mirror of
https://github.com/reactos/reactos.git
synced 2025-01-07 14:51:00 +00:00
638 lines
24 KiB
C
638 lines
24 KiB
C
/*
|
|
* ReactOS Task Manager
|
|
*
|
|
* graphctl.c
|
|
*
|
|
* Copyright (C) 2002 Robert Dickenson <robd@reactos.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include "precomp.h"
|
|
|
|
#include <math.h>
|
|
|
|
WNDPROC OldGraphCtrlWndProc;
|
|
|
|
static void GraphCtrl_Init(TGraphCtrl* this)
|
|
{
|
|
int i;
|
|
|
|
this->m_hWnd = 0;
|
|
this->m_hParentWnd = 0;
|
|
this->m_dcGrid = 0;
|
|
this->m_dcPlot = 0;
|
|
this->m_bitmapOldGrid = 0;
|
|
this->m_bitmapOldPlot = 0;
|
|
this->m_bitmapGrid = 0;
|
|
this->m_bitmapPlot = 0;
|
|
this->m_brushBack = 0;
|
|
|
|
this->m_penPlot[0] = 0;
|
|
this->m_penPlot[1] = 0;
|
|
this->m_penPlot[2] = 0;
|
|
this->m_penPlot[3] = 0;
|
|
|
|
/* since plotting is based on a LineTo for each new point
|
|
* we need a starting point (i.e. a "previous" point)
|
|
* use 0.0 as the default first point.
|
|
* these are public member variables, and can be changed outside
|
|
* (after construction). Therefore m_perviousPosition could be set to
|
|
* a more appropriate value prior to the first call to SetPosition.
|
|
*/
|
|
this->m_dPreviousPosition[0] = 0.0;
|
|
this->m_dPreviousPosition[1] = 0.0;
|
|
this->m_dPreviousPosition[2] = 0.0;
|
|
this->m_dPreviousPosition[3] = 0.0;
|
|
|
|
/* public variable for the number of decimal places on the y axis */
|
|
this->m_nYDecimals = 3;
|
|
|
|
/* set some initial values for the scaling until "SetRange" is called.
|
|
* these are protected variables and must be set with SetRange
|
|
* in order to ensure that m_dRange is updated accordingly
|
|
*/
|
|
/* m_dLowerLimit = -10.0; */
|
|
/* m_dUpperLimit = 10.0; */
|
|
this->m_dLowerLimit = 0.0;
|
|
this->m_dUpperLimit = 100.0;
|
|
this->m_dRange = this->m_dUpperLimit - this->m_dLowerLimit; /* protected member variable */
|
|
|
|
/* m_nShiftPixels determines how much the plot shifts (in terms of pixels) */
|
|
/* with the addition of a new data point */
|
|
this->m_nShiftPixels = 4;
|
|
this->m_nHalfShiftPixels = this->m_nShiftPixels/2; /* protected */
|
|
this->m_nPlotShiftPixels = this->m_nShiftPixels + this->m_nHalfShiftPixels; /* protected */
|
|
|
|
/* background, grid and data colors */
|
|
/* these are public variables and can be set directly */
|
|
this->m_crBackColor = RGB( 0, 0, 0); /* see also SetBackgroundColor */
|
|
this->m_crGridColor = RGB( 0, 128, 64); /* see also SetGridColor */
|
|
this->m_crPlotColor[0] = RGB(255, 255, 255); /* see also SetPlotColor */
|
|
this->m_crPlotColor[1] = RGB(100, 255, 255); /* see also SetPlotColor */
|
|
this->m_crPlotColor[2] = RGB(255, 100, 255); /* see also SetPlotColor */
|
|
this->m_crPlotColor[3] = RGB(255, 255, 100); /* see also SetPlotColor */
|
|
|
|
/* protected variables */
|
|
for (i = 0; i < MAX_PLOTS; i++)
|
|
{
|
|
this->m_penPlot[i] = CreatePen(PS_SOLID, 0, this->m_crPlotColor[i]);
|
|
}
|
|
this->m_brushBack = CreateSolidBrush(this->m_crBackColor);
|
|
|
|
/* public member variables, can be set directly */
|
|
strcpy(this->m_strXUnitsString, "Samples"); /* can also be set with SetXUnits */
|
|
strcpy(this->m_strYUnitsString, "Y units"); /* can also be set with SetYUnits */
|
|
|
|
/* protected bitmaps to restore the memory DC's */
|
|
this->m_bitmapOldGrid = NULL;
|
|
this->m_bitmapOldPlot = NULL;
|
|
}
|
|
|
|
void GraphCtrl_Dispose(TGraphCtrl* this)
|
|
{
|
|
int plot;
|
|
|
|
for (plot = 0; plot < MAX_PLOTS; plot++)
|
|
DeleteObject(this->m_penPlot[plot]);
|
|
|
|
/* just to be picky restore the bitmaps for the two memory dc's */
|
|
/* (these dc's are being destroyed so there shouldn't be any leaks) */
|
|
|
|
if (this->m_bitmapOldGrid != NULL) SelectObject(this->m_dcGrid, this->m_bitmapOldGrid);
|
|
if (this->m_bitmapOldPlot != NULL) SelectObject(this->m_dcPlot, this->m_bitmapOldPlot);
|
|
if (this->m_bitmapGrid != NULL) DeleteObject(this->m_bitmapGrid);
|
|
if (this->m_bitmapPlot != NULL) DeleteObject(this->m_bitmapPlot);
|
|
if (this->m_dcGrid != NULL) DeleteDC(this->m_dcGrid);
|
|
if (this->m_dcPlot != NULL) DeleteDC(this->m_dcPlot);
|
|
if (this->m_brushBack != NULL) DeleteObject(this->m_brushBack);
|
|
}
|
|
|
|
void GraphCtrl_Create(TGraphCtrl* this, HWND hWnd, HWND hParentWnd, UINT nID)
|
|
{
|
|
GraphCtrl_Init(this);
|
|
this->m_hParentWnd = hParentWnd;
|
|
this->m_hWnd = hWnd;
|
|
|
|
GraphCtrl_Resize(this);
|
|
|
|
return;
|
|
}
|
|
|
|
void GraphCtrl_SetRange(TGraphCtrl* this, double dLower, double dUpper, int nDecimalPlaces)
|
|
{
|
|
/* ASSERT(dUpper > dLower); */
|
|
this->m_dLowerLimit = dLower;
|
|
this->m_dUpperLimit = dUpper;
|
|
this->m_nYDecimals = nDecimalPlaces;
|
|
this->m_dRange = this->m_dUpperLimit - this->m_dLowerLimit;
|
|
this->m_dVerticalFactor = (double)this->m_nPlotHeight / this->m_dRange;
|
|
/* clear out the existing garbage, re-start with a clean plot */
|
|
GraphCtrl_InvalidateCtrl(this, FALSE);
|
|
}
|
|
|
|
#if 0
|
|
void TGraphCtrl::SetXUnits(const char* string)
|
|
{
|
|
strncpy(m_strXUnitsString, string, sizeof(m_strXUnitsString) - 1);
|
|
/* clear out the existing garbage, re-start with a clean plot */
|
|
InvalidateCtrl();
|
|
}
|
|
|
|
void TGraphCtrl::SetYUnits(const char* string)
|
|
{
|
|
strncpy(m_strYUnitsString, string, sizeof(m_strYUnitsString) - 1);
|
|
/* clear out the existing garbage, re-start with a clean plot */
|
|
InvalidateCtrl();
|
|
}
|
|
#endif
|
|
|
|
void GraphCtrl_SetGridColor(TGraphCtrl* this, COLORREF color)
|
|
{
|
|
this->m_crGridColor = color;
|
|
/* clear out the existing garbage, re-start with a clean plot */
|
|
GraphCtrl_InvalidateCtrl(this, FALSE);
|
|
}
|
|
|
|
void GraphCtrl_SetPlotColor(TGraphCtrl* this, int plot, COLORREF color)
|
|
{
|
|
this->m_crPlotColor[plot] = color;
|
|
DeleteObject(this->m_penPlot[plot]);
|
|
this->m_penPlot[plot] = CreatePen(PS_SOLID, 0, this->m_crPlotColor[plot]);
|
|
/* clear out the existing garbage, re-start with a clean plot */
|
|
GraphCtrl_InvalidateCtrl(this, FALSE);
|
|
}
|
|
|
|
void GraphCtrl_SetBackgroundColor(TGraphCtrl* this, COLORREF color)
|
|
{
|
|
this->m_crBackColor = color;
|
|
DeleteObject(this->m_brushBack);
|
|
this->m_brushBack = CreateSolidBrush(this->m_crBackColor);
|
|
/* clear out the existing garbage, re-start with a clean plot */
|
|
GraphCtrl_InvalidateCtrl(this, FALSE);
|
|
}
|
|
|
|
void GraphCtrl_InvalidateCtrl(TGraphCtrl* this, BOOL bResize)
|
|
{
|
|
/* There is a lot of drawing going on here - particularly in terms of */
|
|
/* drawing the grid. Don't panic, this is all being drawn (only once) */
|
|
/* to a bitmap. The result is then BitBlt'd to the control whenever needed. */
|
|
int i;
|
|
int nCharacters;
|
|
//int nTopGridPix, nMidGridPix, nBottomGridPix;
|
|
|
|
HPEN oldPen;
|
|
HPEN solidPen = CreatePen(PS_SOLID, 0, this->m_crGridColor);
|
|
/* HFONT axisFont, yUnitFont, oldFont; */
|
|
/* char strTemp[50]; */
|
|
|
|
/* in case we haven't established the memory dc's */
|
|
/* CClientDC dc(this); */
|
|
HDC dc = GetDC(this->m_hParentWnd);
|
|
|
|
/* if we don't have one yet, set up a memory dc for the grid */
|
|
if (this->m_dcGrid == NULL)
|
|
{
|
|
this->m_dcGrid = CreateCompatibleDC(dc);
|
|
this->m_bitmapGrid = CreateCompatibleBitmap(dc, this->m_nClientWidth, this->m_nClientHeight);
|
|
this->m_bitmapOldGrid = (HBITMAP)SelectObject(this->m_dcGrid, this->m_bitmapGrid);
|
|
}
|
|
else if(bResize)
|
|
{
|
|
// the size of the drawing area has changed
|
|
// so create a new bitmap of the appropriate size
|
|
if(this->m_bitmapGrid != NULL)
|
|
{
|
|
this->m_bitmapGrid = (HBITMAP)SelectObject(this->m_dcGrid, this->m_bitmapOldGrid);
|
|
DeleteObject(this->m_bitmapGrid);
|
|
this->m_bitmapGrid = CreateCompatibleBitmap(dc, this->m_nClientWidth, this->m_nClientHeight);
|
|
SelectObject(this->m_dcGrid, this->m_bitmapGrid);
|
|
}
|
|
}
|
|
|
|
SetBkColor(this->m_dcGrid, this->m_crBackColor);
|
|
|
|
/* fill the grid background */
|
|
FillRect(this->m_dcGrid, &this->m_rectClient, this->m_brushBack);
|
|
|
|
/* draw the plot rectangle: */
|
|
/* determine how wide the y axis scaling values are */
|
|
nCharacters = abs((int)log10(fabs(this->m_dUpperLimit)));
|
|
nCharacters = max(nCharacters, abs((int)log10(fabs(this->m_dLowerLimit))));
|
|
|
|
/* add the units digit, decimal point and a minus sign, and an extra space */
|
|
/* as well as the number of decimal places to display */
|
|
nCharacters = nCharacters + 4 + this->m_nYDecimals;
|
|
|
|
/* adjust the plot rectangle dimensions */
|
|
/* assume 6 pixels per character (this may need to be adjusted) */
|
|
/* m_rectPlot.left = m_rectClient.left + 6*(nCharacters); */
|
|
this->m_rectPlot.left = this->m_rectClient.left;
|
|
this->m_nPlotWidth = this->m_rectPlot.right - this->m_rectPlot.left;/* m_rectPlot.Width(); */
|
|
|
|
/* draw the plot rectangle */
|
|
oldPen = (HPEN)SelectObject(this->m_dcGrid, solidPen);
|
|
MoveToEx(this->m_dcGrid, this->m_rectPlot.left, this->m_rectPlot.top, NULL);
|
|
LineTo(this->m_dcGrid, this->m_rectPlot.right+1, this->m_rectPlot.top);
|
|
LineTo(this->m_dcGrid, this->m_rectPlot.right+1, this->m_rectPlot.bottom+1);
|
|
LineTo(this->m_dcGrid, this->m_rectPlot.left, this->m_rectPlot.bottom+1);
|
|
/* LineTo(m_dcGrid, m_rectPlot.left, m_rectPlot.top); */
|
|
|
|
/* draw the horizontal axis */
|
|
for (i = this->m_rectPlot.top; i < this->m_rectPlot.bottom; i += 12)
|
|
{
|
|
MoveToEx(this->m_dcGrid, this->m_rectPlot.left, this->m_rectPlot.top + i, NULL);
|
|
LineTo(this->m_dcGrid, this->m_rectPlot.right, this->m_rectPlot.top + i);
|
|
}
|
|
|
|
/* draw the vertical axis */
|
|
for (i = this->m_rectPlot.left; i < this->m_rectPlot.right; i += 12)
|
|
{
|
|
MoveToEx(this->m_dcGrid, this->m_rectPlot.left + i, this->m_rectPlot.bottom, NULL);
|
|
LineTo(this->m_dcGrid, this->m_rectPlot.left + i, this->m_rectPlot.top);
|
|
}
|
|
|
|
SelectObject(this->m_dcGrid, oldPen);
|
|
DeleteObject(solidPen);
|
|
|
|
#if 0
|
|
/* create some fonts (horizontal and vertical) */
|
|
/* use a height of 14 pixels and 300 weight */
|
|
/* (these may need to be adjusted depending on the display) */
|
|
axisFont = CreateFont (14, 0, 0, 0, 300,
|
|
FALSE, FALSE, 0, ANSI_CHARSET,
|
|
OUT_DEFAULT_PRECIS,
|
|
CLIP_DEFAULT_PRECIS,
|
|
DEFAULT_QUALITY,
|
|
DEFAULT_PITCH|FF_SWISS, "Arial");
|
|
yUnitFont = CreateFont (14, 0, 900, 0, 300,
|
|
FALSE, FALSE, 0, ANSI_CHARSET,
|
|
OUT_DEFAULT_PRECIS,
|
|
CLIP_DEFAULT_PRECIS,
|
|
DEFAULT_QUALITY,
|
|
DEFAULT_PITCH|FF_SWISS, "Arial");
|
|
|
|
/* grab the horizontal font */
|
|
oldFont = (HFONT)SelectObject(m_dcGrid, axisFont);
|
|
|
|
/* y max */
|
|
SetTextColor(m_dcGrid, m_crGridColor);
|
|
SetTextAlign(m_dcGrid, TA_RIGHT|TA_TOP);
|
|
sprintf(strTemp, "%.*lf", m_nYDecimals, m_dUpperLimit);
|
|
TextOut(m_dcGrid, m_rectPlot.left-4, m_rectPlot.top, strTemp, wcslen(strTemp));
|
|
|
|
/* y min */
|
|
SetTextAlign(m_dcGrid, TA_RIGHT|TA_BASELINE);
|
|
sprintf(strTemp, "%.*lf", m_nYDecimals, m_dLowerLimit);
|
|
TextOut(m_dcGrid, m_rectPlot.left-4, m_rectPlot.bottom, strTemp, wcslen(strTemp));
|
|
|
|
/* x min */
|
|
SetTextAlign(m_dcGrid, TA_LEFT|TA_TOP);
|
|
TextOut(m_dcGrid, m_rectPlot.left, m_rectPlot.bottom+4, "0", 1);
|
|
|
|
/* x max */
|
|
SetTextAlign(m_dcGrid, TA_RIGHT|TA_TOP);
|
|
sprintf(strTemp, "%d", m_nPlotWidth/m_nShiftPixels);
|
|
TextOut(m_dcGrid, m_rectPlot.right, m_rectPlot.bottom+4, strTemp, wcslen(strTemp));
|
|
|
|
/* x units */
|
|
SetTextAlign(m_dcGrid, TA_CENTER|TA_TOP);
|
|
TextOut(m_dcGrid, (m_rectPlot.left+m_rectPlot.right)/2,
|
|
m_rectPlot.bottom+4, m_strXUnitsString, wcslen(m_strXUnitsString));
|
|
|
|
/* restore the font */
|
|
SelectObject(m_dcGrid, oldFont);
|
|
|
|
/* y units */
|
|
oldFont = (HFONT)SelectObject(m_dcGrid, yUnitFont);
|
|
SetTextAlign(m_dcGrid, TA_CENTER|TA_BASELINE);
|
|
TextOut(m_dcGrid, (m_rectClient.left+m_rectPlot.left)/2,
|
|
(m_rectPlot.bottom+m_rectPlot.top)/2, m_strYUnitsString, wcslen(m_strYUnitsString));
|
|
SelectObject(m_dcGrid, oldFont);
|
|
#endif
|
|
/* at this point we are done filling the grid bitmap, */
|
|
/* no more drawing to this bitmap is needed until the settings are changed */
|
|
|
|
/* if we don't have one yet, set up a memory dc for the plot */
|
|
if (this->m_dcPlot == NULL)
|
|
{
|
|
this->m_dcPlot = CreateCompatibleDC(dc);
|
|
this->m_bitmapPlot = CreateCompatibleBitmap(dc, this->m_nClientWidth, this->m_nClientHeight);
|
|
this->m_bitmapOldPlot = (HBITMAP)SelectObject(this->m_dcPlot, this->m_bitmapPlot);
|
|
}
|
|
else if(bResize)
|
|
{
|
|
// the size of the drawing area has changed
|
|
// so create a new bitmap of the appropriate size
|
|
if(this->m_bitmapPlot != NULL)
|
|
{
|
|
this->m_bitmapPlot = (HBITMAP)SelectObject(this->m_dcPlot, this->m_bitmapOldPlot);
|
|
DeleteObject(this->m_bitmapPlot);
|
|
this->m_bitmapPlot = CreateCompatibleBitmap(dc, this->m_nClientWidth, this->m_nClientHeight);
|
|
SelectObject(this->m_dcPlot, this->m_bitmapPlot);
|
|
}
|
|
}
|
|
|
|
/* make sure the plot bitmap is cleared */
|
|
SetBkColor(this->m_dcPlot, this->m_crBackColor);
|
|
FillRect(this->m_dcPlot, &this->m_rectClient, this->m_brushBack);
|
|
|
|
/* finally, force the plot area to redraw */
|
|
InvalidateRect(this->m_hParentWnd, &this->m_rectClient, TRUE);
|
|
ReleaseDC(this->m_hParentWnd, dc);
|
|
}
|
|
|
|
double GraphCtrl_AppendPoint(TGraphCtrl* this,
|
|
double dNewPoint0, double dNewPoint1,
|
|
double dNewPoint2, double dNewPoint3)
|
|
{
|
|
/* append a data point to the plot & return the previous point */
|
|
double dPrevious;
|
|
|
|
dPrevious = this->m_dCurrentPosition[0];
|
|
this->m_dCurrentPosition[0] = dNewPoint0;
|
|
this->m_dCurrentPosition[1] = dNewPoint1;
|
|
this->m_dCurrentPosition[2] = dNewPoint2;
|
|
this->m_dCurrentPosition[3] = dNewPoint3;
|
|
GraphCtrl_DrawPoint(this);
|
|
/* Invalidate(); */
|
|
return dPrevious;
|
|
}
|
|
|
|
void GraphCtrl_Paint(TGraphCtrl* this, HWND hWnd, HDC dc)
|
|
{
|
|
HDC memDC;
|
|
HBITMAP memBitmap;
|
|
HBITMAP oldBitmap; /* bitmap originally found in CMemDC */
|
|
|
|
/* RECT rcClient; */
|
|
/* GetClientRect(hWnd, &rcClient); */
|
|
/* FillSolidRect(dc, &rcClient, RGB(255, 0, 255)); */
|
|
/* m_nClientWidth = rcClient.right - rcClient.left; */
|
|
/* m_nClientHeight = rcClient.bottom - rcClient.top; */
|
|
|
|
/* no real plotting work is performed here, */
|
|
/* just putting the existing bitmaps on the client */
|
|
|
|
/* to avoid flicker, establish a memory dc, draw to it */
|
|
/* and then BitBlt it to the client */
|
|
memDC = CreateCompatibleDC(dc);
|
|
memBitmap = (HBITMAP)CreateCompatibleBitmap(dc, this->m_nClientWidth, this->m_nClientHeight);
|
|
oldBitmap = (HBITMAP)SelectObject(memDC, memBitmap);
|
|
|
|
if (memDC != NULL)
|
|
{
|
|
/* first drop the grid on the memory dc */
|
|
BitBlt(memDC, 0, 0, this->m_nClientWidth, this->m_nClientHeight, this->m_dcGrid, 0, 0, SRCCOPY);
|
|
/* now add the plot on top as a "pattern" via SRCPAINT. */
|
|
/* works well with dark background and a light plot */
|
|
BitBlt(memDC, 0, 0, this->m_nClientWidth, this->m_nClientHeight, this->m_dcPlot, 0, 0, SRCPAINT); /* SRCPAINT */
|
|
/* finally send the result to the display */
|
|
BitBlt(dc, 0, 0, this->m_nClientWidth, this->m_nClientHeight, memDC, 0, 0, SRCCOPY);
|
|
}
|
|
SelectObject(memDC, oldBitmap);
|
|
DeleteObject(memBitmap);
|
|
DeleteDC(memDC);
|
|
}
|
|
|
|
void GraphCtrl_DrawPoint(TGraphCtrl* this)
|
|
{
|
|
/* this does the work of "scrolling" the plot to the left
|
|
* and appending a new data point all of the plotting is
|
|
* directed to the memory based bitmap associated with m_dcPlot
|
|
* the will subsequently be BitBlt'd to the client in Paint
|
|
*/
|
|
int currX, prevX, currY, prevY;
|
|
HPEN oldPen;
|
|
RECT rectCleanUp;
|
|
int i;
|
|
|
|
if (this->m_dcPlot != NULL)
|
|
{
|
|
/* shift the plot by BitBlt'ing it to itself
|
|
* note: the m_dcPlot covers the entire client
|
|
* but we only shift bitmap that is the size
|
|
* of the plot rectangle
|
|
* grab the right side of the plot (excluding m_nShiftPixels on the left)
|
|
* move this grabbed bitmap to the left by m_nShiftPixels
|
|
*/
|
|
BitBlt(this->m_dcPlot, this->m_rectPlot.left, this->m_rectPlot.top+1,
|
|
this->m_nPlotWidth, this->m_nPlotHeight, this->m_dcPlot,
|
|
this->m_rectPlot.left+this->m_nShiftPixels, this->m_rectPlot.top+1,
|
|
SRCCOPY);
|
|
|
|
/* establish a rectangle over the right side of plot */
|
|
/* which now needs to be cleaned up prior to adding the new point */
|
|
rectCleanUp = this->m_rectPlot;
|
|
rectCleanUp.left = rectCleanUp.right - this->m_nShiftPixels;
|
|
|
|
/* fill the cleanup area with the background */
|
|
FillRect(this->m_dcPlot, &rectCleanUp, this->m_brushBack);
|
|
|
|
/* draw the next line segment */
|
|
for (i = 0; i < MAX_PLOTS; i++)
|
|
{
|
|
/* grab the plotting pen */
|
|
oldPen = (HPEN)SelectObject(this->m_dcPlot, this->m_penPlot[i]);
|
|
|
|
/* move to the previous point */
|
|
prevX = this->m_rectPlot.right-this->m_nPlotShiftPixels;
|
|
prevY = this->m_rectPlot.bottom -
|
|
(long)((this->m_dPreviousPosition[i] - this->m_dLowerLimit) * this->m_dVerticalFactor);
|
|
MoveToEx(this->m_dcPlot, prevX, prevY, NULL);
|
|
|
|
/* draw to the current point */
|
|
currX = this->m_rectPlot.right-this->m_nHalfShiftPixels;
|
|
currY = this->m_rectPlot.bottom -
|
|
(long)((this->m_dCurrentPosition[i] - this->m_dLowerLimit) * this->m_dVerticalFactor);
|
|
LineTo(this->m_dcPlot, currX, currY);
|
|
|
|
/* Restore the pen */
|
|
SelectObject(this->m_dcPlot, oldPen);
|
|
|
|
/* if the data leaks over the upper or lower plot boundaries
|
|
* fill the upper and lower leakage with the background
|
|
* this will facilitate clipping on an as needed basis
|
|
* as opposed to always calling IntersectClipRect
|
|
*/
|
|
if ((prevY <= this->m_rectPlot.top) || (currY <= this->m_rectPlot.top))
|
|
{
|
|
RECT rc;
|
|
rc.bottom = this->m_rectPlot.top+1;
|
|
rc.left = prevX;
|
|
rc.right = currX+1;
|
|
rc.top = this->m_rectClient.top;
|
|
FillRect(this->m_dcPlot, &rc, this->m_brushBack);
|
|
}
|
|
if ((prevY >= this->m_rectPlot.bottom) || (currY >= this->m_rectPlot.bottom))
|
|
{
|
|
RECT rc;
|
|
rc.bottom = this->m_rectClient.bottom+1;
|
|
rc.left = prevX;
|
|
rc.right = currX+1;
|
|
rc.top = this->m_rectPlot.bottom+1;
|
|
/* RECT rc(prevX, m_rectPlot.bottom+1, currX+1, m_rectClient.bottom+1); */
|
|
FillRect(this->m_dcPlot, &rc, this->m_brushBack);
|
|
}
|
|
|
|
/* store the current point for connection to the next point */
|
|
this->m_dPreviousPosition[i] = this->m_dCurrentPosition[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
void GraphCtrl_Resize(TGraphCtrl* this)
|
|
{
|
|
/* NOTE: Resize automatically gets called during the setup of the control */
|
|
GetClientRect(this->m_hWnd, &this->m_rectClient);
|
|
|
|
/* set some member variables to avoid multiple function calls */
|
|
this->m_nClientHeight = this->m_rectClient.bottom - this->m_rectClient.top;/* m_rectClient.Height(); */
|
|
this->m_nClientWidth = this->m_rectClient.right - this->m_rectClient.left;/* m_rectClient.Width(); */
|
|
|
|
/* the "left" coordinate and "width" will be modified in */
|
|
/* InvalidateCtrl to be based on the width of the y axis scaling */
|
|
#if 0
|
|
this->m_rectPlot.left = 20;
|
|
this->m_rectPlot.top = 10;
|
|
this->m_rectPlot.right = this->m_rectClient.right-10;
|
|
this->m_rectPlot.bottom = this->m_rectClient.bottom-25;
|
|
#else
|
|
this->m_rectPlot.left = 0;
|
|
this->m_rectPlot.top = -1;
|
|
this->m_rectPlot.right = this->m_rectClient.right-0;
|
|
this->m_rectPlot.bottom = this->m_rectClient.bottom-0;
|
|
#endif
|
|
|
|
/* set some member variables to avoid multiple function calls */
|
|
this->m_nPlotHeight = this->m_rectPlot.bottom - this->m_rectPlot.top;/* m_rectPlot.Height(); */
|
|
this->m_nPlotWidth = this->m_rectPlot.right - this->m_rectPlot.left;/* m_rectPlot.Width(); */
|
|
|
|
/* set the scaling factor for now, this can be adjusted */
|
|
/* in the SetRange functions */
|
|
this->m_dVerticalFactor = (double)this->m_nPlotHeight / this->m_dRange;
|
|
}
|
|
|
|
#if 0
|
|
void TGraphCtrl::Reset()
|
|
{
|
|
/* to clear the existing data (in the form of a bitmap) */
|
|
/* simply invalidate the entire control */
|
|
InvalidateCtrl();
|
|
}
|
|
#endif
|
|
|
|
extern TGraphCtrl PerformancePageCpuUsageHistoryGraph;
|
|
extern TGraphCtrl PerformancePageMemUsageHistoryGraph;
|
|
extern HWND hPerformancePageCpuUsageHistoryGraph;
|
|
extern HWND hPerformancePageMemUsageHistoryGraph;
|
|
|
|
INT_PTR CALLBACK
|
|
GraphCtrl_WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
|
|
{
|
|
RECT rcClient;
|
|
HDC hdc;
|
|
PAINTSTRUCT ps;
|
|
|
|
switch (message)
|
|
{
|
|
case WM_ERASEBKGND:
|
|
return TRUE;
|
|
/*
|
|
* Filter out mouse & keyboard messages
|
|
*/
|
|
/* case WM_APPCOMMAND: */
|
|
case WM_CAPTURECHANGED:
|
|
case WM_LBUTTONDBLCLK:
|
|
case WM_LBUTTONDOWN:
|
|
case WM_LBUTTONUP:
|
|
case WM_MBUTTONDBLCLK:
|
|
case WM_MBUTTONDOWN:
|
|
case WM_MBUTTONUP:
|
|
case WM_MOUSEACTIVATE:
|
|
case WM_MOUSEHOVER:
|
|
case WM_MOUSELEAVE:
|
|
case WM_MOUSEMOVE:
|
|
/* case WM_MOUSEWHEEL: */
|
|
case WM_NCHITTEST:
|
|
case WM_NCLBUTTONDBLCLK:
|
|
case WM_NCLBUTTONDOWN:
|
|
case WM_NCLBUTTONUP:
|
|
case WM_NCMBUTTONDBLCLK:
|
|
case WM_NCMBUTTONDOWN:
|
|
case WM_NCMBUTTONUP:
|
|
/* case WM_NCMOUSEHOVER: */
|
|
/* case WM_NCMOUSELEAVE: */
|
|
case WM_NCMOUSEMOVE:
|
|
case WM_NCRBUTTONDBLCLK:
|
|
case WM_NCRBUTTONDOWN:
|
|
case WM_NCRBUTTONUP:
|
|
/* case WM_NCXBUTTONDBLCLK: */
|
|
/* case WM_NCXBUTTONDOWN: */
|
|
/* case WM_NCXBUTTONUP: */
|
|
case WM_RBUTTONDBLCLK:
|
|
case WM_RBUTTONDOWN:
|
|
case WM_RBUTTONUP:
|
|
/* case WM_XBUTTONDBLCLK: */
|
|
/* case WM_XBUTTONDOWN: */
|
|
/* case WM_XBUTTONUP: */
|
|
case WM_ACTIVATE:
|
|
case WM_CHAR:
|
|
case WM_DEADCHAR:
|
|
case WM_GETHOTKEY:
|
|
case WM_HOTKEY:
|
|
case WM_KEYDOWN:
|
|
case WM_KEYUP:
|
|
case WM_KILLFOCUS:
|
|
case WM_SETFOCUS:
|
|
case WM_SETHOTKEY:
|
|
case WM_SYSCHAR:
|
|
case WM_SYSDEADCHAR:
|
|
case WM_SYSKEYDOWN:
|
|
case WM_SYSKEYUP:
|
|
return 0;
|
|
|
|
case WM_NCCALCSIZE:
|
|
return 0;
|
|
|
|
case WM_SIZE:
|
|
if (hWnd == hPerformancePageMemUsageHistoryGraph)
|
|
{
|
|
GraphCtrl_Resize(&PerformancePageMemUsageHistoryGraph);
|
|
GraphCtrl_InvalidateCtrl(&PerformancePageMemUsageHistoryGraph, TRUE);
|
|
}
|
|
if (hWnd == hPerformancePageCpuUsageHistoryGraph)
|
|
{
|
|
GraphCtrl_Resize(&PerformancePageCpuUsageHistoryGraph);
|
|
GraphCtrl_InvalidateCtrl(&PerformancePageCpuUsageHistoryGraph, TRUE);
|
|
}
|
|
return 0;
|
|
|
|
case WM_PAINT:
|
|
hdc = BeginPaint(hWnd, &ps);
|
|
GetClientRect(hWnd, &rcClient);
|
|
if (hWnd == hPerformancePageMemUsageHistoryGraph)
|
|
GraphCtrl_Paint(&PerformancePageMemUsageHistoryGraph, hWnd, hdc);
|
|
if (hWnd == hPerformancePageCpuUsageHistoryGraph)
|
|
GraphCtrl_Paint(&PerformancePageCpuUsageHistoryGraph, hWnd, hdc);
|
|
EndPaint(hWnd, &ps);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We pass on all non-handled messages
|
|
*/
|
|
return CallWindowProcW(OldGraphCtrlWndProc, hWnd, message, wParam, lParam);
|
|
}
|