mirror of
https://github.com/reactos/reactos.git
synced 2024-11-06 06:33:08 +00:00
70 lines
1.9 KiB
C
70 lines
1.9 KiB
C
/*
|
|
* COPYRIGHT: BSD - See COPYING.ARM in the top level directory
|
|
* PROJECT: ReactOS CRT library
|
|
* PURPOSE: Portable implementation of sqrt
|
|
* PROGRAMMER: Timo Kreuzer (timo.kreuzer@reactos.org)
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
|
|
double
|
|
__cdecl
|
|
sqrt(
|
|
double x)
|
|
{
|
|
const double threehalfs = 1.5;
|
|
const double x2 = x * 0.5;
|
|
long long bits;
|
|
double inv, y;
|
|
|
|
/* Handle special cases */
|
|
if (x == 0.0)
|
|
{
|
|
return x;
|
|
}
|
|
else if (x < 0.0)
|
|
{
|
|
return -NAN;
|
|
}
|
|
|
|
/* Convert into a 64 bit integer */
|
|
bits = *(long long *)&x;
|
|
|
|
/* Check for !finite(x) */
|
|
if ((bits & 0x7ff7ffffffffffffLL) == 0x7ff0000000000000LL)
|
|
{
|
|
return x;
|
|
}
|
|
|
|
/* Step 1: quick approximation of 1/sqrt(x) with bit magic
|
|
See http://en.wikipedia.org/wiki/Fast_inverse_square_root */
|
|
bits = 0x5fe6eb50c7b537a9ll - (bits >> 1);
|
|
inv = *(double*)&bits;
|
|
|
|
/* Step 2: 3 Newton iterations to approximate 1 / sqrt(x) */
|
|
inv = inv * (threehalfs - (x2 * inv * inv));
|
|
inv = inv * (threehalfs - (x2 * inv * inv));
|
|
inv = inv * (threehalfs - (x2 * inv * inv));
|
|
|
|
/* Step 3: 1 additional Heron iteration has shown to maximize the precision.
|
|
Normally the formula would be: y = (y + (x / y)) * 0.5;
|
|
Instead we use the inverse sqrt directly */
|
|
y = ((1 / inv) + (x * inv)) * 0.5;
|
|
|
|
//assert(y == (double)((y + (x / y)) * 0.5));
|
|
/* GCC BUG: While the C-Standard requires that an explicit cast to
|
|
double converts the result of a computation to the appropriate
|
|
64 bit value, our GCC ignores this and uses an 80 bit FPU register
|
|
in an intermediate value, so we need to make sure it is stored in
|
|
a memory location before comparison */
|
|
//#if DBG
|
|
// {
|
|
// volatile double y1 = y, y2;
|
|
// y2 = (y + (x / y)) * 0.5;
|
|
// assert(y1 == y2);
|
|
// }
|
|
//#endif
|
|
|
|
return y;
|
|
}
|