes from left to right, and inside that loop, top to bottom.
* It also stores each 4BPP pixel in an entire byte. */
void DFB_BltFromVGA(int x, int y, int w, int h, void *b, int bw)
{
unsigned char *vp, *vpY, *vpP;
unsigned char data, mask, maskP;
unsigned char *bp, *bpY;
unsigned char plane_mask;
int byte_per_line = SCREEN_X >> 3;
int plane, i, j;
ASSIGNVP4(x, y, vpP)
ASSIGNMK4(x, y, maskP)
get_masks(x, w);
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x05); // read mode 0
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0x00);
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x04); // read map select
/* clear buffer */
bp = b;
for (j = h; j > 0; j--)
{
memset(bp, 0, w);
bp += bw;
}
for (plane = 0, plane_mask = 1; plane < 4; plane++, plane_mask <<= 1)
{
WRITE_PORT_UCHAR((PUCHAR)GRA_D, plane); // read map select
vpY = vpP;
bpY = b;
for (j = h; j > 0; j--)
{
vp = vpY;
bp = bpY;
if (leftMask)
{
mask = maskP;
data = *vp++;
do
{
if (data & mask)
*bp |= plane_mask;
bp++;
mask >>= 1;
} while (mask & leftMask);
}
if (byteCounter)
{
for (i=byteCounter; i>0; i--)
{
data = *vp++;
if (data & 0x80) *bp |= plane_mask;
bp++;
if (data & 0x40) *bp |= plane_mask;
bp++;
if (data & 0x20) *bp |= plane_mask;
bp++;
if (data & 0x10) *bp |= plane_mask;
bp++;
if (data & 0x08) *bp |= plane_mask;
bp++;
if (data & 0x04) *bp |= plane_mask;
bp++;
if (data & 0x02) *bp |= plane_mask;
bp++;
if (data & 0x01) *bp |= plane_mask;
bp++;
}
}
if (rightMask)
{
mask = 0x80;
data = *vp;
do
{
if (data & mask) *bp |= plane_mask;
bp++;
mask >>= 1;
} while (mask & rightMask);
}
bpY += bw;
vpY += byte_per_line;
}
}
// We don't need this if the next call is a DFB blt to VGA (as in the case of moving the mouse pointer)
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x05); // write mode 2
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0x02);
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x03); // replace
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0x00);
}
/* This algorithm goes from left to right, and inside that loop, top to bottom.
* It also stores each 4BPP pixel in an entire byte. */
void DFB_BltToVGA(int x, int y, int w, int h, void *b, int bw)
{
unsigned char *bp, *bpX;
unsigned char *vp, *vpX;
unsigned char mask;
//volatile unsigned char dummy;
int byte_per_line;
int i, j;
bpX = b;
ASSIGNVP4(x, y, vpX)
ASSIGNMK4(x, y, mask)
byte_per_line = SCREEN_X >> 3;
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x05); // write mode 2
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0x02);
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x03); // replace
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0x00);
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x08); // bit mask
for (i=w; i>0; i--)
{
WRITE_PORT_UCHAR((PUCHAR)GRA_D, mask);
bp = bpX;
vp = vpX;
for (j = h; j > 0; j--)
{
//dummy = *vp;
*vp = *bp;
bp += bw;
vp += byte_per_line;
}
bpX++;
if ((mask >>= 1) == 0)
{
vpX++;
mask = 0x80;
}
}
}
/* This algorithm goes from goes from left to right, and inside that loop, top to bottom.
* It also stores each 4BPP pixel in an entire byte. */
void DFB_BltToVGA_Transparent(int x, int y, int w, int h, void *b, int bw, char Trans)
{
unsigned char *bp, *bpX;
unsigned char *vp, *vpX;
unsigned char mask;
//volatile unsigned char dummy;
int byte_per_line;
int i, j;
bpX = b;
ASSIGNVP4(x, y, vpX)
ASSIGNMK4(x, y, mask)
byte_per_line = SCREEN_X >> 3;
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x05); // write mode 2
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0x02);
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x03); // replace
WRITE_PORT_UCHAR((PUCHAR)GRA_D, 0x00);
WRITE_PORT_UCHAR((PUCHAR)GRA_I, 0x08); // bit mask
for (i=w; i>0; i--)
{
WRITE_PORT_UCHAR((PUCHAR)GRA_D, mask);
bp = bpX;
vp = vpX;
for (j=h; j>0; j--)
{
if (*bp != Trans)
{
//dummy = *vp;
*vp = *bp;
}
bp += bw;
vp += byte_per_line;
}
bpX++;
if ((mask >>= 1) == 0)
{
vpX++;
mask = 0x80;
}
}
}
/* This algorithm converts a DFB into a DIB
* WARNING: This algorithm is buggy */
void DFB_BltToDIB(int x, int y, int w, int h, void *b, int bw, void *bdib, int dibw)
{
unsigned char *bp, *bpX, *dib, *dibTmp;
int i, j, dib_shift;
bpX = b;
dib = (unsigned char *)bdib + y * dibw + (x / 2);
for (i=w; i>0; i--)
{
/* determine the bit shift for the DIB pixel */
dib_shift = mod2(w-i);
if(dib_shift > 0)
dib_shift = 4;
dibTmp = dib;
bp = bpX;
for (j = h; j > 0; j--)
{
*dibTmp = *bp << dib_shift | *(bp + 1);
dibTmp += dibw;
bp += bw;
}
bpX++;
if(dib_shift == 0)
dib++;
}
}
/* This algorithm converts a DIB into a DFB */
void DIB_BltToDFB(int x, int y, int w, int h, void *b, int bw, void *bdib, int dibw)
{
unsigned char *bp, *bpX, *dib, *dibTmp;
int i, j, dib_shift, dib_and;
bpX = b;
dib = (unsigned char *)bdib + y * dibw + (x / 2);
for (i=w; i>0; i--)
{
/* determine the bit shift for the DIB pixel */
dib_shift = mod2(w-i);
if(dib_shift > 0)
{
dib_shift = 0;
dib_and = 0x0f;
}
else
{
dib_shift = 4;
dib_and = 0xf0;
}
dibTmp = dib;
bp = bpX;
for (j=h; j>0; j--)
{
*bp = (*dibTmp & dib_and) >> dib_shift;
dibTmp += dibw;
bp += bw;
}
bpX++;
if (dib_shift == 0)
dib++;
}
}