reactos/dll/opengl/mesa/main/dlist.c

6207 lines
160 KiB
C

/*
* Mesa 3-D graphics library
* Version: 7.7
*
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
* Copyright (C) 2009 VMware, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file dlist.c
* Display lists management functions.
*/
#include <precomp.h>
#include "config.h"
/**
* Other parts of Mesa (such as the VBO module) can plug into the display
* list system. This structure describes new display list instructions.
*/
struct gl_list_instruction
{
GLuint Size;
void (*Execute)( struct gl_context *ctx, void *data );
void (*Destroy)( struct gl_context *ctx, void *data );
void (*Print)( struct gl_context *ctx, void *data );
};
#define MAX_DLIST_EXT_OPCODES 16
/**
* Used by device drivers to hook new commands into display lists.
*/
struct gl_list_extensions
{
struct gl_list_instruction Opcode[MAX_DLIST_EXT_OPCODES];
GLuint NumOpcodes;
};
/**
* Flush vertices.
*
* \param ctx GL context.
*
* Checks if dd_function_table::SaveNeedFlush is marked to flush
* stored (save) vertices, and calls
* dd_function_table::SaveFlushVertices if so.
*/
#define SAVE_FLUSH_VERTICES(ctx) \
do { \
if (ctx->Driver.SaveNeedFlush) \
ctx->Driver.SaveFlushVertices(ctx); \
} while (0)
/**
* Macro to assert that the API call was made outside the
* glBegin()/glEnd() pair, with return value.
*
* \param ctx GL context.
* \param retval value to return value in case the assertion fails.
*/
#define ASSERT_OUTSIDE_SAVE_BEGIN_END_WITH_RETVAL(ctx, retval) \
do { \
if (ctx->Driver.CurrentSavePrimitive <= GL_POLYGON || \
ctx->Driver.CurrentSavePrimitive == PRIM_INSIDE_UNKNOWN_PRIM) { \
_mesa_compile_error( ctx, GL_INVALID_OPERATION, "begin/end" ); \
return retval; \
} \
} while (0)
/**
* Macro to assert that the API call was made outside the
* glBegin()/glEnd() pair.
*
* \param ctx GL context.
*/
#define ASSERT_OUTSIDE_SAVE_BEGIN_END(ctx) \
do { \
if (ctx->Driver.CurrentSavePrimitive <= GL_POLYGON || \
ctx->Driver.CurrentSavePrimitive == PRIM_INSIDE_UNKNOWN_PRIM) { \
_mesa_compile_error( ctx, GL_INVALID_OPERATION, "begin/end" ); \
return; \
} \
} while (0)
/**
* Macro to assert that the API call was made outside the
* glBegin()/glEnd() pair and flush the vertices.
*
* \param ctx GL context.
*/
#define ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx) \
do { \
ASSERT_OUTSIDE_SAVE_BEGIN_END(ctx); \
SAVE_FLUSH_VERTICES(ctx); \
} while (0)
/**
* Macro to assert that the API call was made outside the
* glBegin()/glEnd() pair and flush the vertices, with return value.
*
* \param ctx GL context.
* \param retval value to return value in case the assertion fails.
*/
#define ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH_WITH_RETVAL(ctx, retval)\
do { \
ASSERT_OUTSIDE_SAVE_BEGIN_END_WITH_RETVAL(ctx, retval); \
SAVE_FLUSH_VERTICES(ctx); \
} while (0)
/**
* Display list opcodes.
*
* The fact that these identifiers are assigned consecutive
* integer values starting at 0 is very important, see InstSize array usage)
*/
typedef enum
{
OPCODE_INVALID = -1, /* Force signed enum */
OPCODE_ACCUM,
OPCODE_ALPHA_FUNC,
OPCODE_BIND_TEXTURE,
OPCODE_BITMAP,
OPCODE_BLEND_FUNC,
OPCODE_CALL_LIST,
OPCODE_CALL_LIST_OFFSET,
OPCODE_CLEAR,
OPCODE_CLEAR_ACCUM,
OPCODE_CLEAR_COLOR,
OPCODE_CLEAR_DEPTH,
OPCODE_CLEAR_INDEX,
OPCODE_CLEAR_STENCIL,
OPCODE_CLIP_PLANE,
OPCODE_COLOR_MASK,
OPCODE_COLOR_MATERIAL,
OPCODE_COPY_PIXELS,
OPCODE_COPY_TEX_IMAGE1D,
OPCODE_COPY_TEX_IMAGE2D,
OPCODE_COPY_TEX_SUB_IMAGE1D,
OPCODE_COPY_TEX_SUB_IMAGE2D,
OPCODE_CULL_FACE,
OPCODE_DEPTH_FUNC,
OPCODE_DEPTH_MASK,
OPCODE_DEPTH_RANGE,
OPCODE_DISABLE,
OPCODE_DRAW_BUFFER,
OPCODE_DRAW_PIXELS,
OPCODE_ENABLE,
OPCODE_EVALMESH1,
OPCODE_EVALMESH2,
OPCODE_FOG,
OPCODE_FRONT_FACE,
OPCODE_FRUSTUM,
OPCODE_HINT,
OPCODE_INDEX_MASK,
OPCODE_INIT_NAMES,
OPCODE_LIGHT,
OPCODE_LIGHT_MODEL,
OPCODE_LINE_STIPPLE,
OPCODE_LINE_WIDTH,
OPCODE_LIST_BASE,
OPCODE_LOAD_IDENTITY,
OPCODE_LOAD_MATRIX,
OPCODE_LOAD_NAME,
OPCODE_LOGIC_OP,
OPCODE_MAP1,
OPCODE_MAP2,
OPCODE_MAPGRID1,
OPCODE_MAPGRID2,
OPCODE_MATRIX_MODE,
OPCODE_MULT_MATRIX,
OPCODE_ORTHO,
OPCODE_PASSTHROUGH,
OPCODE_PIXEL_MAP,
OPCODE_PIXEL_TRANSFER,
OPCODE_PIXEL_ZOOM,
OPCODE_POINT_SIZE,
OPCODE_POINT_PARAMETERS,
OPCODE_POLYGON_MODE,
OPCODE_POLYGON_STIPPLE,
OPCODE_POLYGON_OFFSET,
OPCODE_POP_ATTRIB,
OPCODE_POP_MATRIX,
OPCODE_POP_NAME,
OPCODE_PRIORITIZE_TEXTURE,
OPCODE_PUSH_ATTRIB,
OPCODE_PUSH_MATRIX,
OPCODE_PUSH_NAME,
OPCODE_RASTER_POS,
OPCODE_READ_BUFFER,
OPCODE_ROTATE,
OPCODE_SCALE,
OPCODE_SCISSOR,
OPCODE_SELECT_TEXTURE_SGIS,
OPCODE_SELECT_TEXTURE_COORD_SET,
OPCODE_SHADE_MODEL,
OPCODE_STENCIL_FUNC,
OPCODE_STENCIL_MASK,
OPCODE_STENCIL_OP,
OPCODE_TEXENV,
OPCODE_TEXGEN,
OPCODE_TEXPARAMETER,
OPCODE_TEX_IMAGE1D,
OPCODE_TEX_IMAGE2D,
OPCODE_TEX_SUB_IMAGE1D,
OPCODE_TEX_SUB_IMAGE2D,
OPCODE_TRANSLATE,
OPCODE_VIEWPORT,
OPCODE_WINDOW_POS,
/* GL_ARB_multisample */
OPCODE_SAMPLE_COVERAGE,
/* GL_ARB_window_pos */
OPCODE_WINDOW_POS_ARB,
/* GL_EXT_depth_bounds_test */
OPCODE_DEPTH_BOUNDS_EXT,
/* Vertex attributes -- fallback for when optimized display
* list build isn't active.
*/
OPCODE_ATTR_1F_NV,
OPCODE_ATTR_2F_NV,
OPCODE_ATTR_3F_NV,
OPCODE_ATTR_4F_NV,
OPCODE_MATERIAL,
OPCODE_BEGIN,
OPCODE_END,
OPCODE_RECTF,
OPCODE_EVAL_C1,
OPCODE_EVAL_C2,
OPCODE_EVAL_P1,
OPCODE_EVAL_P2,
/* GL_EXT_texture_integer */
OPCODE_CLEARCOLOR_I,
OPCODE_CLEARCOLOR_UI,
OPCODE_TEXPARAMETER_I,
OPCODE_TEXPARAMETER_UI,
/* The following three are meta instructions */
OPCODE_ERROR, /* raise compiled-in error */
OPCODE_CONTINUE,
OPCODE_END_OF_LIST,
OPCODE_EXT_0
} OpCode;
/**
* Display list node.
*
* Display list instructions are stored as sequences of "nodes". Nodes
* are allocated in blocks. Each block has BLOCK_SIZE nodes. Blocks
* are linked together with a pointer.
*
* Each instruction in the display list is stored as a sequence of
* contiguous nodes in memory.
* Each node is the union of a variety of data types.
*/
union gl_dlist_node
{
OpCode opcode;
GLboolean b;
GLbitfield bf;
GLubyte ub;
GLshort s;
GLushort us;
GLint i;
GLuint ui;
GLenum e;
GLfloat f;
GLvoid *data;
void *next; /* If prev node's opcode==OPCODE_CONTINUE */
};
typedef union gl_dlist_node Node;
/**
* Used to store a 64-bit uint in a pair of "Nodes" for the sake of 32-bit
* environment. In 64-bit env, sizeof(Node)==8 anyway.
*/
union uint64_pair
{
GLuint64 uint64;
GLuint uint32[2];
};
/**
* How many nodes to allocate at a time.
*
* \note Reduced now that we hold vertices etc. elsewhere.
*/
#define BLOCK_SIZE 256
/**
* Number of nodes of storage needed for each instruction.
* Sizes for dynamically allocated opcodes are stored in the context struct.
*/
static GLuint InstSize[OPCODE_END_OF_LIST + 1];
#if FEATURE_dlist
void mesa_print_display_list(GLuint list);
/**********************************************************************/
/***** Private *****/
/**********************************************************************/
/**
* Make an empty display list. This is used by glGenLists() to
* reserve display list IDs.
*/
static struct gl_display_list *
make_list(GLuint name, GLuint count)
{
struct gl_display_list *dlist = CALLOC_STRUCT(gl_display_list);
dlist->Name = name;
dlist->Head = (Node *) malloc(sizeof(Node) * count);
dlist->Head[0].opcode = OPCODE_END_OF_LIST;
return dlist;
}
/**
* Lookup function to just encapsulate casting.
*/
static inline struct gl_display_list *
lookup_list(struct gl_context *ctx, GLuint list)
{
return (struct gl_display_list *)
_mesa_HashLookup(ctx->Shared->DisplayList, list);
}
/** Is the given opcode an extension code? */
static inline GLboolean
is_ext_opcode(OpCode opcode)
{
return (opcode >= OPCODE_EXT_0);
}
/** Destroy an extended opcode instruction */
static GLint
ext_opcode_destroy(struct gl_context *ctx, Node *node)
{
const GLint i = node[0].opcode - OPCODE_EXT_0;
GLint step;
ctx->ListExt->Opcode[i].Destroy(ctx, &node[1]);
step = ctx->ListExt->Opcode[i].Size;
return step;
}
/** Execute an extended opcode instruction */
static GLint
ext_opcode_execute(struct gl_context *ctx, Node *node)
{
const GLint i = node[0].opcode - OPCODE_EXT_0;
GLint step;
ctx->ListExt->Opcode[i].Execute(ctx, &node[1]);
step = ctx->ListExt->Opcode[i].Size;
return step;
}
/** Print an extended opcode instruction */
static GLint
ext_opcode_print(struct gl_context *ctx, Node *node)
{
const GLint i = node[0].opcode - OPCODE_EXT_0;
GLint step;
ctx->ListExt->Opcode[i].Print(ctx, &node[1]);
step = ctx->ListExt->Opcode[i].Size;
return step;
}
/**
* Delete the named display list, but don't remove from hash table.
* \param dlist - display list pointer
*/
void
_mesa_delete_list(struct gl_context *ctx, struct gl_display_list *dlist)
{
Node *n, *block;
GLboolean done;
n = block = dlist->Head;
done = block ? GL_FALSE : GL_TRUE;
while (!done) {
const OpCode opcode = n[0].opcode;
/* check for extension opcodes first */
if (is_ext_opcode(opcode)) {
n += ext_opcode_destroy(ctx, n);
}
else {
switch (opcode) {
/* for some commands, we need to free malloc'd memory */
case OPCODE_MAP1:
free(n[6].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_MAP2:
free(n[10].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_DRAW_PIXELS:
free(n[5].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_BITMAP:
free(n[7].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_POLYGON_STIPPLE:
free(n[1].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_IMAGE1D:
free(n[8].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_IMAGE2D:
free(n[9].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_SUB_IMAGE1D:
free(n[7].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_SUB_IMAGE2D:
free(n[9].data);
n += InstSize[n[0].opcode];
break;
case OPCODE_CONTINUE:
n = (Node *) n[1].next;
free(block);
block = n;
break;
case OPCODE_END_OF_LIST:
free(block);
done = GL_TRUE;
break;
default:
/* Most frequent case */
n += InstSize[n[0].opcode];
break;
}
}
}
free(dlist);
}
/**
* Destroy a display list and remove from hash table.
* \param list - display list number
*/
static void
destroy_list(struct gl_context *ctx, GLuint list)
{
struct gl_display_list *dlist;
if (list == 0)
return;
dlist = lookup_list(ctx, list);
if (!dlist)
return;
_mesa_delete_list(ctx, dlist);
_mesa_HashRemove(ctx->Shared->DisplayList, list);
}
/*
* Translate the nth element of list from <type> to GLint.
*/
static GLint
translate_id(GLsizei n, GLenum type, const GLvoid * list)
{
GLbyte *bptr;
GLubyte *ubptr;
GLshort *sptr;
GLushort *usptr;
GLint *iptr;
GLuint *uiptr;
GLfloat *fptr;
switch (type) {
case GL_BYTE:
bptr = (GLbyte *) list;
return (GLint) bptr[n];
case GL_UNSIGNED_BYTE:
ubptr = (GLubyte *) list;
return (GLint) ubptr[n];
case GL_SHORT:
sptr = (GLshort *) list;
return (GLint) sptr[n];
case GL_UNSIGNED_SHORT:
usptr = (GLushort *) list;
return (GLint) usptr[n];
case GL_INT:
iptr = (GLint *) list;
return iptr[n];
case GL_UNSIGNED_INT:
uiptr = (GLuint *) list;
return (GLint) uiptr[n];
case GL_FLOAT:
fptr = (GLfloat *) list;
return (GLint) FLOORF(fptr[n]);
case GL_2_BYTES:
ubptr = ((GLubyte *) list) + 2 * n;
return (GLint) ubptr[0] * 256
+ (GLint) ubptr[1];
case GL_3_BYTES:
ubptr = ((GLubyte *) list) + 3 * n;
return (GLint) ubptr[0] * 65536
+ (GLint) ubptr[1] * 256
+ (GLint) ubptr[2];
case GL_4_BYTES:
ubptr = ((GLubyte *) list) + 4 * n;
return (GLint) ubptr[0] * 16777216
+ (GLint) ubptr[1] * 65536
+ (GLint) ubptr[2] * 256
+ (GLint) ubptr[3];
default:
return 0;
}
}
/**********************************************************************/
/***** Public *****/
/**********************************************************************/
/**
* Wrapper for _mesa_unpack_image/bitmap() that handles pixel buffer objects.
* If width < 0 or height < 0 or format or type are invalid we'll just
* return NULL. We will not generate an error since OpenGL command
* arguments aren't error-checked until the command is actually executed
* (not when they're compiled).
* But if we run out of memory, GL_OUT_OF_MEMORY will be recorded.
*/
static GLvoid *
unpack_image(struct gl_context *ctx, GLuint dimensions,
GLsizei width, GLsizei height, GLsizei depth,
GLenum format, GLenum type, const GLvoid * pixels,
const struct gl_pixelstore_attrib *unpack)
{
GLvoid *image;
if (width <= 0 || height <= 0) {
return NULL;
}
if (_mesa_bytes_per_pixel(format, type) < 0) {
/* bad format and/or type */
return NULL;
}
if (type == GL_BITMAP)
image = _mesa_unpack_bitmap(width, height, pixels, unpack);
else
image = _mesa_unpack_image(dimensions, width, height, depth,
format, type, pixels, unpack);
if (pixels && !image) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "display list construction");
}
return image;
}
/**
* Allocate space for a display list instruction (opcode + payload space).
* \param opcode the instruction opcode (OPCODE_* value)
* \param bytes instruction payload size (not counting opcode)
* \return pointer to allocated memory (the opcode space)
*/
static Node *
dlist_alloc(struct gl_context *ctx, OpCode opcode, GLuint bytes)
{
const GLuint numNodes = 1 + (bytes + sizeof(Node) - 1) / sizeof(Node);
Node *n;
if (opcode < (GLuint) OPCODE_EXT_0) {
if (InstSize[opcode] == 0) {
/* save instruction size now */
InstSize[opcode] = numNodes;
}
else {
/* make sure instruction size agrees */
ASSERT(numNodes == InstSize[opcode]);
}
}
if (ctx->ListState.CurrentPos + numNodes + 2 > BLOCK_SIZE) {
/* This block is full. Allocate a new block and chain to it */
Node *newblock;
n = ctx->ListState.CurrentBlock + ctx->ListState.CurrentPos;
n[0].opcode = OPCODE_CONTINUE;
newblock = (Node *) malloc(sizeof(Node) * BLOCK_SIZE);
if (!newblock) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "Building display list");
return NULL;
}
n[1].next = (Node *) newblock;
ctx->ListState.CurrentBlock = newblock;
ctx->ListState.CurrentPos = 0;
}
n = ctx->ListState.CurrentBlock + ctx->ListState.CurrentPos;
ctx->ListState.CurrentPos += numNodes;
n[0].opcode = opcode;
return n;
}
/**
* Allocate space for a display list instruction. Used by callers outside
* this file for things like VBO vertex data.
*
* \param opcode the instruction opcode (OPCODE_* value)
* \param bytes instruction size in bytes, not counting opcode.
* \return pointer to the usable data area (not including the internal
* opcode).
*/
void *
_mesa_dlist_alloc(struct gl_context *ctx, GLuint opcode, GLuint bytes)
{
Node *n = dlist_alloc(ctx, (OpCode) opcode, bytes);
if (n)
return n + 1; /* return pointer to payload area, after opcode */
else
return NULL;
}
/**
* This function allows modules and drivers to get their own opcodes
* for extending display list functionality.
* \param ctx the rendering context
* \param size number of bytes for storing the new display list command
* \param execute function to execute the new display list command
* \param destroy function to destroy the new display list command
* \param print function to print the new display list command
* \return the new opcode number or -1 if error
*/
GLint
_mesa_dlist_alloc_opcode(struct gl_context *ctx,
GLuint size,
void (*execute) (struct gl_context *, void *),
void (*destroy) (struct gl_context *, void *),
void (*print) (struct gl_context *, void *))
{
if (ctx->ListExt->NumOpcodes < MAX_DLIST_EXT_OPCODES) {
const GLuint i = ctx->ListExt->NumOpcodes++;
ctx->ListExt->Opcode[i].Size =
1 + (size + sizeof(Node) - 1) / sizeof(Node);
ctx->ListExt->Opcode[i].Execute = execute;
ctx->ListExt->Opcode[i].Destroy = destroy;
ctx->ListExt->Opcode[i].Print = print;
return i + OPCODE_EXT_0;
}
return -1;
}
/**
* Allocate space for a display list instruction. The space is basically
* an array of Nodes where node[0] holds the opcode, node[1] is the first
* function parameter, node[2] is the second parameter, etc.
*
* \param opcode one of OPCODE_x
* \param nparams number of function parameters
* \return pointer to start of instruction space
*/
static inline Node *
alloc_instruction(struct gl_context *ctx, OpCode opcode, GLuint nparams)
{
return dlist_alloc(ctx, opcode, nparams * sizeof(Node));
}
/*
* Display List compilation functions
*/
static void GLAPIENTRY
save_Accum(GLenum op, GLfloat value)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ACCUM, 2);
if (n) {
n[1].e = op;
n[2].f = value;
}
if (ctx->ExecuteFlag) {
CALL_Accum(ctx->Exec, (op, value));
}
}
static void GLAPIENTRY
save_AlphaFunc(GLenum func, GLclampf ref)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ALPHA_FUNC, 2);
if (n) {
n[1].e = func;
n[2].f = (GLfloat) ref;
}
if (ctx->ExecuteFlag) {
CALL_AlphaFunc(ctx->Exec, (func, ref));
}
}
static void GLAPIENTRY
save_BindTexture(GLenum target, GLuint texture)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BIND_TEXTURE, 2);
if (n) {
n[1].e = target;
n[2].ui = texture;
}
if (ctx->ExecuteFlag) {
CALL_BindTexture(ctx->Exec, (target, texture));
}
}
static void GLAPIENTRY
save_Bitmap(GLsizei width, GLsizei height,
GLfloat xorig, GLfloat yorig,
GLfloat xmove, GLfloat ymove, const GLubyte * pixels)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BITMAP, 7);
if (n) {
n[1].i = (GLint) width;
n[2].i = (GLint) height;
n[3].f = xorig;
n[4].f = yorig;
n[5].f = xmove;
n[6].f = ymove;
n[7].data = unpack_image(ctx, 2, width, height, 1, GL_COLOR_INDEX,
GL_BITMAP, pixels, &ctx->Unpack);
}
if (ctx->ExecuteFlag) {
CALL_Bitmap(ctx->Exec, (width, height,
xorig, yorig, xmove, ymove, pixels));
}
}
static void GLAPIENTRY
save_BlendFunc(GLenum srcfactor, GLenum dstfactor)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BLEND_FUNC, 2);
if (n) {
n[1].e = srcfactor;
n[2].e = dstfactor;
}
if (ctx->ExecuteFlag) {
CALL_BlendFunc(ctx->Exec, (srcfactor, dstfactor));
}
}
static void invalidate_saved_current_state( struct gl_context *ctx )
{
GLint i;
for (i = 0; i < VERT_ATTRIB_MAX; i++)
ctx->ListState.ActiveAttribSize[i] = 0;
for (i = 0; i < MAT_ATTRIB_MAX; i++)
ctx->ListState.ActiveMaterialSize[i] = 0;
memset(&ctx->ListState.Current, 0, sizeof ctx->ListState.Current);
ctx->Driver.CurrentSavePrimitive = PRIM_UNKNOWN;
}
static void GLAPIENTRY
save_CallList(GLuint list)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_CALL_LIST, 1);
if (n) {
n[1].ui = list;
}
/* After this, we don't know what state we're in. Invalidate all
* cached information previously gathered:
*/
invalidate_saved_current_state( ctx );
if (ctx->ExecuteFlag) {
_mesa_CallList(list);
}
}
static void GLAPIENTRY
save_CallLists(GLsizei num, GLenum type, const GLvoid * lists)
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
GLboolean typeErrorFlag;
SAVE_FLUSH_VERTICES(ctx);
switch (type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE:
case GL_SHORT:
case GL_UNSIGNED_SHORT:
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
case GL_2_BYTES:
case GL_3_BYTES:
case GL_4_BYTES:
typeErrorFlag = GL_FALSE;
break;
default:
typeErrorFlag = GL_TRUE;
}
for (i = 0; i < num; i++) {
GLint list = translate_id(i, type, lists);
Node *n = alloc_instruction(ctx, OPCODE_CALL_LIST_OFFSET, 2);
if (n) {
n[1].i = list;
n[2].b = typeErrorFlag;
}
}
/* After this, we don't know what state we're in. Invalidate all
* cached information previously gathered:
*/
invalidate_saved_current_state( ctx );
if (ctx->ExecuteFlag) {
CALL_CallLists(ctx->Exec, (num, type, lists));
}
}
static void GLAPIENTRY
save_Clear(GLbitfield mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR, 1);
if (n) {
n[1].bf = mask;
}
if (ctx->ExecuteFlag) {
CALL_Clear(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_ClearAccum(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_ACCUM, 4);
if (n) {
n[1].f = red;
n[2].f = green;
n[3].f = blue;
n[4].f = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ClearAccum(ctx->Exec, (red, green, blue, alpha));
}
}
static void GLAPIENTRY
save_ClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_COLOR, 4);
if (n) {
n[1].f = red;
n[2].f = green;
n[3].f = blue;
n[4].f = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ClearColor(ctx->Exec, (red, green, blue, alpha));
}
}
static void GLAPIENTRY
save_ClearDepth(GLclampd depth)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_DEPTH, 1);
if (n) {
n[1].f = (GLfloat) depth;
}
if (ctx->ExecuteFlag) {
CALL_ClearDepth(ctx->Exec, (depth));
}
}
static void GLAPIENTRY
save_ClearIndex(GLfloat c)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_INDEX, 1);
if (n) {
n[1].f = c;
}
if (ctx->ExecuteFlag) {
CALL_ClearIndex(ctx->Exec, (c));
}
}
static void GLAPIENTRY
save_ClearStencil(GLint s)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_STENCIL, 1);
if (n) {
n[1].i = s;
}
if (ctx->ExecuteFlag) {
CALL_ClearStencil(ctx->Exec, (s));
}
}
static void GLAPIENTRY
save_ClipPlane(GLenum plane, const GLdouble * equ)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLIP_PLANE, 5);
if (n) {
n[1].e = plane;
n[2].f = (GLfloat) equ[0];
n[3].f = (GLfloat) equ[1];
n[4].f = (GLfloat) equ[2];
n[5].f = (GLfloat) equ[3];
}
if (ctx->ExecuteFlag) {
CALL_ClipPlane(ctx->Exec, (plane, equ));
}
}
static void GLAPIENTRY
save_ColorMask(GLboolean red, GLboolean green,
GLboolean blue, GLboolean alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COLOR_MASK, 4);
if (n) {
n[1].b = red;
n[2].b = green;
n[3].b = blue;
n[4].b = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ColorMask(ctx->Exec, (red, green, blue, alpha));
}
}
static void GLAPIENTRY
save_ColorMaterial(GLenum face, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COLOR_MATERIAL, 2);
if (n) {
n[1].e = face;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_ColorMaterial(ctx->Exec, (face, mode));
}
}
static void GLAPIENTRY
save_CopyPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum type)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COPY_PIXELS, 5);
if (n) {
n[1].i = x;
n[2].i = y;
n[3].i = (GLint) width;
n[4].i = (GLint) height;
n[5].e = type;
}
if (ctx->ExecuteFlag) {
CALL_CopyPixels(ctx->Exec, (x, y, width, height, type));
}
}
static void GLAPIENTRY
save_CopyTexImage1D(GLenum target, GLint level, GLenum internalformat,
GLint x, GLint y, GLsizei width, GLint border)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COPY_TEX_IMAGE1D, 7);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalformat;
n[4].i = x;
n[5].i = y;
n[6].i = width;
n[7].i = border;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexImage1D(ctx->Exec, (target, level, internalformat,
x, y, width, border));
}
}
static void GLAPIENTRY
save_CopyTexImage2D(GLenum target, GLint level,
GLenum internalformat,
GLint x, GLint y, GLsizei width,
GLsizei height, GLint border)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COPY_TEX_IMAGE2D, 8);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalformat;
n[4].i = x;
n[5].i = y;
n[6].i = width;
n[7].i = height;
n[8].i = border;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexImage2D(ctx->Exec, (target, level, internalformat,
x, y, width, height, border));
}
}
static void GLAPIENTRY
save_CopyTexSubImage1D(GLenum target, GLint level,
GLint xoffset, GLint x, GLint y, GLsizei width)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COPY_TEX_SUB_IMAGE1D, 6);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = x;
n[5].i = y;
n[6].i = width;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexSubImage1D(ctx->Exec,
(target, level, xoffset, x, y, width));
}
}
static void GLAPIENTRY
save_CopyTexSubImage2D(GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLint x, GLint y, GLsizei width, GLint height)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COPY_TEX_SUB_IMAGE2D, 8);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = x;
n[6].i = y;
n[7].i = width;
n[8].i = height;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexSubImage2D(ctx->Exec, (target, level, xoffset, yoffset,
x, y, width, height));
}
}
static void GLAPIENTRY
save_CullFace(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CULL_FACE, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_CullFace(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_DepthFunc(GLenum func)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DEPTH_FUNC, 1);
if (n) {
n[1].e = func;
}
if (ctx->ExecuteFlag) {
CALL_DepthFunc(ctx->Exec, (func));
}
}
static void GLAPIENTRY
save_DepthMask(GLboolean mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DEPTH_MASK, 1);
if (n) {
n[1].b = mask;
}
if (ctx->ExecuteFlag) {
CALL_DepthMask(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_DepthRange(GLclampd nearval, GLclampd farval)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DEPTH_RANGE, 2);
if (n) {
n[1].f = (GLfloat) nearval;
n[2].f = (GLfloat) farval;
}
if (ctx->ExecuteFlag) {
CALL_DepthRange(ctx->Exec, (nearval, farval));
}
}
static void GLAPIENTRY
save_Disable(GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DISABLE, 1);
if (n) {
n[1].e = cap;
}
if (ctx->ExecuteFlag) {
CALL_Disable(ctx->Exec, (cap));
}
}
static void GLAPIENTRY
save_DrawBuffer(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DRAW_BUFFER, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_DrawBuffer(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_DrawPixels(GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DRAW_PIXELS, 5);
if (n) {
n[1].i = width;
n[2].i = height;
n[3].e = format;
n[4].e = type;
n[5].data = unpack_image(ctx, 2, width, height, 1, format, type,
pixels, &ctx->Unpack);
}
if (ctx->ExecuteFlag) {
CALL_DrawPixels(ctx->Exec, (width, height, format, type, pixels));
}
}
static void GLAPIENTRY
save_Enable(GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ENABLE, 1);
if (n) {
n[1].e = cap;
}
if (ctx->ExecuteFlag) {
CALL_Enable(ctx->Exec, (cap));
}
}
static void GLAPIENTRY
save_EvalMesh1(GLenum mode, GLint i1, GLint i2)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_EVALMESH1, 3);
if (n) {
n[1].e = mode;
n[2].i = i1;
n[3].i = i2;
}
if (ctx->ExecuteFlag) {
CALL_EvalMesh1(ctx->Exec, (mode, i1, i2));
}
}
static void GLAPIENTRY
save_EvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_EVALMESH2, 5);
if (n) {
n[1].e = mode;
n[2].i = i1;
n[3].i = i2;
n[4].i = j1;
n[5].i = j2;
}
if (ctx->ExecuteFlag) {
CALL_EvalMesh2(ctx->Exec, (mode, i1, i2, j1, j2));
}
}
static void GLAPIENTRY
save_Fogfv(GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_FOG, 5);
if (n) {
n[1].e = pname;
n[2].f = params[0];
n[3].f = params[1];
n[4].f = params[2];
n[5].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_Fogfv(ctx->Exec, (pname, params));
}
}
static void GLAPIENTRY
save_Fogf(GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_Fogfv(pname, parray);
}
static void GLAPIENTRY
save_Fogiv(GLenum pname, const GLint *params)
{
GLfloat p[4];
switch (pname) {
case GL_FOG_MODE:
case GL_FOG_DENSITY:
case GL_FOG_START:
case GL_FOG_END:
case GL_FOG_INDEX:
p[0] = (GLfloat) *params;
p[1] = 0.0f;
p[2] = 0.0f;
p[3] = 0.0f;
break;
case GL_FOG_COLOR:
p[0] = INT_TO_FLOAT(params[0]);
p[1] = INT_TO_FLOAT(params[1]);
p[2] = INT_TO_FLOAT(params[2]);
p[3] = INT_TO_FLOAT(params[3]);
break;
default:
/* Error will be caught later in gl_Fogfv */
ASSIGN_4V(p, 0.0F, 0.0F, 0.0F, 0.0F);
}
save_Fogfv(pname, p);
}
static void GLAPIENTRY
save_Fogi(GLenum pname, GLint param)
{
GLint parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0;
save_Fogiv(pname, parray);
}
static void GLAPIENTRY
save_FrontFace(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_FRONT_FACE, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_FrontFace(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_Frustum(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_FRUSTUM, 6);
if (n) {
n[1].f = (GLfloat) left;
n[2].f = (GLfloat) right;
n[3].f = (GLfloat) bottom;
n[4].f = (GLfloat) top;
n[5].f = (GLfloat) nearval;
n[6].f = (GLfloat) farval;
}
if (ctx->ExecuteFlag) {
CALL_Frustum(ctx->Exec, (left, right, bottom, top, nearval, farval));
}
}
static void GLAPIENTRY
save_Hint(GLenum target, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_HINT, 2);
if (n) {
n[1].e = target;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_Hint(ctx->Exec, (target, mode));
}
}
static void GLAPIENTRY
save_IndexMask(GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_INDEX_MASK, 1);
if (n) {
n[1].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_IndexMask(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_InitNames(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_INIT_NAMES, 0);
if (ctx->ExecuteFlag) {
CALL_InitNames(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_Lightfv(GLenum light, GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LIGHT, 6);
if (n) {
GLint i, nParams;
n[1].e = light;
n[2].e = pname;
switch (pname) {
case GL_AMBIENT:
nParams = 4;
break;
case GL_DIFFUSE:
nParams = 4;
break;
case GL_SPECULAR:
nParams = 4;
break;
case GL_POSITION:
nParams = 4;
break;
case GL_SPOT_DIRECTION:
nParams = 3;
break;
case GL_SPOT_EXPONENT:
nParams = 1;
break;
case GL_SPOT_CUTOFF:
nParams = 1;
break;
case GL_CONSTANT_ATTENUATION:
nParams = 1;
break;
case GL_LINEAR_ATTENUATION:
nParams = 1;
break;
case GL_QUADRATIC_ATTENUATION:
nParams = 1;
break;
default:
nParams = 0;
}
for (i = 0; i < nParams; i++) {
n[3 + i].f = params[i];
}
}
if (ctx->ExecuteFlag) {
CALL_Lightfv(ctx->Exec, (light, pname, params));
}
}
static void GLAPIENTRY
save_Lightf(GLenum light, GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_Lightfv(light, pname, parray);
}
static void GLAPIENTRY
save_Lightiv(GLenum light, GLenum pname, const GLint *params)
{
GLfloat fparam[4];
switch (pname) {
case GL_AMBIENT:
case GL_DIFFUSE:
case GL_SPECULAR:
fparam[0] = INT_TO_FLOAT(params[0]);
fparam[1] = INT_TO_FLOAT(params[1]);
fparam[2] = INT_TO_FLOAT(params[2]);
fparam[3] = INT_TO_FLOAT(params[3]);
break;
case GL_POSITION:
fparam[0] = (GLfloat) params[0];
fparam[1] = (GLfloat) params[1];
fparam[2] = (GLfloat) params[2];
fparam[3] = (GLfloat) params[3];
break;
case GL_SPOT_DIRECTION:
fparam[0] = (GLfloat) params[0];
fparam[1] = (GLfloat) params[1];
fparam[2] = (GLfloat) params[2];
break;
case GL_SPOT_EXPONENT:
case GL_SPOT_CUTOFF:
case GL_CONSTANT_ATTENUATION:
case GL_LINEAR_ATTENUATION:
case GL_QUADRATIC_ATTENUATION:
fparam[0] = (GLfloat) params[0];
break;
default:
/* error will be caught later in gl_Lightfv */
;
}
save_Lightfv(light, pname, fparam);
}
static void GLAPIENTRY
save_Lighti(GLenum light, GLenum pname, GLint param)
{
GLint parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0;
save_Lightiv(light, pname, parray);
}
static void GLAPIENTRY
save_LightModelfv(GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LIGHT_MODEL, 5);
if (n) {
n[1].e = pname;
n[2].f = params[0];
n[3].f = params[1];
n[4].f = params[2];
n[5].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_LightModelfv(ctx->Exec, (pname, params));
}
}
static void GLAPIENTRY
save_LightModelf(GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_LightModelfv(pname, parray);
}
static void GLAPIENTRY
save_LightModeliv(GLenum pname, const GLint *params)
{
GLfloat fparam[4];
switch (pname) {
case GL_LIGHT_MODEL_AMBIENT:
fparam[0] = INT_TO_FLOAT(params[0]);
fparam[1] = INT_TO_FLOAT(params[1]);
fparam[2] = INT_TO_FLOAT(params[2]);
fparam[3] = INT_TO_FLOAT(params[3]);
break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
case GL_LIGHT_MODEL_TWO_SIDE:
case GL_LIGHT_MODEL_COLOR_CONTROL:
fparam[0] = (GLfloat) params[0];
fparam[1] = 0.0F;
fparam[2] = 0.0F;
fparam[3] = 0.0F;
break;
default:
/* Error will be caught later in gl_LightModelfv */
ASSIGN_4V(fparam, 0.0F, 0.0F, 0.0F, 0.0F);
}
save_LightModelfv(pname, fparam);
}
static void GLAPIENTRY
save_LightModeli(GLenum pname, GLint param)
{
GLint parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0;
save_LightModeliv(pname, parray);
}
static void GLAPIENTRY
save_LineStipple(GLint factor, GLushort pattern)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LINE_STIPPLE, 2);
if (n) {
n[1].i = factor;
n[2].us = pattern;
}
if (ctx->ExecuteFlag) {
CALL_LineStipple(ctx->Exec, (factor, pattern));
}
}
static void GLAPIENTRY
save_LineWidth(GLfloat width)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LINE_WIDTH, 1);
if (n) {
n[1].f = width;
}
if (ctx->ExecuteFlag) {
CALL_LineWidth(ctx->Exec, (width));
}
}
static void GLAPIENTRY
save_ListBase(GLuint base)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LIST_BASE, 1);
if (n) {
n[1].ui = base;
}
if (ctx->ExecuteFlag) {
CALL_ListBase(ctx->Exec, (base));
}
}
static void GLAPIENTRY
save_LoadIdentity(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_LOAD_IDENTITY, 0);
if (ctx->ExecuteFlag) {
CALL_LoadIdentity(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_LoadMatrixf(const GLfloat * m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LOAD_MATRIX, 16);
if (n) {
GLuint i;
for (i = 0; i < 16; i++) {
n[1 + i].f = m[i];
}
}
if (ctx->ExecuteFlag) {
CALL_LoadMatrixf(ctx->Exec, (m));
}
}
static void GLAPIENTRY
save_LoadMatrixd(const GLdouble * m)
{
GLfloat f[16];
GLint i;
for (i = 0; i < 16; i++) {
f[i] = (GLfloat) m[i];
}
save_LoadMatrixf(f);
}
static void GLAPIENTRY
save_LoadName(GLuint name)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LOAD_NAME, 1);
if (n) {
n[1].ui = name;
}
if (ctx->ExecuteFlag) {
CALL_LoadName(ctx->Exec, (name));
}
}
static void GLAPIENTRY
save_LogicOp(GLenum opcode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LOGIC_OP, 1);
if (n) {
n[1].e = opcode;
}
if (ctx->ExecuteFlag) {
CALL_LogicOp(ctx->Exec, (opcode));
}
}
static void GLAPIENTRY
save_Map1d(GLenum target, GLdouble u1, GLdouble u2, GLint stride,
GLint order, const GLdouble * points)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MAP1, 6);
if (n) {
GLfloat *pnts = _mesa_copy_map_points1d(target, stride, order, points);
n[1].e = target;
n[2].f = (GLfloat) u1;
n[3].f = (GLfloat) u2;
n[4].i = _mesa_evaluator_components(target); /* stride */
n[5].i = order;
n[6].data = (void *) pnts;
}
if (ctx->ExecuteFlag) {
CALL_Map1d(ctx->Exec, (target, u1, u2, stride, order, points));
}
}
static void GLAPIENTRY
save_Map1f(GLenum target, GLfloat u1, GLfloat u2, GLint stride,
GLint order, const GLfloat * points)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MAP1, 6);
if (n) {
GLfloat *pnts = _mesa_copy_map_points1f(target, stride, order, points);
n[1].e = target;
n[2].f = u1;
n[3].f = u2;
n[4].i = _mesa_evaluator_components(target); /* stride */
n[5].i = order;
n[6].data = (void *) pnts;
}
if (ctx->ExecuteFlag) {
CALL_Map1f(ctx->Exec, (target, u1, u2, stride, order, points));
}
}
static void GLAPIENTRY
save_Map2d(GLenum target,
GLdouble u1, GLdouble u2, GLint ustride, GLint uorder,
GLdouble v1, GLdouble v2, GLint vstride, GLint vorder,
const GLdouble * points)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MAP2, 10);
if (n) {
GLfloat *pnts = _mesa_copy_map_points2d(target, ustride, uorder,
vstride, vorder, points);
n[1].e = target;
n[2].f = (GLfloat) u1;
n[3].f = (GLfloat) u2;
n[4].f = (GLfloat) v1;
n[5].f = (GLfloat) v2;
/* XXX verify these strides are correct */
n[6].i = _mesa_evaluator_components(target) * vorder; /*ustride */
n[7].i = _mesa_evaluator_components(target); /*vstride */
n[8].i = uorder;
n[9].i = vorder;
n[10].data = (void *) pnts;
}
if (ctx->ExecuteFlag) {
CALL_Map2d(ctx->Exec, (target,
u1, u2, ustride, uorder,
v1, v2, vstride, vorder, points));
}
}
static void GLAPIENTRY
save_Map2f(GLenum target,
GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
const GLfloat * points)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MAP2, 10);
if (n) {
GLfloat *pnts = _mesa_copy_map_points2f(target, ustride, uorder,
vstride, vorder, points);
n[1].e = target;
n[2].f = u1;
n[3].f = u2;
n[4].f = v1;
n[5].f = v2;
/* XXX verify these strides are correct */
n[6].i = _mesa_evaluator_components(target) * vorder; /*ustride */
n[7].i = _mesa_evaluator_components(target); /*vstride */
n[8].i = uorder;
n[9].i = vorder;
n[10].data = (void *) pnts;
}
if (ctx->ExecuteFlag) {
CALL_Map2f(ctx->Exec, (target, u1, u2, ustride, uorder,
v1, v2, vstride, vorder, points));
}
}
static void GLAPIENTRY
save_MapGrid1f(GLint un, GLfloat u1, GLfloat u2)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MAPGRID1, 3);
if (n) {
n[1].i = un;
n[2].f = u1;
n[3].f = u2;
}
if (ctx->ExecuteFlag) {
CALL_MapGrid1f(ctx->Exec, (un, u1, u2));
}
}
static void GLAPIENTRY
save_MapGrid1d(GLint un, GLdouble u1, GLdouble u2)
{
save_MapGrid1f(un, (GLfloat) u1, (GLfloat) u2);
}
static void GLAPIENTRY
save_MapGrid2f(GLint un, GLfloat u1, GLfloat u2,
GLint vn, GLfloat v1, GLfloat v2)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MAPGRID2, 6);
if (n) {
n[1].i = un;
n[2].f = u1;
n[3].f = u2;
n[4].i = vn;
n[5].f = v1;
n[6].f = v2;
}
if (ctx->ExecuteFlag) {
CALL_MapGrid2f(ctx->Exec, (un, u1, u2, vn, v1, v2));
}
}
static void GLAPIENTRY
save_MapGrid2d(GLint un, GLdouble u1, GLdouble u2,
GLint vn, GLdouble v1, GLdouble v2)
{
save_MapGrid2f(un, (GLfloat) u1, (GLfloat) u2,
vn, (GLfloat) v1, (GLfloat) v2);
}
static void GLAPIENTRY
save_MatrixMode(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MATRIX_MODE, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_MatrixMode(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_MultMatrixf(const GLfloat * m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MULT_MATRIX, 16);
if (n) {
GLuint i;
for (i = 0; i < 16; i++) {
n[1 + i].f = m[i];
}
}
if (ctx->ExecuteFlag) {
CALL_MultMatrixf(ctx->Exec, (m));
}
}
static void GLAPIENTRY
save_MultMatrixd(const GLdouble * m)
{
GLfloat f[16];
GLint i;
for (i = 0; i < 16; i++) {
f[i] = (GLfloat) m[i];
}
save_MultMatrixf(f);
}
static void GLAPIENTRY
save_NewList(GLuint name, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
/* It's an error to call this function while building a display list */
_mesa_error(ctx, GL_INVALID_OPERATION, "glNewList");
(void) name;
(void) mode;
}
static void GLAPIENTRY
save_Ortho(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ORTHO, 6);
if (n) {
n[1].f = (GLfloat) left;
n[2].f = (GLfloat) right;
n[3].f = (GLfloat) bottom;
n[4].f = (GLfloat) top;
n[5].f = (GLfloat) nearval;
n[6].f = (GLfloat) farval;
}
if (ctx->ExecuteFlag) {
CALL_Ortho(ctx->Exec, (left, right, bottom, top, nearval, farval));
}
}
static void GLAPIENTRY
save_PixelMapfv(GLenum map, GLint mapsize, const GLfloat *values)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PIXEL_MAP, 3);
if (n) {
n[1].e = map;
n[2].i = mapsize;
n[3].data = (void *) malloc(mapsize * sizeof(GLfloat));
memcpy(n[3].data, (void *) values, mapsize * sizeof(GLfloat));
}
if (ctx->ExecuteFlag) {
CALL_PixelMapfv(ctx->Exec, (map, mapsize, values));
}
}
static void GLAPIENTRY
save_PixelMapuiv(GLenum map, GLint mapsize, const GLuint *values)
{
GLfloat fvalues[MAX_PIXEL_MAP_TABLE];
GLint i;
if (map == GL_PIXEL_MAP_I_TO_I || map == GL_PIXEL_MAP_S_TO_S) {
for (i = 0; i < mapsize; i++) {
fvalues[i] = (GLfloat) values[i];
}
}
else {
for (i = 0; i < mapsize; i++) {
fvalues[i] = UINT_TO_FLOAT(values[i]);
}
}
save_PixelMapfv(map, mapsize, fvalues);
}
static void GLAPIENTRY
save_PixelMapusv(GLenum map, GLint mapsize, const GLushort *values)
{
GLfloat fvalues[MAX_PIXEL_MAP_TABLE];
GLint i;
if (map == GL_PIXEL_MAP_I_TO_I || map == GL_PIXEL_MAP_S_TO_S) {
for (i = 0; i < mapsize; i++) {
fvalues[i] = (GLfloat) values[i];
}
}
else {
for (i = 0; i < mapsize; i++) {
fvalues[i] = USHORT_TO_FLOAT(values[i]);
}
}
save_PixelMapfv(map, mapsize, fvalues);
}
static void GLAPIENTRY
save_PixelTransferf(GLenum pname, GLfloat param)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PIXEL_TRANSFER, 2);
if (n) {
n[1].e = pname;
n[2].f = param;
}
if (ctx->ExecuteFlag) {
CALL_PixelTransferf(ctx->Exec, (pname, param));
}
}
static void GLAPIENTRY
save_PixelTransferi(GLenum pname, GLint param)
{
save_PixelTransferf(pname, (GLfloat) param);
}
static void GLAPIENTRY
save_PixelZoom(GLfloat xfactor, GLfloat yfactor)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PIXEL_ZOOM, 2);
if (n) {
n[1].f = xfactor;
n[2].f = yfactor;
}
if (ctx->ExecuteFlag) {
CALL_PixelZoom(ctx->Exec, (xfactor, yfactor));
}
}
static void GLAPIENTRY
save_PointParameterfvEXT(GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_POINT_PARAMETERS, 4);
if (n) {
n[1].e = pname;
n[2].f = params[0];
n[3].f = params[1];
n[4].f = params[2];
}
if (ctx->ExecuteFlag) {
CALL_PointParameterfvEXT(ctx->Exec, (pname, params));
}
}
static void GLAPIENTRY
save_PointParameterfEXT(GLenum pname, GLfloat param)
{
GLfloat parray[3];
parray[0] = param;
parray[1] = parray[2] = 0.0F;
save_PointParameterfvEXT(pname, parray);
}
static void GLAPIENTRY
save_PointParameteriNV(GLenum pname, GLint param)
{
GLfloat parray[3];
parray[0] = (GLfloat) param;
parray[1] = parray[2] = 0.0F;
save_PointParameterfvEXT(pname, parray);
}
static void GLAPIENTRY
save_PointParameterivNV(GLenum pname, const GLint * param)
{
GLfloat parray[3];
parray[0] = (GLfloat) param[0];
parray[1] = parray[2] = 0.0F;
save_PointParameterfvEXT(pname, parray);
}
static void GLAPIENTRY
save_PointSize(GLfloat size)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_POINT_SIZE, 1);
if (n) {
n[1].f = size;
}
if (ctx->ExecuteFlag) {
CALL_PointSize(ctx->Exec, (size));
}
}
static void GLAPIENTRY
save_PolygonMode(GLenum face, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_POLYGON_MODE, 2);
if (n) {
n[1].e = face;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_PolygonMode(ctx->Exec, (face, mode));
}
}
static void GLAPIENTRY
save_PolygonStipple(const GLubyte * pattern)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_POLYGON_STIPPLE, 1);
if (n) {
n[1].data = unpack_image(ctx, 2, 32, 32, 1, GL_COLOR_INDEX, GL_BITMAP,
pattern, &ctx->Unpack);
}
if (ctx->ExecuteFlag) {
CALL_PolygonStipple(ctx->Exec, ((GLubyte *) pattern));
}
}
static void GLAPIENTRY
save_PolygonOffset(GLfloat factor, GLfloat units)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_POLYGON_OFFSET, 2);
if (n) {
n[1].f = factor;
n[2].f = units;
}
if (ctx->ExecuteFlag) {
CALL_PolygonOffset(ctx->Exec, (factor, units));
}
}
static void GLAPIENTRY
save_PolygonOffsetEXT(GLfloat factor, GLfloat bias)
{
GET_CURRENT_CONTEXT(ctx);
/* XXX mult by DepthMaxF here??? */
save_PolygonOffset(factor, ctx->DrawBuffer->_DepthMaxF * bias);
}
static void GLAPIENTRY
save_PopAttrib(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_POP_ATTRIB, 0);
if (ctx->ExecuteFlag) {
CALL_PopAttrib(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_PopMatrix(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_POP_MATRIX, 0);
if (ctx->ExecuteFlag) {
CALL_PopMatrix(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_PopName(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_POP_NAME, 0);
if (ctx->ExecuteFlag) {
CALL_PopName(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_PrioritizeTextures(GLsizei num, const GLuint * textures,
const GLclampf * priorities)
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
for (i = 0; i < num; i++) {
Node *n;
n = alloc_instruction(ctx, OPCODE_PRIORITIZE_TEXTURE, 2);
if (n) {
n[1].ui = textures[i];
n[2].f = priorities[i];
}
}
if (ctx->ExecuteFlag) {
CALL_PrioritizeTextures(ctx->Exec, (num, textures, priorities));
}
}
static void GLAPIENTRY
save_PushAttrib(GLbitfield mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PUSH_ATTRIB, 1);
if (n) {
n[1].bf = mask;
}
if (ctx->ExecuteFlag) {
CALL_PushAttrib(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_PushMatrix(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_PUSH_MATRIX, 0);
if (ctx->ExecuteFlag) {
CALL_PushMatrix(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_PushName(GLuint name)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PUSH_NAME, 1);
if (n) {
n[1].ui = name;
}
if (ctx->ExecuteFlag) {
CALL_PushName(ctx->Exec, (name));
}
}
static void GLAPIENTRY
save_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_RASTER_POS, 4);
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
n[4].f = w;
}
if (ctx->ExecuteFlag) {
CALL_RasterPos4f(ctx->Exec, (x, y, z, w));
}
}
static void GLAPIENTRY
save_RasterPos2d(GLdouble x, GLdouble y)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2f(GLfloat x, GLfloat y)
{
save_RasterPos4f(x, y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2i(GLint x, GLint y)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2s(GLshort x, GLshort y)
{
save_RasterPos4f(x, y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3d(GLdouble x, GLdouble y, GLdouble z)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3f(GLfloat x, GLfloat y, GLfloat z)
{
save_RasterPos4f(x, y, z, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3i(GLint x, GLint y, GLint z)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3s(GLshort x, GLshort y, GLshort z)
{
save_RasterPos4f(x, y, z, 1.0F);
}
static void GLAPIENTRY
save_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_RasterPos4i(GLint x, GLint y, GLint z, GLint w)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w)
{
save_RasterPos4f(x, y, z, w);
}
static void GLAPIENTRY
save_RasterPos2dv(const GLdouble * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2fv(const GLfloat * v)
{
save_RasterPos4f(v[0], v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2iv(const GLint * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2sv(const GLshort * v)
{
save_RasterPos4f(v[0], v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3dv(const GLdouble * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
static void GLAPIENTRY
save_RasterPos3fv(const GLfloat * v)
{
save_RasterPos4f(v[0], v[1], v[2], 1.0F);
}
static void GLAPIENTRY
save_RasterPos3iv(const GLint * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
static void GLAPIENTRY
save_RasterPos3sv(const GLshort * v)
{
save_RasterPos4f(v[0], v[1], v[2], 1.0F);
}
static void GLAPIENTRY
save_RasterPos4dv(const GLdouble * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
static void GLAPIENTRY
save_RasterPos4fv(const GLfloat * v)
{
save_RasterPos4f(v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_RasterPos4iv(const GLint * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
static void GLAPIENTRY
save_RasterPos4sv(const GLshort * v)
{
save_RasterPos4f(v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_PassThrough(GLfloat token)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PASSTHROUGH, 1);
if (n) {
n[1].f = token;
}
if (ctx->ExecuteFlag) {
CALL_PassThrough(ctx->Exec, (token));
}
}
static void GLAPIENTRY
save_ReadBuffer(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_READ_BUFFER, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_ReadBuffer(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_Rotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ROTATE, 4);
if (n) {
n[1].f = angle;
n[2].f = x;
n[3].f = y;
n[4].f = z;
}
if (ctx->ExecuteFlag) {
CALL_Rotatef(ctx->Exec, (angle, x, y, z));
}
}
static void GLAPIENTRY
save_Rotated(GLdouble angle, GLdouble x, GLdouble y, GLdouble z)
{
save_Rotatef((GLfloat) angle, (GLfloat) x, (GLfloat) y, (GLfloat) z);
}
static void GLAPIENTRY
save_Scalef(GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_SCALE, 3);
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
}
if (ctx->ExecuteFlag) {
CALL_Scalef(ctx->Exec, (x, y, z));
}
}
static void GLAPIENTRY
save_Scaled(GLdouble x, GLdouble y, GLdouble z)
{
save_Scalef((GLfloat) x, (GLfloat) y, (GLfloat) z);
}
static void GLAPIENTRY
save_Scissor(GLint x, GLint y, GLsizei width, GLsizei height)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_SCISSOR, 4);
if (n) {
n[1].i = x;
n[2].i = y;
n[3].i = width;
n[4].i = height;
}
if (ctx->ExecuteFlag) {
CALL_Scissor(ctx->Exec, (x, y, width, height));
}
}
static void GLAPIENTRY
save_ShadeModel(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END(ctx);
if (ctx->ExecuteFlag) {
CALL_ShadeModel(ctx->Exec, (mode));
}
if (ctx->ListState.Current.ShadeModel == mode)
return;
SAVE_FLUSH_VERTICES(ctx);
/* Only save the value if we know the statechange will take effect:
*/
if (ctx->Driver.CurrentSavePrimitive == PRIM_OUTSIDE_BEGIN_END)
ctx->ListState.Current.ShadeModel = mode;
n = alloc_instruction(ctx, OPCODE_SHADE_MODEL, 1);
if (n) {
n[1].e = mode;
}
}
static void GLAPIENTRY
save_StencilFunc(GLenum func, GLint ref, GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_STENCIL_FUNC, 3);
if (n) {
n[1].e = func;
n[2].i = ref;
n[3].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_StencilFunc(ctx->Exec, (func, ref, mask));
}
}
static void GLAPIENTRY
save_StencilMask(GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_STENCIL_MASK, 1);
if (n) {
n[1].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_StencilMask(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_StencilOp(GLenum fail, GLenum zfail, GLenum zpass)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_STENCIL_OP, 3);
if (n) {
n[1].e = fail;
n[2].e = zfail;
n[3].e = zpass;
}
if (ctx->ExecuteFlag) {
CALL_StencilOp(ctx->Exec, (fail, zfail, zpass));
}
}
static void GLAPIENTRY
save_TexEnvfv(GLenum target, GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEXENV, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
if (pname == GL_TEXTURE_ENV_COLOR) {
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
else {
n[3].f = params[0];
n[4].f = n[5].f = n[6].f = 0.0F;
}
}
if (ctx->ExecuteFlag) {
CALL_TexEnvfv(ctx->Exec, (target, pname, params));
}
}
static void GLAPIENTRY
save_TexEnvf(GLenum target, GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = (GLfloat) param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_TexEnvfv(target, pname, parray);
}
static void GLAPIENTRY
save_TexEnvi(GLenum target, GLenum pname, GLint param)
{
GLfloat p[4];
p[0] = (GLfloat) param;
p[1] = p[2] = p[3] = 0.0F;
save_TexEnvfv(target, pname, p);
}
static void GLAPIENTRY
save_TexEnviv(GLenum target, GLenum pname, const GLint * param)
{
GLfloat p[4];
if (pname == GL_TEXTURE_ENV_COLOR) {
p[0] = INT_TO_FLOAT(param[0]);
p[1] = INT_TO_FLOAT(param[1]);
p[2] = INT_TO_FLOAT(param[2]);
p[3] = INT_TO_FLOAT(param[3]);
}
else {
p[0] = (GLfloat) param[0];
p[1] = p[2] = p[3] = 0.0F;
}
save_TexEnvfv(target, pname, p);
}
static void GLAPIENTRY
save_TexGenfv(GLenum coord, GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEXGEN, 6);
if (n) {
n[1].e = coord;
n[2].e = pname;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_TexGenfv(ctx->Exec, (coord, pname, params));
}
}
static void GLAPIENTRY
save_TexGeniv(GLenum coord, GLenum pname, const GLint *params)
{
GLfloat p[4];
p[0] = (GLfloat) params[0];
p[1] = (GLfloat) params[1];
p[2] = (GLfloat) params[2];
p[3] = (GLfloat) params[3];
save_TexGenfv(coord, pname, p);
}
static void GLAPIENTRY
save_TexGend(GLenum coord, GLenum pname, GLdouble param)
{
GLfloat parray[4];
parray[0] = (GLfloat) param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_TexGenfv(coord, pname, parray);
}
static void GLAPIENTRY
save_TexGendv(GLenum coord, GLenum pname, const GLdouble *params)
{
GLfloat p[4];
p[0] = (GLfloat) params[0];
p[1] = (GLfloat) params[1];
p[2] = (GLfloat) params[2];
p[3] = (GLfloat) params[3];
save_TexGenfv(coord, pname, p);
}
static void GLAPIENTRY
save_TexGenf(GLenum coord, GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_TexGenfv(coord, pname, parray);
}
static void GLAPIENTRY
save_TexGeni(GLenum coord, GLenum pname, GLint param)
{
GLint parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0;
save_TexGeniv(coord, pname, parray);
}
static void GLAPIENTRY
save_TexParameterfv(GLenum target, GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEXPARAMETER, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_TexParameterfv(ctx->Exec, (target, pname, params));
}
}
static void GLAPIENTRY
save_TexParameterf(GLenum target, GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_TexParameterfv(target, pname, parray);
}
static void GLAPIENTRY
save_TexParameteri(GLenum target, GLenum pname, GLint param)
{
GLfloat fparam[4];
fparam[0] = (GLfloat) param;
fparam[1] = fparam[2] = fparam[3] = 0.0F;
save_TexParameterfv(target, pname, fparam);
}
static void GLAPIENTRY
save_TexParameteriv(GLenum target, GLenum pname, const GLint *params)
{
GLfloat fparam[4];
fparam[0] = (GLfloat) params[0];
fparam[1] = fparam[2] = fparam[3] = 0.0F;
save_TexParameterfv(target, pname, fparam);
}
static void GLAPIENTRY
save_TexImage1D(GLenum target,
GLint level, GLint components,
GLsizei width, GLint border,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_1D) {
/* don't compile, execute immediately */
CALL_TexImage1D(ctx->Exec, (target, level, components, width,
border, format, type, pixels));
}
else {
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEX_IMAGE1D, 8);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = components;
n[4].i = (GLint) width;
n[5].i = border;
n[6].e = format;
n[7].e = type;
n[8].data = unpack_image(ctx, 1, width, 1, 1, format, type,
pixels, &ctx->Unpack);
}
if (ctx->ExecuteFlag) {
CALL_TexImage1D(ctx->Exec, (target, level, components, width,
border, format, type, pixels));
}
}
}
static void GLAPIENTRY
save_TexImage2D(GLenum target,
GLint level, GLint components,
GLsizei width, GLsizei height, GLint border,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_2D) {
/* don't compile, execute immediately */
CALL_TexImage2D(ctx->Exec, (target, level, components, width,
height, border, format, type, pixels));
}
else {
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEX_IMAGE2D, 9);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = components;
n[4].i = (GLint) width;
n[5].i = (GLint) height;
n[6].i = border;
n[7].e = format;
n[8].e = type;
n[9].data = unpack_image(ctx, 2, width, height, 1, format, type,
pixels, &ctx->Unpack);
}
if (ctx->ExecuteFlag) {
CALL_TexImage2D(ctx->Exec, (target, level, components, width,
height, border, format, type, pixels));
}
}
}
static void GLAPIENTRY
save_TexSubImage1D(GLenum target, GLint level, GLint xoffset,
GLsizei width, GLenum format, GLenum type,
const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEX_SUB_IMAGE1D, 7);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = (GLint) width;
n[5].e = format;
n[6].e = type;
n[7].data = unpack_image(ctx, 1, width, 1, 1, format, type,
pixels, &ctx->Unpack);
}
if (ctx->ExecuteFlag) {
CALL_TexSubImage1D(ctx->Exec, (target, level, xoffset, width,
format, type, pixels));
}
}
static void GLAPIENTRY
save_TexSubImage2D(GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEX_SUB_IMAGE2D, 9);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = (GLint) width;
n[6].i = (GLint) height;
n[7].e = format;
n[8].e = type;
n[9].data = unpack_image(ctx, 2, width, height, 1, format, type,
pixels, &ctx->Unpack);
}
if (ctx->ExecuteFlag) {
CALL_TexSubImage2D(ctx->Exec, (target, level, xoffset, yoffset,
width, height, format, type, pixels));
}
}
static void GLAPIENTRY
save_Translatef(GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TRANSLATE, 3);
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
}
if (ctx->ExecuteFlag) {
CALL_Translatef(ctx->Exec, (x, y, z));
}
}
static void GLAPIENTRY
save_Translated(GLdouble x, GLdouble y, GLdouble z)
{
save_Translatef((GLfloat) x, (GLfloat) y, (GLfloat) z);
}
static void GLAPIENTRY
save_Viewport(GLint x, GLint y, GLsizei width, GLsizei height)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_VIEWPORT, 4);
if (n) {
n[1].i = x;
n[2].i = y;
n[3].i = (GLint) width;
n[4].i = (GLint) height;
}
if (ctx->ExecuteFlag) {
CALL_Viewport(ctx->Exec, (x, y, width, height));
}
}
static void GLAPIENTRY
save_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_WINDOW_POS, 4);
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
n[4].f = w;
}
if (ctx->ExecuteFlag) {
CALL_WindowPos4fMESA(ctx->Exec, (x, y, z, w));
}
}
static void GLAPIENTRY
save_WindowPos2dMESA(GLdouble x, GLdouble y)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2fMESA(GLfloat x, GLfloat y)
{
save_WindowPos4fMESA(x, y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2iMESA(GLint x, GLint y)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2sMESA(GLshort x, GLshort y)
{
save_WindowPos4fMESA(x, y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3dMESA(GLdouble x, GLdouble y, GLdouble z)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3fMESA(GLfloat x, GLfloat y, GLfloat z)
{
save_WindowPos4fMESA(x, y, z, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3iMESA(GLint x, GLint y, GLint z)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3sMESA(GLshort x, GLshort y, GLshort z)
{
save_WindowPos4fMESA(x, y, z, 1.0F);
}
static void GLAPIENTRY
save_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w)
{
save_WindowPos4fMESA(x, y, z, w);
}
static void GLAPIENTRY
save_WindowPos2dvMESA(const GLdouble * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2fvMESA(const GLfloat * v)
{
save_WindowPos4fMESA(v[0], v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2ivMESA(const GLint * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2svMESA(const GLshort * v)
{
save_WindowPos4fMESA(v[0], v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3dvMESA(const GLdouble * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
static void GLAPIENTRY
save_WindowPos3fvMESA(const GLfloat * v)
{
save_WindowPos4fMESA(v[0], v[1], v[2], 1.0F);
}
static void GLAPIENTRY
save_WindowPos3ivMESA(const GLint * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
static void GLAPIENTRY
save_WindowPos3svMESA(const GLshort * v)
{
save_WindowPos4fMESA(v[0], v[1], v[2], 1.0F);
}
static void GLAPIENTRY
save_WindowPos4dvMESA(const GLdouble * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
static void GLAPIENTRY
save_WindowPos4fvMESA(const GLfloat * v)
{
save_WindowPos4fMESA(v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_WindowPos4ivMESA(const GLint * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
static void GLAPIENTRY
save_WindowPos4svMESA(const GLshort * v)
{
save_WindowPos4fMESA(v[0], v[1], v[2], v[3]);
}
/* GL_ARB_transpose_matrix */
static void GLAPIENTRY
save_LoadTransposeMatrixdARB(const GLdouble m[16])
{
GLfloat tm[16];
_math_transposefd(tm, m);
save_LoadMatrixf(tm);
}
static void GLAPIENTRY
save_LoadTransposeMatrixfARB(const GLfloat m[16])
{
GLfloat tm[16];
_math_transposef(tm, m);
save_LoadMatrixf(tm);
}
static void GLAPIENTRY
save_MultTransposeMatrixdARB(const GLdouble m[16])
{
GLfloat tm[16];
_math_transposefd(tm, m);
save_MultMatrixf(tm);
}
static void GLAPIENTRY
save_MultTransposeMatrixfARB(const GLfloat m[16])
{
GLfloat tm[16];
_math_transposef(tm, m);
save_MultMatrixf(tm);
}
/* GL_ARB_multisample */
static void GLAPIENTRY
save_SampleCoverageARB(GLclampf value, GLboolean invert)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_SAMPLE_COVERAGE, 2);
if (n) {
n[1].f = value;
n[2].b = invert;
}
if (ctx->ExecuteFlag) {
CALL_SampleCoverageARB(ctx->Exec, (value, invert));
}
}
/* GL_EXT_depth_bounds_test */
static void GLAPIENTRY
save_DepthBoundsEXT(GLclampd zmin, GLclampd zmax)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DEPTH_BOUNDS_EXT, 2);
if (n) {
n[1].f = (GLfloat) zmin;
n[2].f = (GLfloat) zmax;
}
if (ctx->ExecuteFlag) {
CALL_DepthBoundsEXT(ctx->Exec, (zmin, zmax));
}
}
static void GLAPIENTRY
save_Attr1fNV(GLenum attr, GLfloat x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_ATTR_1F_NV, 2);
if (n) {
n[1].e = attr;
n[2].f = x;
}
ASSERT(attr < MAX_VERTEX_GENERIC_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 1;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, 0, 0, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib1fNV(ctx->Exec, (attr, x));
}
}
static void GLAPIENTRY
save_Attr2fNV(GLenum attr, GLfloat x, GLfloat y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_ATTR_2F_NV, 3);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
}
ASSERT(attr < MAX_VERTEX_GENERIC_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 2;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, 0, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib2fNV(ctx->Exec, (attr, x, y));
}
}
static void GLAPIENTRY
save_Attr3fNV(GLenum attr, GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_ATTR_3F_NV, 4);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
n[4].f = z;
}
ASSERT(attr < MAX_VERTEX_GENERIC_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 3;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib3fNV(ctx->Exec, (attr, x, y, z));
}
}
static void GLAPIENTRY
save_Attr4fNV(GLenum attr, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_ATTR_4F_NV, 5);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
n[4].f = z;
n[5].f = w;
}
ASSERT(attr < MAX_VERTEX_GENERIC_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 4;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, w);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib4fNV(ctx->Exec, (attr, x, y, z, w));
}
}
static void GLAPIENTRY
save_EvalCoord1f(GLfloat x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_EVAL_C1, 1);
if (n) {
n[1].f = x;
}
if (ctx->ExecuteFlag) {
CALL_EvalCoord1f(ctx->Exec, (x));
}
}
static void GLAPIENTRY
save_EvalCoord1fv(const GLfloat * v)
{
save_EvalCoord1f(v[0]);
}
static void GLAPIENTRY
save_EvalCoord2f(GLfloat x, GLfloat y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_EVAL_C2, 2);
if (n) {
n[1].f = x;
n[2].f = y;
}
if (ctx->ExecuteFlag) {
CALL_EvalCoord2f(ctx->Exec, (x, y));
}
}
static void GLAPIENTRY
save_EvalCoord2fv(const GLfloat * v)
{
save_EvalCoord2f(v[0], v[1]);
}
static void GLAPIENTRY
save_EvalPoint1(GLint x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_EVAL_P1, 1);
if (n) {
n[1].i = x;
}
if (ctx->ExecuteFlag) {
CALL_EvalPoint1(ctx->Exec, (x));
}
}
static void GLAPIENTRY
save_EvalPoint2(GLint x, GLint y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_EVAL_P2, 2);
if (n) {
n[1].i = x;
n[2].i = y;
}
if (ctx->ExecuteFlag) {
CALL_EvalPoint2(ctx->Exec, (x, y));
}
}
static void GLAPIENTRY
save_Indexf(GLfloat x)
{
save_Attr1fNV(VERT_ATTRIB_COLOR_INDEX, x);
}
static void GLAPIENTRY
save_Indexfv(const GLfloat * v)
{
save_Attr1fNV(VERT_ATTRIB_COLOR_INDEX, v[0]);
}
static void GLAPIENTRY
save_EdgeFlag(GLboolean x)
{
save_Attr1fNV(VERT_ATTRIB_EDGEFLAG, x ? (GLfloat)1.0 : (GLfloat)0.0);
}
static inline GLboolean compare4fv( const GLfloat *a,
const GLfloat *b,
GLuint count )
{
return memcmp( a, b, count * sizeof(GLfloat) ) == 0;
}
static void GLAPIENTRY
save_Materialfv(GLenum face, GLenum pname, const GLfloat * param)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
int args, i;
GLuint bitmask;
switch (face) {
case GL_BACK:
case GL_FRONT:
case GL_FRONT_AND_BACK:
break;
default:
_mesa_compile_error(ctx, GL_INVALID_ENUM, "material(face)");
return;
}
switch (pname) {
case GL_EMISSION:
case GL_AMBIENT:
case GL_DIFFUSE:
case GL_SPECULAR:
case GL_AMBIENT_AND_DIFFUSE:
args = 4;
break;
case GL_SHININESS:
args = 1;
break;
case GL_COLOR_INDEXES:
args = 3;
break;
default:
_mesa_compile_error(ctx, GL_INVALID_ENUM, "material(pname)");
return;
}
if (ctx->ExecuteFlag) {
CALL_Materialfv(ctx->Exec, (face, pname, param));
}
bitmask = _mesa_material_bitmask(ctx, face, pname, ~0, NULL);
/* Try to eliminate redundant statechanges. Because it is legal to
* call glMaterial even inside begin/end calls, don't need to worry
* about ctx->Driver.CurrentSavePrimitive here.
*/
for (i = 0; i < MAT_ATTRIB_MAX; i++) {
if (bitmask & (1 << i)) {
if (ctx->ListState.ActiveMaterialSize[i] == args &&
compare4fv(ctx->ListState.CurrentMaterial[i], param, args)) {
bitmask &= ~(1 << i);
}
else {
ctx->ListState.ActiveMaterialSize[i] = args;
COPY_SZ_4V(ctx->ListState.CurrentMaterial[i], args, param);
}
}
}
/* If this call has effect, return early:
*/
if (bitmask == 0)
return;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_MATERIAL, 6);
if (n) {
n[1].e = face;
n[2].e = pname;
for (i = 0; i < args; i++)
n[3 + i].f = param[i];
}
}
static void GLAPIENTRY
save_Begin(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
GLboolean error = GL_FALSE;
if (!_mesa_valid_prim_mode(ctx, mode)) {
_mesa_compile_error(ctx, GL_INVALID_ENUM, "glBegin(mode)");
error = GL_TRUE;
}
else if (ctx->Driver.CurrentSavePrimitive == PRIM_UNKNOWN) {
/* Typically the first begin. This may raise an error on
* playback, depending on whether CallList is issued from inside
* a begin/end or not.
*/
ctx->Driver.CurrentSavePrimitive = PRIM_INSIDE_UNKNOWN_PRIM;
}
else if (ctx->Driver.CurrentSavePrimitive == PRIM_OUTSIDE_BEGIN_END) {
ctx->Driver.CurrentSavePrimitive = mode;
}
else {
_mesa_compile_error(ctx, GL_INVALID_OPERATION, "recursive begin");
error = GL_TRUE;
}
if (!error) {
/* Give the driver an opportunity to hook in an optimized
* display list compiler.
*/
if (ctx->Driver.NotifySaveBegin(ctx, mode))
return;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_BEGIN, 1);
if (n) {
n[1].e = mode;
}
}
if (ctx->ExecuteFlag) {
CALL_Begin(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_End(void)
{
GET_CURRENT_CONTEXT(ctx);
SAVE_FLUSH_VERTICES(ctx);
(void) alloc_instruction(ctx, OPCODE_END, 0);
ctx->Driver.CurrentSavePrimitive = PRIM_OUTSIDE_BEGIN_END;
if (ctx->ExecuteFlag) {
CALL_End(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_Rectf(GLfloat a, GLfloat b, GLfloat c, GLfloat d)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_RECTF, 4);
if (n) {
n[1].f = a;
n[2].f = b;
n[3].f = c;
n[4].f = d;
}
if (ctx->ExecuteFlag) {
CALL_Rectf(ctx->Exec, (a, b, c, d));
}
}
static void GLAPIENTRY
save_Vertex2f(GLfloat x, GLfloat y)
{
save_Attr2fNV(VERT_ATTRIB_POS, x, y);
}
static void GLAPIENTRY
save_Vertex2fv(const GLfloat * v)
{
save_Attr2fNV(VERT_ATTRIB_POS, v[0], v[1]);
}
static void GLAPIENTRY
save_Vertex3f(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_POS, x, y, z);
}
static void GLAPIENTRY
save_Vertex3fv(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_POS, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_Vertex4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
save_Attr4fNV(VERT_ATTRIB_POS, x, y, z, w);
}
static void GLAPIENTRY
save_Vertex4fv(const GLfloat * v)
{
save_Attr4fNV(VERT_ATTRIB_POS, v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_TexCoord1f(GLfloat x)
{
save_Attr1fNV(VERT_ATTRIB_TEX, x);
}
static void GLAPIENTRY
save_TexCoord1fv(const GLfloat * v)
{
save_Attr1fNV(VERT_ATTRIB_TEX, v[0]);
}
static void GLAPIENTRY
save_TexCoord2f(GLfloat x, GLfloat y)
{
save_Attr2fNV(VERT_ATTRIB_TEX, x, y);
}
static void GLAPIENTRY
save_TexCoord2fv(const GLfloat * v)
{
save_Attr2fNV(VERT_ATTRIB_TEX, v[0], v[1]);
}
static void GLAPIENTRY
save_TexCoord3f(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_TEX, x, y, z);
}
static void GLAPIENTRY
save_TexCoord3fv(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_TEX, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_TexCoord4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
save_Attr4fNV(VERT_ATTRIB_TEX, x, y, z, w);
}
static void GLAPIENTRY
save_TexCoord4fv(const GLfloat * v)
{
save_Attr4fNV(VERT_ATTRIB_TEX, v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_Normal3f(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_NORMAL, x, y, z);
}
static void GLAPIENTRY
save_Normal3fv(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_NORMAL, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_FogCoordfEXT(GLfloat x)
{
save_Attr1fNV(VERT_ATTRIB_FOG, x);
}
static void GLAPIENTRY
save_FogCoordfvEXT(const GLfloat * v)
{
save_Attr1fNV(VERT_ATTRIB_FOG, v[0]);
}
static void GLAPIENTRY
save_Color3f(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_COLOR, x, y, z);
}
static void GLAPIENTRY
save_Color3fv(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_COLOR, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_Color4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
save_Attr4fNV(VERT_ATTRIB_COLOR, x, y, z, w);
}
static void GLAPIENTRY
save_Color4fv(const GLfloat * v)
{
save_Attr4fNV(VERT_ATTRIB_COLOR, v[0], v[1], v[2], v[3]);
}
/**
* Record a GL_INVALID_VALUE error when a invalid vertex attribute
* index is found.
*/
static void
index_error(void)
{
GET_CURRENT_CONTEXT(ctx);
_mesa_error(ctx, GL_INVALID_VALUE, "VertexAttribf(index)");
}
/* First level for NV_vertex_program:
*
* Check for errors at compile time?.
*/
static void GLAPIENTRY
save_VertexAttrib1fNV(GLuint index, GLfloat x)
{
if (index < MAX_NV_VERTEX_PROGRAM_INPUTS)
save_Attr1fNV(index, x);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib1fvNV(GLuint index, const GLfloat * v)
{
if (index < MAX_NV_VERTEX_PROGRAM_INPUTS)
save_Attr1fNV(index, v[0]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib2fNV(GLuint index, GLfloat x, GLfloat y)
{
if (index < MAX_NV_VERTEX_PROGRAM_INPUTS)
save_Attr2fNV(index, x, y);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib2fvNV(GLuint index, const GLfloat * v)
{
if (index < MAX_NV_VERTEX_PROGRAM_INPUTS)
save_Attr2fNV(index, v[0], v[1]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib3fNV(GLuint index, GLfloat x, GLfloat y, GLfloat z)
{
if (index < MAX_NV_VERTEX_PROGRAM_INPUTS)
save_Attr3fNV(index, x, y, z);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib3fvNV(GLuint index, const GLfloat * v)
{
if (index < MAX_NV_VERTEX_PROGRAM_INPUTS)
save_Attr3fNV(index, v[0], v[1], v[2]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib4fNV(GLuint index, GLfloat x, GLfloat y,
GLfloat z, GLfloat w)
{
if (index < MAX_NV_VERTEX_PROGRAM_INPUTS)
save_Attr4fNV(index, x, y, z, w);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib4fvNV(GLuint index, const GLfloat * v)
{
if (index < MAX_NV_VERTEX_PROGRAM_INPUTS)
save_Attr4fNV(index, v[0], v[1], v[2], v[3]);
else
index_error();
}
/** GL_EXT_texture_integer */
static void GLAPIENTRY
save_ClearColorIi(GLint red, GLint green, GLint blue, GLint alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEARCOLOR_I, 4);
if (n) {
n[1].i = red;
n[2].i = green;
n[3].i = blue;
n[4].i = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ClearColorIiEXT(ctx->Exec, (red, green, blue, alpha));
}
}
/** GL_EXT_texture_integer */
static void GLAPIENTRY
save_ClearColorIui(GLuint red, GLuint green, GLuint blue, GLuint alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEARCOLOR_UI, 4);
if (n) {
n[1].ui = red;
n[2].ui = green;
n[3].ui = blue;
n[4].ui = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ClearColorIuiEXT(ctx->Exec, (red, green, blue, alpha));
}
}
/** GL_EXT_texture_integer */
static void GLAPIENTRY
save_TexParameterIiv(GLenum target, GLenum pname, const GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEXPARAMETER_I, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].i = params[0];
n[4].i = params[1];
n[5].i = params[2];
n[6].i = params[3];
}
if (ctx->ExecuteFlag) {
CALL_TexParameterIivEXT(ctx->Exec, (target, pname, params));
}
}
/** GL_EXT_texture_integer */
static void GLAPIENTRY
save_TexParameterIuiv(GLenum target, GLenum pname, const GLuint *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEXPARAMETER_UI, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].ui = params[0];
n[4].ui = params[1];
n[5].ui = params[2];
n[6].ui = params[3];
}
if (ctx->ExecuteFlag) {
CALL_TexParameterIuivEXT(ctx->Exec, (target, pname, params));
}
}
/** GL_EXT_texture_integer */
static void GLAPIENTRY
exec_GetTexParameterIiv(GLenum target, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexParameterIivEXT(ctx->Exec, (target, pname, params));
}
/** GL_EXT_texture_integer */
static void GLAPIENTRY
exec_GetTexParameterIuiv(GLenum target, GLenum pname, GLuint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexParameterIuivEXT(ctx->Exec, (target, pname, params));
}
/**
* Save an error-generating command into display list.
*
* KW: Will appear in the list before the vertex buffer containing the
* command that provoked the error. I don't see this as a problem.
*/
static void
save_error(struct gl_context *ctx, GLenum error, const char *s)
{
Node *n;
n = alloc_instruction(ctx, OPCODE_ERROR, 2);
if (n) {
n[1].e = error;
n[2].data = (void *) s;
}
}
/**
* Compile an error into current display list.
*/
void
_mesa_compile_error(struct gl_context *ctx, GLenum error, const char *s)
{
if (ctx->CompileFlag)
save_error(ctx, error, s);
if (ctx->ExecuteFlag)
_mesa_error(ctx, error, "%s", s);
}
/**
* Test if ID names a display list.
*/
static GLboolean
islist(struct gl_context *ctx, GLuint list)
{
if (list > 0 && lookup_list(ctx, list)) {
return GL_TRUE;
}
else {
return GL_FALSE;
}
}
/**********************************************************************/
/* Display list execution */
/**********************************************************************/
/*
* Execute a display list. Note that the ListBase offset must have already
* been added before calling this function. I.e. the list argument is
* the absolute list number, not relative to ListBase.
* \param list - display list number
*/
static void
execute_list(struct gl_context *ctx, GLuint list)
{
struct gl_display_list *dlist;
Node *n;
GLboolean done;
if (list == 0 || !islist(ctx, list))
return;
if (ctx->ListState.CallDepth == MAX_LIST_NESTING) {
/* raise an error? */
return;
}
dlist = lookup_list(ctx, list);
if (!dlist)
return;
ctx->ListState.CallDepth++;
if (ctx->Driver.BeginCallList)
ctx->Driver.BeginCallList(ctx, dlist);
n = dlist->Head;
done = GL_FALSE;
while (!done) {
const OpCode opcode = n[0].opcode;
if (is_ext_opcode(opcode)) {
n += ext_opcode_execute(ctx, n);
}
else {
switch (opcode) {
case OPCODE_ERROR:
_mesa_error(ctx, n[1].e, "%s", (const char *) n[2].data);
break;
case OPCODE_ACCUM:
CALL_Accum(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_ALPHA_FUNC:
CALL_AlphaFunc(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_BIND_TEXTURE:
CALL_BindTexture(ctx->Exec, (n[1].e, n[2].ui));
break;
case OPCODE_BITMAP:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_Bitmap(ctx->Exec, ((GLsizei) n[1].i, (GLsizei) n[2].i,
n[3].f, n[4].f, n[5].f, n[6].f,
(const GLubyte *) n[7].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_BLEND_FUNC:
CALL_BlendFunc(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_CALL_LIST:
/* Generated by glCallList(), don't add ListBase */
if (ctx->ListState.CallDepth < MAX_LIST_NESTING) {
execute_list(ctx, n[1].ui);
}
break;
case OPCODE_CALL_LIST_OFFSET:
/* Generated by glCallLists() so we must add ListBase */
if (n[2].b) {
/* user specified a bad data type at compile time */
_mesa_error(ctx, GL_INVALID_ENUM, "glCallLists(type)");
}
else if (ctx->ListState.CallDepth < MAX_LIST_NESTING) {
GLuint list = (GLuint) (ctx->List.ListBase + n[1].i);
execute_list(ctx, list);
}
break;
case OPCODE_CLEAR:
CALL_Clear(ctx->Exec, (n[1].bf));
break;
case OPCODE_CLEAR_COLOR:
CALL_ClearColor(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_CLEAR_ACCUM:
CALL_ClearAccum(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_CLEAR_DEPTH:
CALL_ClearDepth(ctx->Exec, ((GLclampd) n[1].f));
break;
case OPCODE_CLEAR_INDEX:
CALL_ClearIndex(ctx->Exec, ((GLfloat) n[1].ui));
break;
case OPCODE_CLEAR_STENCIL:
CALL_ClearStencil(ctx->Exec, (n[1].i));
break;
case OPCODE_CLIP_PLANE:
{
GLdouble eq[4];
eq[0] = n[2].f;
eq[1] = n[3].f;
eq[2] = n[4].f;
eq[3] = n[5].f;
CALL_ClipPlane(ctx->Exec, (n[1].e, eq));
}
break;
case OPCODE_COLOR_MASK:
CALL_ColorMask(ctx->Exec, (n[1].b, n[2].b, n[3].b, n[4].b));
break;
case OPCODE_COLOR_MATERIAL:
CALL_ColorMaterial(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_COPY_PIXELS:
CALL_CopyPixels(ctx->Exec, (n[1].i, n[2].i,
(GLsizei) n[3].i, (GLsizei) n[4].i,
n[5].e));
break;
case OPCODE_COPY_TEX_IMAGE1D:
CALL_CopyTexImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].i,
n[5].i, n[6].i, n[7].i));
break;
case OPCODE_COPY_TEX_IMAGE2D:
CALL_CopyTexImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].i,
n[5].i, n[6].i, n[7].i, n[8].i));
break;
case OPCODE_COPY_TEX_SUB_IMAGE1D:
CALL_CopyTexSubImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].i, n[6].i));
break;
case OPCODE_COPY_TEX_SUB_IMAGE2D:
CALL_CopyTexSubImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].i, n[6].i, n[7].i,
n[8].i));
break;
case OPCODE_CULL_FACE:
CALL_CullFace(ctx->Exec, (n[1].e));
break;
case OPCODE_DEPTH_FUNC:
CALL_DepthFunc(ctx->Exec, (n[1].e));
break;
case OPCODE_DEPTH_MASK:
CALL_DepthMask(ctx->Exec, (n[1].b));
break;
case OPCODE_DEPTH_RANGE:
CALL_DepthRange(ctx->Exec,
((GLclampd) n[1].f, (GLclampd) n[2].f));
break;
case OPCODE_DISABLE:
CALL_Disable(ctx->Exec, (n[1].e));
break;
case OPCODE_DRAW_BUFFER:
CALL_DrawBuffer(ctx->Exec, (n[1].e));
break;
case OPCODE_DRAW_PIXELS:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_DrawPixels(ctx->Exec, (n[1].i, n[2].i, n[3].e, n[4].e,
n[5].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_ENABLE:
CALL_Enable(ctx->Exec, (n[1].e));
break;
case OPCODE_EVALMESH1:
CALL_EvalMesh1(ctx->Exec, (n[1].e, n[2].i, n[3].i));
break;
case OPCODE_EVALMESH2:
CALL_EvalMesh2(ctx->Exec,
(n[1].e, n[2].i, n[3].i, n[4].i, n[5].i));
break;
case OPCODE_FOG:
{
GLfloat p[4];
p[0] = n[2].f;
p[1] = n[3].f;
p[2] = n[4].f;
p[3] = n[5].f;
CALL_Fogfv(ctx->Exec, (n[1].e, p));
}
break;
case OPCODE_FRONT_FACE:
CALL_FrontFace(ctx->Exec, (n[1].e));
break;
case OPCODE_FRUSTUM:
CALL_Frustum(ctx->Exec,
(n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f));
break;
case OPCODE_HINT:
CALL_Hint(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_INDEX_MASK:
CALL_IndexMask(ctx->Exec, (n[1].ui));
break;
case OPCODE_INIT_NAMES:
CALL_InitNames(ctx->Exec, ());
break;
case OPCODE_LIGHT:
{
GLfloat p[4];
p[0] = n[3].f;
p[1] = n[4].f;
p[2] = n[5].f;
p[3] = n[6].f;
CALL_Lightfv(ctx->Exec, (n[1].e, n[2].e, p));
}
break;
case OPCODE_LIGHT_MODEL:
{
GLfloat p[4];
p[0] = n[2].f;
p[1] = n[3].f;
p[2] = n[4].f;
p[3] = n[5].f;
CALL_LightModelfv(ctx->Exec, (n[1].e, p));
}
break;
case OPCODE_LINE_STIPPLE:
CALL_LineStipple(ctx->Exec, (n[1].i, n[2].us));
break;
case OPCODE_LINE_WIDTH:
CALL_LineWidth(ctx->Exec, (n[1].f));
break;
case OPCODE_LIST_BASE:
CALL_ListBase(ctx->Exec, (n[1].ui));
break;
case OPCODE_LOAD_IDENTITY:
CALL_LoadIdentity(ctx->Exec, ());
break;
case OPCODE_LOAD_MATRIX:
if (sizeof(Node) == sizeof(GLfloat)) {
CALL_LoadMatrixf(ctx->Exec, (&n[1].f));
}
else {
GLfloat m[16];
GLuint i;
for (i = 0; i < 16; i++) {
m[i] = n[1 + i].f;
}
CALL_LoadMatrixf(ctx->Exec, (m));
}
break;
case OPCODE_LOAD_NAME:
CALL_LoadName(ctx->Exec, (n[1].ui));
break;
case OPCODE_LOGIC_OP:
CALL_LogicOp(ctx->Exec, (n[1].e));
break;
case OPCODE_MAP1:
{
GLenum target = n[1].e;
GLint ustride = _mesa_evaluator_components(target);
GLint uorder = n[5].i;
GLfloat u1 = n[2].f;
GLfloat u2 = n[3].f;
CALL_Map1f(ctx->Exec, (target, u1, u2, ustride, uorder,
(GLfloat *) n[6].data));
}
break;
case OPCODE_MAP2:
{
GLenum target = n[1].e;
GLfloat u1 = n[2].f;
GLfloat u2 = n[3].f;
GLfloat v1 = n[4].f;
GLfloat v2 = n[5].f;
GLint ustride = n[6].i;
GLint vstride = n[7].i;
GLint uorder = n[8].i;
GLint vorder = n[9].i;
CALL_Map2f(ctx->Exec, (target, u1, u2, ustride, uorder,
v1, v2, vstride, vorder,
(GLfloat *) n[10].data));
}
break;
case OPCODE_MAPGRID1:
CALL_MapGrid1f(ctx->Exec, (n[1].i, n[2].f, n[3].f));
break;
case OPCODE_MAPGRID2:
CALL_MapGrid2f(ctx->Exec,
(n[1].i, n[2].f, n[3].f, n[4].i, n[5].f, n[6].f));
break;
case OPCODE_MATRIX_MODE:
CALL_MatrixMode(ctx->Exec, (n[1].e));
break;
case OPCODE_MULT_MATRIX:
if (sizeof(Node) == sizeof(GLfloat)) {
CALL_MultMatrixf(ctx->Exec, (&n[1].f));
}
else {
GLfloat m[16];
GLuint i;
for (i = 0; i < 16; i++) {
m[i] = n[1 + i].f;
}
CALL_MultMatrixf(ctx->Exec, (m));
}
break;
case OPCODE_ORTHO:
CALL_Ortho(ctx->Exec,
(n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f));
break;
case OPCODE_PASSTHROUGH:
CALL_PassThrough(ctx->Exec, (n[1].f));
break;
case OPCODE_PIXEL_MAP:
CALL_PixelMapfv(ctx->Exec,
(n[1].e, n[2].i, (GLfloat *) n[3].data));
break;
case OPCODE_PIXEL_TRANSFER:
CALL_PixelTransferf(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_PIXEL_ZOOM:
CALL_PixelZoom(ctx->Exec, (n[1].f, n[2].f));
break;
case OPCODE_POINT_SIZE:
CALL_PointSize(ctx->Exec, (n[1].f));
break;
case OPCODE_POINT_PARAMETERS:
{
GLfloat params[3];
params[0] = n[2].f;
params[1] = n[3].f;
params[2] = n[4].f;
CALL_PointParameterfvEXT(ctx->Exec, (n[1].e, params));
}
break;
case OPCODE_POLYGON_MODE:
CALL_PolygonMode(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_POLYGON_STIPPLE:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_PolygonStipple(ctx->Exec, ((GLubyte *) n[1].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_POLYGON_OFFSET:
CALL_PolygonOffset(ctx->Exec, (n[1].f, n[2].f));
break;
case OPCODE_POP_ATTRIB:
CALL_PopAttrib(ctx->Exec, ());
break;
case OPCODE_POP_MATRIX:
CALL_PopMatrix(ctx->Exec, ());
break;
case OPCODE_POP_NAME:
CALL_PopName(ctx->Exec, ());
break;
case OPCODE_PRIORITIZE_TEXTURE:
CALL_PrioritizeTextures(ctx->Exec, (1, &n[1].ui, &n[2].f));
break;
case OPCODE_PUSH_ATTRIB:
CALL_PushAttrib(ctx->Exec, (n[1].bf));
break;
case OPCODE_PUSH_MATRIX:
CALL_PushMatrix(ctx->Exec, ());
break;
case OPCODE_PUSH_NAME:
CALL_PushName(ctx->Exec, (n[1].ui));
break;
case OPCODE_RASTER_POS:
CALL_RasterPos4f(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_READ_BUFFER:
CALL_ReadBuffer(ctx->Exec, (n[1].e));
break;
case OPCODE_ROTATE:
CALL_Rotatef(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_SCALE:
CALL_Scalef(ctx->Exec, (n[1].f, n[2].f, n[3].f));
break;
case OPCODE_SCISSOR:
CALL_Scissor(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i));
break;
case OPCODE_SHADE_MODEL:
CALL_ShadeModel(ctx->Exec, (n[1].e));
break;
case OPCODE_STENCIL_FUNC:
CALL_StencilFunc(ctx->Exec, (n[1].e, n[2].i, n[3].ui));
break;
case OPCODE_STENCIL_MASK:
CALL_StencilMask(ctx->Exec, (n[1].ui));
break;
case OPCODE_STENCIL_OP:
CALL_StencilOp(ctx->Exec, (n[1].e, n[2].e, n[3].e));
break;
case OPCODE_TEXENV:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
CALL_TexEnvfv(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_TEXGEN:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
CALL_TexGenfv(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_TEXPARAMETER:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
CALL_TexParameterfv(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_TEX_IMAGE1D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexImage1D(ctx->Exec, (n[1].e, /* target */
n[2].i, /* level */
n[3].i, /* components */
n[4].i, /* width */
n[5].e, /* border */
n[6].e, /* format */
n[7].e, /* type */
n[8].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_IMAGE2D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexImage2D(ctx->Exec, (n[1].e, /* target */
n[2].i, /* level */
n[3].i, /* components */
n[4].i, /* width */
n[5].i, /* height */
n[6].e, /* border */
n[7].e, /* format */
n[8].e, /* type */
n[9].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_SUB_IMAGE1D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexSubImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].e,
n[6].e, n[7].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_SUB_IMAGE2D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexSubImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].e,
n[6].i, n[7].e, n[8].e,
n[9].data));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TRANSLATE:
CALL_Translatef(ctx->Exec, (n[1].f, n[2].f, n[3].f));
break;
case OPCODE_VIEWPORT:
CALL_Viewport(ctx->Exec, (n[1].i, n[2].i,
(GLsizei) n[3].i, (GLsizei) n[4].i));
break;
case OPCODE_WINDOW_POS:
CALL_WindowPos4fMESA(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_SAMPLE_COVERAGE: /* GL_ARB_multisample */
CALL_SampleCoverageARB(ctx->Exec, (n[1].f, n[2].b));
break;
case OPCODE_WINDOW_POS_ARB: /* GL_ARB_window_pos */
CALL_WindowPos3fMESA(ctx->Exec, (n[1].f, n[2].f, n[3].f));
break;
case OPCODE_DEPTH_BOUNDS_EXT:
CALL_DepthBoundsEXT(ctx->Exec, (n[1].f, n[2].f));
break;
case OPCODE_ATTR_1F_NV:
CALL_VertexAttrib1fNV(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_ATTR_2F_NV:
/* Really shouldn't have to do this - the Node structure
* is convenient, but it would be better to store the data
* packed appropriately so that it can be sent directly
* on. With x86_64 becoming common, this will start to
* matter more.
*/
if (sizeof(Node) == sizeof(GLfloat))
CALL_VertexAttrib2fvNV(ctx->Exec, (n[1].e, &n[2].f));
else
CALL_VertexAttrib2fNV(ctx->Exec, (n[1].e, n[2].f, n[3].f));
break;
case OPCODE_ATTR_3F_NV:
if (sizeof(Node) == sizeof(GLfloat))
CALL_VertexAttrib3fvNV(ctx->Exec, (n[1].e, &n[2].f));
else
CALL_VertexAttrib3fNV(ctx->Exec, (n[1].e, n[2].f, n[3].f,
n[4].f));
break;
case OPCODE_ATTR_4F_NV:
if (sizeof(Node) == sizeof(GLfloat))
CALL_VertexAttrib4fvNV(ctx->Exec, (n[1].e, &n[2].f));
else
CALL_VertexAttrib4fNV(ctx->Exec, (n[1].e, n[2].f, n[3].f,
n[4].f, n[5].f));
break;
case OPCODE_MATERIAL:
{
GLfloat f[4];
f[0] = n[3].f;
f[1] = n[4].f;
f[2] = n[5].f;
f[3] = n[6].f;
CALL_Materialfv(ctx->Exec, (n[1].e, n[2].e, f));
}
break;
case OPCODE_BEGIN:
CALL_Begin(ctx->Exec, (n[1].e));
break;
case OPCODE_END:
CALL_End(ctx->Exec, ());
break;
case OPCODE_RECTF:
CALL_Rectf(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_EVAL_C1:
CALL_EvalCoord1f(ctx->Exec, (n[1].f));
break;
case OPCODE_EVAL_C2:
CALL_EvalCoord2f(ctx->Exec, (n[1].f, n[2].f));
break;
case OPCODE_EVAL_P1:
CALL_EvalPoint1(ctx->Exec, (n[1].i));
break;
case OPCODE_EVAL_P2:
CALL_EvalPoint2(ctx->Exec, (n[1].i, n[2].i));
break;
/* GL_EXT_texture_integer */
case OPCODE_CLEARCOLOR_I:
CALL_ClearColorIiEXT(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i));
break;
case OPCODE_CLEARCOLOR_UI:
CALL_ClearColorIuiEXT(ctx->Exec,
(n[1].ui, n[2].ui, n[3].ui, n[4].ui));
break;
case OPCODE_TEXPARAMETER_I:
{
GLint params[4];
params[0] = n[3].i;
params[1] = n[4].i;
params[2] = n[5].i;
params[3] = n[6].i;
CALL_TexParameterIivEXT(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_TEXPARAMETER_UI:
{
GLuint params[4];
params[0] = n[3].ui;
params[1] = n[4].ui;
params[2] = n[5].ui;
params[3] = n[6].ui;
CALL_TexParameterIuivEXT(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_CONTINUE:
n = (Node *) n[1].next;
break;
case OPCODE_END_OF_LIST:
done = GL_TRUE;
break;
default:
{
char msg[1000];
_mesa_snprintf(msg, sizeof(msg), "Error in execute_list: opcode=%d",
(int) opcode);
_mesa_problem(ctx, "%s", msg);
}
done = GL_TRUE;
}
/* increment n to point to next compiled command */
if (opcode != OPCODE_CONTINUE) {
n += InstSize[opcode];
}
}
}
if (ctx->Driver.EndCallList)
ctx->Driver.EndCallList(ctx);
ctx->ListState.CallDepth--;
}
/**********************************************************************/
/* GL functions */
/**********************************************************************/
/**
* Test if a display list number is valid.
*/
static GLboolean GLAPIENTRY
_mesa_IsList(GLuint list)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
return islist(ctx, list);
}
/**
* Delete a sequence of consecutive display lists.
*/
static void GLAPIENTRY
_mesa_DeleteLists(GLuint list, GLsizei range)
{
GET_CURRENT_CONTEXT(ctx);
GLuint i;
FLUSH_VERTICES(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (range < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glDeleteLists");
return;
}
for (i = list; i < list + range; i++) {
destroy_list(ctx, i);
}
}
/**
* Return a display list number, n, such that lists n through n+range-1
* are free.
*/
static GLuint GLAPIENTRY
_mesa_GenLists(GLsizei range)
{
GET_CURRENT_CONTEXT(ctx);
GLuint base;
FLUSH_VERTICES(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, 0);
if (range < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glGenLists");
return 0;
}
if (range == 0) {
return 0;
}
/*
* Make this an atomic operation
*/
_glthread_LOCK_MUTEX(ctx->Shared->Mutex);
base = _mesa_HashFindFreeKeyBlock(ctx->Shared->DisplayList, range);
if (base) {
/* reserve the list IDs by with empty/dummy lists */
GLint i;
for (i = 0; i < range; i++) {
_mesa_HashInsert(ctx->Shared->DisplayList, base + i,
make_list(base + i, 1));
}
}
_glthread_UNLOCK_MUTEX(ctx->Shared->Mutex);
return base;
}
/**
* Begin a new display list.
*/
static void GLAPIENTRY
_mesa_NewList(GLuint name, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_CURRENT(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glNewList %u %s\n", name,
_mesa_lookup_enum_by_nr(mode));
if (name == 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glNewList");
return;
}
if (mode != GL_COMPILE && mode != GL_COMPILE_AND_EXECUTE) {
_mesa_error(ctx, GL_INVALID_ENUM, "glNewList");
return;
}
if (ctx->ListState.CurrentList) {
/* already compiling a display list */
_mesa_error(ctx, GL_INVALID_OPERATION, "glNewList");
return;
}
ctx->CompileFlag = GL_TRUE;
ctx->ExecuteFlag = (mode == GL_COMPILE_AND_EXECUTE);
/* Reset acumulated list state:
*/
invalidate_saved_current_state( ctx );
/* Allocate new display list */
ctx->ListState.CurrentList = make_list(name, BLOCK_SIZE);
ctx->ListState.CurrentBlock = ctx->ListState.CurrentList->Head;
ctx->ListState.CurrentPos = 0;
ctx->Driver.NewList(ctx, name, mode);
ctx->CurrentDispatch = ctx->Save;
_glapi_set_dispatch(ctx->CurrentDispatch);
}
/**
* End definition of current display list.
*/
static void GLAPIENTRY
_mesa_EndList(void)
{
GET_CURRENT_CONTEXT(ctx);
SAVE_FLUSH_VERTICES(ctx);
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glEndList\n");
/* Check that a list is under construction */
if (!ctx->ListState.CurrentList) {
_mesa_error(ctx, GL_INVALID_OPERATION, "glEndList");
return;
}
/* Call before emitting END_OF_LIST, in case the driver wants to
* emit opcodes itself.
*/
ctx->Driver.EndList(ctx);
(void) alloc_instruction(ctx, OPCODE_END_OF_LIST, 0);
/* Destroy old list, if any */
destroy_list(ctx, ctx->ListState.CurrentList->Name);
/* Install the new list */
_mesa_HashInsert(ctx->Shared->DisplayList,
ctx->ListState.CurrentList->Name,
ctx->ListState.CurrentList);
if (MESA_VERBOSE & VERBOSE_DISPLAY_LIST)
mesa_print_display_list(ctx->ListState.CurrentList->Name);
ctx->ListState.CurrentList = NULL;
ctx->ExecuteFlag = GL_TRUE;
ctx->CompileFlag = GL_FALSE;
ctx->CurrentDispatch = ctx->Exec;
_glapi_set_dispatch(ctx->CurrentDispatch);
}
void GLAPIENTRY
_mesa_CallList(GLuint list)
{
GLboolean save_compile_flag;
GET_CURRENT_CONTEXT(ctx);
FLUSH_CURRENT(ctx, 0);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glCallList %d\n", list);
if (list == 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glCallList(list==0)");
return;
}
if (0)
mesa_print_display_list( list );
/* VERY IMPORTANT: Save the CompileFlag status, turn it off,
* execute the display list, and restore the CompileFlag.
*/
save_compile_flag = ctx->CompileFlag;
if (save_compile_flag) {
ctx->CompileFlag = GL_FALSE;
}
execute_list(ctx, list);
ctx->CompileFlag = save_compile_flag;
/* also restore API function pointers to point to "save" versions */
if (save_compile_flag) {
ctx->CurrentDispatch = ctx->Save;
_glapi_set_dispatch(ctx->CurrentDispatch);
}
}
/**
* Execute glCallLists: call multiple display lists.
*/
void GLAPIENTRY
_mesa_CallLists(GLsizei n, GLenum type, const GLvoid * lists)
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
GLboolean save_compile_flag;
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glCallLists %d\n", n);
switch (type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE:
case GL_SHORT:
case GL_UNSIGNED_SHORT:
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
case GL_2_BYTES:
case GL_3_BYTES:
case GL_4_BYTES:
/* OK */
break;
default:
_mesa_error(ctx, GL_INVALID_ENUM, "glCallLists(type)");
return;
}
/* Save the CompileFlag status, turn it off, execute display list,
* and restore the CompileFlag.
*/
save_compile_flag = ctx->CompileFlag;
ctx->CompileFlag = GL_FALSE;
for (i = 0; i < n; i++) {
GLuint list = (GLuint) (ctx->List.ListBase + translate_id(i, type, lists));
execute_list(ctx, list);
}
ctx->CompileFlag = save_compile_flag;
/* also restore API function pointers to point to "save" versions */
if (save_compile_flag) {
ctx->CurrentDispatch = ctx->Save;
_glapi_set_dispatch(ctx->CurrentDispatch);
}
}
/**
* Set the offset added to list numbers in glCallLists.
*/
static void GLAPIENTRY
_mesa_ListBase(GLuint base)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END(ctx);
ctx->List.ListBase = base;
}
/* Can no longer assume ctx->Exec->Func is equal to _mesa_Func.
*/
static void GLAPIENTRY
exec_Finish(void)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_Finish(ctx->Exec, ());
}
static void GLAPIENTRY
exec_Flush(void)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_Flush(ctx->Exec, ());
}
static void GLAPIENTRY
exec_GetBooleanv(GLenum pname, GLboolean *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetBooleanv(ctx->Exec, (pname, params));
}
static void GLAPIENTRY
exec_GetClipPlane(GLenum plane, GLdouble * equation)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetClipPlane(ctx->Exec, (plane, equation));
}
static void GLAPIENTRY
exec_GetDoublev(GLenum pname, GLdouble *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetDoublev(ctx->Exec, (pname, params));
}
static GLenum GLAPIENTRY
exec_GetError(void)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_GetError(ctx->Exec, ());
}
static void GLAPIENTRY
exec_GetFloatv(GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetFloatv(ctx->Exec, (pname, params));
}
static void GLAPIENTRY
exec_GetIntegerv(GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetIntegerv(ctx->Exec, (pname, params));
}
static void GLAPIENTRY
exec_GetLightfv(GLenum light, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetLightfv(ctx->Exec, (light, pname, params));
}
static void GLAPIENTRY
exec_GetLightiv(GLenum light, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetLightiv(ctx->Exec, (light, pname, params));
}
static void GLAPIENTRY
exec_GetMapdv(GLenum target, GLenum query, GLdouble * v)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMapdv(ctx->Exec, (target, query, v));
}
static void GLAPIENTRY
exec_GetMapfv(GLenum target, GLenum query, GLfloat * v)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMapfv(ctx->Exec, (target, query, v));
}
static void GLAPIENTRY
exec_GetMapiv(GLenum target, GLenum query, GLint * v)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMapiv(ctx->Exec, (target, query, v));
}
static void GLAPIENTRY
exec_GetMaterialfv(GLenum face, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMaterialfv(ctx->Exec, (face, pname, params));
}
static void GLAPIENTRY
exec_GetMaterialiv(GLenum face, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetMaterialiv(ctx->Exec, (face, pname, params));
}
static void GLAPIENTRY
exec_GetPixelMapfv(GLenum map, GLfloat *values)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetPixelMapfv(ctx->Exec, (map, values));
}
static void GLAPIENTRY
exec_GetPixelMapuiv(GLenum map, GLuint *values)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetPixelMapuiv(ctx->Exec, (map, values));
}
static void GLAPIENTRY
exec_GetPixelMapusv(GLenum map, GLushort *values)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetPixelMapusv(ctx->Exec, (map, values));
}
static void GLAPIENTRY
exec_GetPolygonStipple(GLubyte * dest)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetPolygonStipple(ctx->Exec, (dest));
}
static const GLubyte *GLAPIENTRY
exec_GetString(GLenum name)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_GetString(ctx->Exec, (name));
}
static void GLAPIENTRY
exec_GetTexEnvfv(GLenum target, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexEnvfv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetTexEnviv(GLenum target, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexEnviv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetTexGendv(GLenum coord, GLenum pname, GLdouble *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexGendv(ctx->Exec, (coord, pname, params));
}
static void GLAPIENTRY
exec_GetTexGenfv(GLenum coord, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexGenfv(ctx->Exec, (coord, pname, params));
}
static void GLAPIENTRY
exec_GetTexGeniv(GLenum coord, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexGeniv(ctx->Exec, (coord, pname, params));
}
static void GLAPIENTRY
exec_GetTexImage(GLenum target, GLint level, GLenum format,
GLenum type, GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexImage(ctx->Exec, (target, level, format, type, pixels));
}
static void GLAPIENTRY
exec_GetTexLevelParameterfv(GLenum target, GLint level,
GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexLevelParameterfv(ctx->Exec, (target, level, pname, params));
}
static void GLAPIENTRY
exec_GetTexLevelParameteriv(GLenum target, GLint level,
GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexLevelParameteriv(ctx->Exec, (target, level, pname, params));
}
static void GLAPIENTRY
exec_GetTexParameterfv(GLenum target, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexParameterfv(ctx->Exec, (target, pname, params));
}
static void GLAPIENTRY
exec_GetTexParameteriv(GLenum target, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetTexParameteriv(ctx->Exec, (target, pname, params));
}
static GLboolean GLAPIENTRY
exec_IsEnabled(GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_IsEnabled(ctx->Exec, (cap));
}
static void GLAPIENTRY
exec_PixelStoref(GLenum pname, GLfloat param)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_PixelStoref(ctx->Exec, (pname, param));
}
static void GLAPIENTRY
exec_PixelStorei(GLenum pname, GLint param)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_PixelStorei(ctx->Exec, (pname, param));
}
static void GLAPIENTRY
exec_ReadPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_ReadPixels(ctx->Exec, (x, y, width, height, format, type, pixels));
}
static GLint GLAPIENTRY
exec_RenderMode(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_RenderMode(ctx->Exec, (mode));
}
static void GLAPIENTRY
exec_FeedbackBuffer(GLsizei size, GLenum type, GLfloat * buffer)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_FeedbackBuffer(ctx->Exec, (size, type, buffer));
}
static void GLAPIENTRY
exec_SelectBuffer(GLsizei size, GLuint * buffer)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_SelectBuffer(ctx->Exec, (size, buffer));
}
static GLboolean GLAPIENTRY
exec_AreTexturesResident(GLsizei n, const GLuint * texName,
GLboolean * residences)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_AreTexturesResident(ctx->Exec, (n, texName, residences));
}
static void GLAPIENTRY
exec_ColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_ColorPointer(ctx->Exec, (size, type, stride, ptr));
}
static void GLAPIENTRY
exec_DeleteTextures(GLsizei n, const GLuint * texName)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_DeleteTextures(ctx->Exec, (n, texName));
}
static void GLAPIENTRY
exec_DisableClientState(GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_DisableClientState(ctx->Exec, (cap));
}
static void GLAPIENTRY
exec_EdgeFlagPointer(GLsizei stride, const GLvoid * vptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_EdgeFlagPointer(ctx->Exec, (stride, vptr));
}
static void GLAPIENTRY
exec_EnableClientState(GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_EnableClientState(ctx->Exec, (cap));
}
static void GLAPIENTRY
exec_GenTextures(GLsizei n, GLuint * texName)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GenTextures(ctx->Exec, (n, texName));
}
static void GLAPIENTRY
exec_GetPointerv(GLenum pname, GLvoid **params)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_GetPointerv(ctx->Exec, (pname, params));
}
static void GLAPIENTRY
exec_IndexPointer(GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_IndexPointer(ctx->Exec, (type, stride, ptr));
}
static void GLAPIENTRY
exec_InterleavedArrays(GLenum format, GLsizei stride, const GLvoid * pointer)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_InterleavedArrays(ctx->Exec, (format, stride, pointer));
}
static GLboolean GLAPIENTRY
exec_IsTexture(GLuint texture)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
return CALL_IsTexture(ctx->Exec, (texture));
}
static void GLAPIENTRY
exec_NormalPointer(GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_NormalPointer(ctx->Exec, (type, stride, ptr));
}
static void GLAPIENTRY
exec_PopClientAttrib(void)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_PopClientAttrib(ctx->Exec, ());
}
static void GLAPIENTRY
exec_PushClientAttrib(GLbitfield mask)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_PushClientAttrib(ctx->Exec, (mask));
}
static void GLAPIENTRY
exec_TexCoordPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_TexCoordPointer(ctx->Exec, (size, type, stride, ptr));
}
static void GLAPIENTRY
exec_VertexPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_VertexPointer(ctx->Exec, (size, type, stride, ptr));
}
static void GLAPIENTRY
exec_ColorPointerEXT(GLint size, GLenum type, GLsizei stride,
GLsizei count, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_ColorPointerEXT(ctx->Exec, (size, type, stride, count, ptr));
}
static void GLAPIENTRY
exec_EdgeFlagPointerEXT(GLsizei stride, GLsizei count, const GLboolean *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_EdgeFlagPointerEXT(ctx->Exec, (stride, count, ptr));
}
static void GLAPIENTRY
exec_IndexPointerEXT(GLenum type, GLsizei stride, GLsizei count,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_IndexPointerEXT(ctx->Exec, (type, stride, count, ptr));
}
static void GLAPIENTRY
exec_NormalPointerEXT(GLenum type, GLsizei stride, GLsizei count,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_NormalPointerEXT(ctx->Exec, (type, stride, count, ptr));
}
static void GLAPIENTRY
exec_TexCoordPointerEXT(GLint size, GLenum type, GLsizei stride,
GLsizei count, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_TexCoordPointerEXT(ctx->Exec, (size, type, stride, count, ptr));
}
static void GLAPIENTRY
exec_VertexPointerEXT(GLint size, GLenum type, GLsizei stride,
GLsizei count, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_VertexPointerEXT(ctx->Exec, (size, type, stride, count, ptr));
}
static void GLAPIENTRY
exec_LockArraysEXT(GLint first, GLsizei count)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_LockArraysEXT(ctx->Exec, (first, count));
}
static void GLAPIENTRY
exec_UnlockArraysEXT(void)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_UnlockArraysEXT(ctx->Exec, ());
}
static void GLAPIENTRY
exec_FogCoordPointerEXT(GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_FogCoordPointerEXT(ctx->Exec, (type, stride, ptr));
}
/* GL_IBM_multimode_draw_arrays */
static void GLAPIENTRY
exec_MultiModeDrawArraysIBM(const GLenum * mode, const GLint * first,
const GLsizei * count, GLsizei primcount,
GLint modestride)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_MultiModeDrawArraysIBM(ctx->Exec,
(mode, first, count, primcount, modestride));
}
/* GL_IBM_multimode_draw_arrays */
static void GLAPIENTRY
exec_MultiModeDrawElementsIBM(const GLenum * mode,
const GLsizei * count,
GLenum type,
const GLvoid * const *indices,
GLsizei primcount, GLint modestride)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
CALL_MultiModeDrawElementsIBM(ctx->Exec,
(mode, count, type, indices, primcount,
modestride));
}
/**
* Setup the given dispatch table to point to Mesa's display list
* building functions.
*
* This does not include any of the tnl functions - they are
* initialized from _mesa_init_api_defaults and from the active vtxfmt
* struct.
*/
struct _glapi_table *
_mesa_create_save_table(void)
{
struct _glapi_table *table;
table = _mesa_alloc_dispatch_table(_gloffset_COUNT);
if (table == NULL)
return NULL;
_mesa_loopback_init_api_table(table);
/* GL 1.0 */
SET_Accum(table, save_Accum);
SET_AlphaFunc(table, save_AlphaFunc);
SET_Bitmap(table, save_Bitmap);
SET_BlendFunc(table, save_BlendFunc);
SET_CallList(table, save_CallList);
SET_CallLists(table, save_CallLists);
SET_Clear(table, save_Clear);
SET_ClearAccum(table, save_ClearAccum);
SET_ClearColor(table, save_ClearColor);
SET_ClearDepth(table, save_ClearDepth);
SET_ClearIndex(table, save_ClearIndex);
SET_ClearStencil(table, save_ClearStencil);
SET_ClipPlane(table, save_ClipPlane);
SET_ColorMask(table, save_ColorMask);
SET_ColorMaterial(table, save_ColorMaterial);
SET_CopyPixels(table, save_CopyPixels);
SET_CullFace(table, save_CullFace);
SET_DeleteLists(table, _mesa_DeleteLists);
SET_DepthFunc(table, save_DepthFunc);
SET_DepthMask(table, save_DepthMask);
SET_DepthRange(table, save_DepthRange);
SET_Disable(table, save_Disable);
SET_DrawBuffer(table, save_DrawBuffer);
SET_DrawPixels(table, save_DrawPixels);
SET_Enable(table, save_Enable);
SET_EndList(table, _mesa_EndList);
SET_EvalMesh1(table, save_EvalMesh1);
SET_EvalMesh2(table, save_EvalMesh2);
SET_Finish(table, exec_Finish);
SET_Flush(table, exec_Flush);
SET_Fogf(table, save_Fogf);
SET_Fogfv(table, save_Fogfv);
SET_Fogi(table, save_Fogi);
SET_Fogiv(table, save_Fogiv);
SET_FrontFace(table, save_FrontFace);
SET_Frustum(table, save_Frustum);
SET_GenLists(table, _mesa_GenLists);
SET_GetBooleanv(table, exec_GetBooleanv);
SET_GetClipPlane(table, exec_GetClipPlane);
SET_GetDoublev(table, exec_GetDoublev);
SET_GetError(table, exec_GetError);
SET_GetFloatv(table, exec_GetFloatv);
SET_GetIntegerv(table, exec_GetIntegerv);
SET_GetLightfv(table, exec_GetLightfv);
SET_GetLightiv(table, exec_GetLightiv);
SET_GetMapdv(table, exec_GetMapdv);
SET_GetMapfv(table, exec_GetMapfv);
SET_GetMapiv(table, exec_GetMapiv);
SET_GetMaterialfv(table, exec_GetMaterialfv);
SET_GetMaterialiv(table, exec_GetMaterialiv);
SET_GetPixelMapfv(table, exec_GetPixelMapfv);
SET_GetPixelMapuiv(table, exec_GetPixelMapuiv);
SET_GetPixelMapusv(table, exec_GetPixelMapusv);
SET_GetPolygonStipple(table, exec_GetPolygonStipple);
SET_GetString(table, exec_GetString);
SET_GetTexEnvfv(table, exec_GetTexEnvfv);
SET_GetTexEnviv(table, exec_GetTexEnviv);
SET_GetTexGendv(table, exec_GetTexGendv);
SET_GetTexGenfv(table, exec_GetTexGenfv);
SET_GetTexGeniv(table, exec_GetTexGeniv);
SET_GetTexImage(table, exec_GetTexImage);
SET_GetTexLevelParameterfv(table, exec_GetTexLevelParameterfv);
SET_GetTexLevelParameteriv(table, exec_GetTexLevelParameteriv);
SET_GetTexParameterfv(table, exec_GetTexParameterfv);
SET_GetTexParameteriv(table, exec_GetTexParameteriv);
SET_Hint(table, save_Hint);
SET_IndexMask(table, save_IndexMask);
SET_InitNames(table, save_InitNames);
SET_IsEnabled(table, exec_IsEnabled);
SET_IsList(table, _mesa_IsList);
SET_LightModelf(table, save_LightModelf);
SET_LightModelfv(table, save_LightModelfv);
SET_LightModeli(table, save_LightModeli);
SET_LightModeliv(table, save_LightModeliv);
SET_Lightf(table, save_Lightf);
SET_Lightfv(table, save_Lightfv);
SET_Lighti(table, save_Lighti);
SET_Lightiv(table, save_Lightiv);
SET_LineStipple(table, save_LineStipple);
SET_LineWidth(table, save_LineWidth);
SET_ListBase(table, save_ListBase);
SET_LoadIdentity(table, save_LoadIdentity);
SET_LoadMatrixd(table, save_LoadMatrixd);
SET_LoadMatrixf(table, save_LoadMatrixf);
SET_LoadName(table, save_LoadName);
SET_LogicOp(table, save_LogicOp);
SET_Map1d(table, save_Map1d);
SET_Map1f(table, save_Map1f);
SET_Map2d(table, save_Map2d);
SET_Map2f(table, save_Map2f);
SET_MapGrid1d(table, save_MapGrid1d);
SET_MapGrid1f(table, save_MapGrid1f);
SET_MapGrid2d(table, save_MapGrid2d);
SET_MapGrid2f(table, save_MapGrid2f);
SET_MatrixMode(table, save_MatrixMode);
SET_MultMatrixd(table, save_MultMatrixd);
SET_MultMatrixf(table, save_MultMatrixf);
SET_NewList(table, save_NewList);
SET_Ortho(table, save_Ortho);
SET_PassThrough(table, save_PassThrough);
SET_PixelMapfv(table, save_PixelMapfv);
SET_PixelMapuiv(table, save_PixelMapuiv);
SET_PixelMapusv(table, save_PixelMapusv);
SET_PixelStoref(table, exec_PixelStoref);
SET_PixelStorei(table, exec_PixelStorei);
SET_PixelTransferf(table, save_PixelTransferf);
SET_PixelTransferi(table, save_PixelTransferi);
SET_PixelZoom(table, save_PixelZoom);
SET_PointSize(table, save_PointSize);
SET_PolygonMode(table, save_PolygonMode);
SET_PolygonOffset(table, save_PolygonOffset);
SET_PolygonStipple(table, save_PolygonStipple);
SET_PopAttrib(table, save_PopAttrib);
SET_PopMatrix(table, save_PopMatrix);
SET_PopName(table, save_PopName);
SET_PushAttrib(table, save_PushAttrib);
SET_PushMatrix(table, save_PushMatrix);
SET_PushName(table, save_PushName);
SET_RasterPos2d(table, save_RasterPos2d);
SET_RasterPos2dv(table, save_RasterPos2dv);
SET_RasterPos2f(table, save_RasterPos2f);
SET_RasterPos2fv(table, save_RasterPos2fv);
SET_RasterPos2i(table, save_RasterPos2i);
SET_RasterPos2iv(table, save_RasterPos2iv);
SET_RasterPos2s(table, save_RasterPos2s);
SET_RasterPos2sv(table, save_RasterPos2sv);
SET_RasterPos3d(table, save_RasterPos3d);
SET_RasterPos3dv(table, save_RasterPos3dv);
SET_RasterPos3f(table, save_RasterPos3f);
SET_RasterPos3fv(table, save_RasterPos3fv);
SET_RasterPos3i(table, save_RasterPos3i);
SET_RasterPos3iv(table, save_RasterPos3iv);
SET_RasterPos3s(table, save_RasterPos3s);
SET_RasterPos3sv(table, save_RasterPos3sv);
SET_RasterPos4d(table, save_RasterPos4d);
SET_RasterPos4dv(table, save_RasterPos4dv);
SET_RasterPos4f(table, save_RasterPos4f);
SET_RasterPos4fv(table, save_RasterPos4fv);
SET_RasterPos4i(table, save_RasterPos4i);
SET_RasterPos4iv(table, save_RasterPos4iv);
SET_RasterPos4s(table, save_RasterPos4s);
SET_RasterPos4sv(table, save_RasterPos4sv);
SET_ReadBuffer(table, save_ReadBuffer);
SET_ReadPixels(table, exec_ReadPixels);
SET_RenderMode(table, exec_RenderMode);
SET_Rotated(table, save_Rotated);
SET_Rotatef(table, save_Rotatef);
SET_Scaled(table, save_Scaled);
SET_Scalef(table, save_Scalef);
SET_Scissor(table, save_Scissor);
SET_FeedbackBuffer(table, exec_FeedbackBuffer);
SET_SelectBuffer(table, exec_SelectBuffer);
SET_ShadeModel(table, save_ShadeModel);
SET_StencilFunc(table, save_StencilFunc);
SET_StencilMask(table, save_StencilMask);
SET_StencilOp(table, save_StencilOp);
SET_TexEnvf(table, save_TexEnvf);
SET_TexEnvfv(table, save_TexEnvfv);
SET_TexEnvi(table, save_TexEnvi);
SET_TexEnviv(table, save_TexEnviv);
SET_TexGend(table, save_TexGend);
SET_TexGendv(table, save_TexGendv);
SET_TexGenf(table, save_TexGenf);
SET_TexGenfv(table, save_TexGenfv);
SET_TexGeni(table, save_TexGeni);
SET_TexGeniv(table, save_TexGeniv);
SET_TexImage1D(table, save_TexImage1D);
SET_TexImage2D(table, save_TexImage2D);
SET_TexParameterf(table, save_TexParameterf);
SET_TexParameterfv(table, save_TexParameterfv);
SET_TexParameteri(table, save_TexParameteri);
SET_TexParameteriv(table, save_TexParameteriv);
SET_Translated(table, save_Translated);
SET_Translatef(table, save_Translatef);
SET_Viewport(table, save_Viewport);
/* GL 1.1 */
SET_AreTexturesResident(table, exec_AreTexturesResident);
SET_BindTexture(table, save_BindTexture);
SET_ColorPointer(table, exec_ColorPointer);
SET_CopyTexImage1D(table, save_CopyTexImage1D);
SET_CopyTexImage2D(table, save_CopyTexImage2D);
SET_CopyTexSubImage1D(table, save_CopyTexSubImage1D);
SET_CopyTexSubImage2D(table, save_CopyTexSubImage2D);
SET_DeleteTextures(table, exec_DeleteTextures);
SET_DisableClientState(table, exec_DisableClientState);
SET_EdgeFlagPointer(table, exec_EdgeFlagPointer);
SET_EnableClientState(table, exec_EnableClientState);
SET_GenTextures(table, exec_GenTextures);
SET_GetPointerv(table, exec_GetPointerv);
SET_IndexPointer(table, exec_IndexPointer);
SET_InterleavedArrays(table, exec_InterleavedArrays);
SET_IsTexture(table, exec_IsTexture);
SET_NormalPointer(table, exec_NormalPointer);
SET_PopClientAttrib(table, exec_PopClientAttrib);
SET_PrioritizeTextures(table, save_PrioritizeTextures);
SET_PushClientAttrib(table, exec_PushClientAttrib);
SET_TexCoordPointer(table, exec_TexCoordPointer);
SET_TexSubImage1D(table, save_TexSubImage1D);
SET_TexSubImage2D(table, save_TexSubImage2D);
SET_VertexPointer(table, exec_VertexPointer);
/* 3. GL_EXT_polygon_offset */
SET_PolygonOffsetEXT(table, save_PolygonOffsetEXT);
/* 30. GL_EXT_vertex_array */
SET_ColorPointerEXT(table, exec_ColorPointerEXT);
SET_EdgeFlagPointerEXT(table, exec_EdgeFlagPointerEXT);
SET_IndexPointerEXT(table, exec_IndexPointerEXT);
SET_NormalPointerEXT(table, exec_NormalPointerEXT);
SET_TexCoordPointerEXT(table, exec_TexCoordPointerEXT);
SET_VertexPointerEXT(table, exec_VertexPointerEXT);
/* 54. GL_EXT_point_parameters */
SET_PointParameterfEXT(table, save_PointParameterfEXT);
SET_PointParameterfvEXT(table, save_PointParameterfvEXT);
/* 97. GL_EXT_compiled_vertex_array */
SET_LockArraysEXT(table, exec_LockArraysEXT);
SET_UnlockArraysEXT(table, exec_UnlockArraysEXT);
/* 149. GL_EXT_fog_coord */
SET_FogCoordPointerEXT(table, exec_FogCoordPointerEXT);
/* 197. GL_MESA_window_pos */
SET_WindowPos2dMESA(table, save_WindowPos2dMESA);
SET_WindowPos2dvMESA(table, save_WindowPos2dvMESA);
SET_WindowPos2fMESA(table, save_WindowPos2fMESA);
SET_WindowPos2fvMESA(table, save_WindowPos2fvMESA);
SET_WindowPos2iMESA(table, save_WindowPos2iMESA);
SET_WindowPos2ivMESA(table, save_WindowPos2ivMESA);
SET_WindowPos2sMESA(table, save_WindowPos2sMESA);
SET_WindowPos2svMESA(table, save_WindowPos2svMESA);
SET_WindowPos3dMESA(table, save_WindowPos3dMESA);
SET_WindowPos3dvMESA(table, save_WindowPos3dvMESA);
SET_WindowPos3fMESA(table, save_WindowPos3fMESA);
SET_WindowPos3fvMESA(table, save_WindowPos3fvMESA);
SET_WindowPos3iMESA(table, save_WindowPos3iMESA);
SET_WindowPos3ivMESA(table, save_WindowPos3ivMESA);
SET_WindowPos3sMESA(table, save_WindowPos3sMESA);
SET_WindowPos3svMESA(table, save_WindowPos3svMESA);
SET_WindowPos4dMESA(table, save_WindowPos4dMESA);
SET_WindowPos4dvMESA(table, save_WindowPos4dvMESA);
SET_WindowPos4fMESA(table, save_WindowPos4fMESA);
SET_WindowPos4fvMESA(table, save_WindowPos4fvMESA);
SET_WindowPos4iMESA(table, save_WindowPos4iMESA);
SET_WindowPos4ivMESA(table, save_WindowPos4ivMESA);
SET_WindowPos4sMESA(table, save_WindowPos4sMESA);
SET_WindowPos4svMESA(table, save_WindowPos4svMESA);
/* 200. GL_IBM_multimode_draw_arrays */
SET_MultiModeDrawArraysIBM(table, exec_MultiModeDrawArraysIBM);
SET_MultiModeDrawElementsIBM(table, exec_MultiModeDrawElementsIBM);
/* 262. GL_NV_point_sprite */
SET_PointParameteriNV(table, save_PointParameteriNV);
SET_PointParameterivNV(table, save_PointParameterivNV);
/* ???. GL_EXT_depth_bounds_test */
SET_DepthBoundsEXT(table, save_DepthBoundsEXT);
/* ARB 3. GL_ARB_transpose_matrix */
SET_LoadTransposeMatrixdARB(table, save_LoadTransposeMatrixdARB);
SET_LoadTransposeMatrixfARB(table, save_LoadTransposeMatrixfARB);
SET_MultTransposeMatrixdARB(table, save_MultTransposeMatrixdARB);
SET_MultTransposeMatrixfARB(table, save_MultTransposeMatrixfARB);
/* ARB 5. GL_ARB_multisample */
SET_SampleCoverageARB(table, save_SampleCoverageARB);
/* ARB 28. GL_ARB_vertex_buffer_object */
/* None of the extension's functions get compiled */
SET_BindBufferARB(table, _mesa_BindBufferARB);
SET_BufferDataARB(table, _mesa_BufferDataARB);
SET_BufferSubDataARB(table, _mesa_BufferSubDataARB);
SET_DeleteBuffersARB(table, _mesa_DeleteBuffersARB);
SET_GenBuffersARB(table, _mesa_GenBuffersARB);
SET_GetBufferParameterivARB(table, _mesa_GetBufferParameterivARB);
SET_GetBufferPointervARB(table, _mesa_GetBufferPointervARB);
SET_GetBufferSubDataARB(table, _mesa_GetBufferSubDataARB);
SET_IsBufferARB(table, _mesa_IsBufferARB);
SET_MapBufferARB(table, _mesa_MapBufferARB);
SET_UnmapBufferARB(table, _mesa_UnmapBufferARB);
/* ARB 50. GL_ARB_map_buffer_range */
#if FEATURE_ARB_map_buffer_range
SET_MapBufferRange(table, _mesa_MapBufferRange); /* no dlist save */
SET_FlushMappedBufferRange(table, _mesa_FlushMappedBufferRange); /* no dl */
#endif
/* GL_EXT_texture_integer */
SET_ClearColorIiEXT(table, save_ClearColorIi);
SET_ClearColorIuiEXT(table, save_ClearColorIui);
SET_TexParameterIivEXT(table, save_TexParameterIiv);
SET_TexParameterIuivEXT(table, save_TexParameterIuiv);
SET_GetTexParameterIivEXT(table, exec_GetTexParameterIiv);
SET_GetTexParameterIuivEXT(table, exec_GetTexParameterIuiv);
/* GL_ARB_texture_storage (no dlist support) */
SET_TexStorage1D(table, _mesa_TexStorage1D);
SET_TexStorage2D(table, _mesa_TexStorage2D);
SET_TexStorage3D(table, _mesa_TexStorage3D);
SET_TextureStorage1DEXT(table, _mesa_TextureStorage1DEXT);
SET_TextureStorage2DEXT(table, _mesa_TextureStorage2DEXT);
SET_TextureStorage3DEXT(table, _mesa_TextureStorage3DEXT);
return table;
}
static const char *
enum_string(GLenum k)
{
return _mesa_lookup_enum_by_nr(k);
}
/**
* Print the commands in a display list. For debugging only.
* TODO: many commands aren't handled yet.
*/
static void GLAPIENTRY
print_list(struct gl_context *ctx, GLuint list)
{
struct gl_display_list *dlist;
Node *n;
GLboolean done;
if (!islist(ctx, list)) {
printf("%u is not a display list ID\n", list);
return;
}
dlist = lookup_list(ctx, list);
if (!dlist)
return;
n = dlist->Head;
printf("START-LIST %u, address %p\n", list, (void *) n);
done = n ? GL_FALSE : GL_TRUE;
while (!done) {
const OpCode opcode = n[0].opcode;
if (is_ext_opcode(opcode)) {
n += ext_opcode_print(ctx, n);
}
else {
switch (opcode) {
case OPCODE_ACCUM:
printf("Accum %s %g\n", enum_string(n[1].e), n[2].f);
break;
case OPCODE_BITMAP:
printf("Bitmap %d %d %g %g %g %g %p\n", n[1].i, n[2].i,
n[3].f, n[4].f, n[5].f, n[6].f, (void *) n[7].data);
break;
case OPCODE_CALL_LIST:
printf("CallList %d\n", (int) n[1].ui);
break;
case OPCODE_CALL_LIST_OFFSET:
printf("CallList %d + offset %u = %u\n", (int) n[1].ui,
ctx->List.ListBase, ctx->List.ListBase + n[1].ui);
break;
case OPCODE_DISABLE:
printf("Disable %s\n", enum_string(n[1].e));
break;
case OPCODE_ENABLE:
printf("Enable %s\n", enum_string(n[1].e));
break;
case OPCODE_FRUSTUM:
printf("Frustum %g %g %g %g %g %g\n",
n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f);
break;
case OPCODE_LINE_STIPPLE:
printf("LineStipple %d %x\n", n[1].i, (int) n[2].us);
break;
case OPCODE_LOAD_IDENTITY:
printf("LoadIdentity\n");
break;
case OPCODE_LOAD_MATRIX:
printf("LoadMatrix\n");
printf(" %8f %8f %8f %8f\n",
n[1].f, n[5].f, n[9].f, n[13].f);
printf(" %8f %8f %8f %8f\n",
n[2].f, n[6].f, n[10].f, n[14].f);
printf(" %8f %8f %8f %8f\n",
n[3].f, n[7].f, n[11].f, n[15].f);
printf(" %8f %8f %8f %8f\n",
n[4].f, n[8].f, n[12].f, n[16].f);
break;
case OPCODE_MULT_MATRIX:
printf("MultMatrix (or Rotate)\n");
printf(" %8f %8f %8f %8f\n",
n[1].f, n[5].f, n[9].f, n[13].f);
printf(" %8f %8f %8f %8f\n",
n[2].f, n[6].f, n[10].f, n[14].f);
printf(" %8f %8f %8f %8f\n",
n[3].f, n[7].f, n[11].f, n[15].f);
printf(" %8f %8f %8f %8f\n",
n[4].f, n[8].f, n[12].f, n[16].f);
break;
case OPCODE_ORTHO:
printf("Ortho %g %g %g %g %g %g\n",
n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f);
break;
case OPCODE_POP_ATTRIB:
printf("PopAttrib\n");
break;
case OPCODE_POP_MATRIX:
printf("PopMatrix\n");
break;
case OPCODE_POP_NAME:
printf("PopName\n");
break;
case OPCODE_PUSH_ATTRIB:
printf("PushAttrib %x\n", n[1].bf);
break;
case OPCODE_PUSH_MATRIX:
printf("PushMatrix\n");
break;
case OPCODE_PUSH_NAME:
printf("PushName %d\n", (int) n[1].ui);
break;
case OPCODE_RASTER_POS:
printf("RasterPos %g %g %g %g\n",
n[1].f, n[2].f, n[3].f, n[4].f);
break;
case OPCODE_ROTATE:
printf("Rotate %g %g %g %g\n",
n[1].f, n[2].f, n[3].f, n[4].f);
break;
case OPCODE_SCALE:
printf("Scale %g %g %g\n", n[1].f, n[2].f, n[3].f);
break;
case OPCODE_TRANSLATE:
printf("Translate %g %g %g\n", n[1].f, n[2].f, n[3].f);
break;
case OPCODE_BIND_TEXTURE:
printf("BindTexture %s %d\n",
_mesa_lookup_enum_by_nr(n[1].ui), n[2].ui);
break;
case OPCODE_SHADE_MODEL:
printf("ShadeModel %s\n", _mesa_lookup_enum_by_nr(n[1].ui));
break;
case OPCODE_MAP1:
printf("Map1 %s %.3f %.3f %d %d\n",
_mesa_lookup_enum_by_nr(n[1].ui),
n[2].f, n[3].f, n[4].i, n[5].i);
break;
case OPCODE_MAP2:
printf("Map2 %s %.3f %.3f %.3f %.3f %d %d %d %d\n",
_mesa_lookup_enum_by_nr(n[1].ui),
n[2].f, n[3].f, n[4].f, n[5].f,
n[6].i, n[7].i, n[8].i, n[9].i);
break;
case OPCODE_MAPGRID1:
printf("MapGrid1 %d %.3f %.3f\n", n[1].i, n[2].f, n[3].f);
break;
case OPCODE_MAPGRID2:
printf("MapGrid2 %d %.3f %.3f, %d %.3f %.3f\n",
n[1].i, n[2].f, n[3].f, n[4].i, n[5].f, n[6].f);
break;
case OPCODE_EVALMESH1:
printf("EvalMesh1 %d %d\n", n[1].i, n[2].i);
break;
case OPCODE_EVALMESH2:
printf("EvalMesh2 %d %d %d %d\n",
n[1].i, n[2].i, n[3].i, n[4].i);
break;
case OPCODE_ATTR_1F_NV:
printf("ATTR_1F_NV attr %d: %f\n", n[1].i, n[2].f);
break;
case OPCODE_ATTR_2F_NV:
printf("ATTR_2F_NV attr %d: %f %f\n",
n[1].i, n[2].f, n[3].f);
break;
case OPCODE_ATTR_3F_NV:
printf("ATTR_3F_NV attr %d: %f %f %f\n",
n[1].i, n[2].f, n[3].f, n[4].f);
break;
case OPCODE_ATTR_4F_NV:
printf("ATTR_4F_NV attr %d: %f %f %f %f\n",
n[1].i, n[2].f, n[3].f, n[4].f, n[5].f);
break;
case OPCODE_MATERIAL:
printf("MATERIAL %x %x: %f %f %f %f\n",
n[1].i, n[2].i, n[3].f, n[4].f, n[5].f, n[6].f);
break;
case OPCODE_BEGIN:
printf("BEGIN %x\n", n[1].i);
break;
case OPCODE_END:
printf("END\n");
break;
case OPCODE_RECTF:
printf("RECTF %f %f %f %f\n", n[1].f, n[2].f, n[3].f,
n[4].f);
break;
case OPCODE_EVAL_C1:
printf("EVAL_C1 %f\n", n[1].f);
break;
case OPCODE_EVAL_C2:
printf("EVAL_C2 %f %f\n", n[1].f, n[2].f);
break;
case OPCODE_EVAL_P1:
printf("EVAL_P1 %d\n", n[1].i);
break;
case OPCODE_EVAL_P2:
printf("EVAL_P2 %d %d\n", n[1].i, n[2].i);
break;
/*
* meta opcodes/commands
*/
case OPCODE_ERROR:
printf("Error: %s %s\n",
enum_string(n[1].e), (const char *) n[2].data);
break;
case OPCODE_CONTINUE:
printf("DISPLAY-LIST-CONTINUE\n");
n = (Node *) n[1].next;
break;
case OPCODE_END_OF_LIST:
printf("END-LIST %u\n", list);
done = GL_TRUE;
break;
default:
if (opcode < 0 || opcode > OPCODE_END_OF_LIST) {
printf
("ERROR IN DISPLAY LIST: opcode = %d, address = %p\n",
opcode, (void *) n);
return;
}
else {
printf("command %d, %u operands\n", opcode,
InstSize[opcode]);
}
}
/* increment n to point to next compiled command */
if (opcode != OPCODE_CONTINUE) {
n += InstSize[opcode];
}
}
}
}
/**
* Clients may call this function to help debug display list problems.
* This function is _ONLY_FOR_DEBUGGING_PURPOSES_. It may be removed,
* changed, or break in the future without notice.
*/
void
mesa_print_display_list(GLuint list)
{
GET_CURRENT_CONTEXT(ctx);
print_list(ctx, list);
}
/**********************************************************************/
/***** Initialization *****/
/**********************************************************************/
void
_mesa_save_vtxfmt_init(GLvertexformat * vfmt)
{
_MESA_INIT_ARRAYELT_VTXFMT(vfmt, _ae_);
vfmt->Begin = save_Begin;
_MESA_INIT_DLIST_VTXFMT(vfmt, save_);
vfmt->Color3f = save_Color3f;
vfmt->Color3fv = save_Color3fv;
vfmt->Color4f = save_Color4f;
vfmt->Color4fv = save_Color4fv;
vfmt->EdgeFlag = save_EdgeFlag;
vfmt->End = save_End;
_MESA_INIT_EVAL_VTXFMT(vfmt, save_);
vfmt->FogCoordfEXT = save_FogCoordfEXT;
vfmt->FogCoordfvEXT = save_FogCoordfvEXT;
vfmt->Indexf = save_Indexf;
vfmt->Indexfv = save_Indexfv;
vfmt->Materialfv = save_Materialfv;
vfmt->Normal3f = save_Normal3f;
vfmt->Normal3fv = save_Normal3fv;
vfmt->TexCoord1f = save_TexCoord1f;
vfmt->TexCoord1fv = save_TexCoord1fv;
vfmt->TexCoord2f = save_TexCoord2f;
vfmt->TexCoord2fv = save_TexCoord2fv;
vfmt->TexCoord3f = save_TexCoord3f;
vfmt->TexCoord3fv = save_TexCoord3fv;
vfmt->TexCoord4f = save_TexCoord4f;
vfmt->TexCoord4fv = save_TexCoord4fv;
vfmt->Vertex2f = save_Vertex2f;
vfmt->Vertex2fv = save_Vertex2fv;
vfmt->Vertex3f = save_Vertex3f;
vfmt->Vertex3fv = save_Vertex3fv;
vfmt->Vertex4f = save_Vertex4f;
vfmt->Vertex4fv = save_Vertex4fv;
vfmt->VertexAttrib1fNV = save_VertexAttrib1fNV;
vfmt->VertexAttrib1fvNV = save_VertexAttrib1fvNV;
vfmt->VertexAttrib2fNV = save_VertexAttrib2fNV;
vfmt->VertexAttrib2fvNV = save_VertexAttrib2fvNV;
vfmt->VertexAttrib3fNV = save_VertexAttrib3fNV;
vfmt->VertexAttrib3fvNV = save_VertexAttrib3fvNV;
vfmt->VertexAttrib4fNV = save_VertexAttrib4fNV;
vfmt->VertexAttrib4fvNV = save_VertexAttrib4fvNV;
vfmt->Rectf = save_Rectf;
/* The driver is required to implement these as
* 1) They can probably do a better job.
* 2) A lot of new mechanisms would have to be added to this module
* to support it. That code would probably never get used,
* because of (1).
*/
#if 0
vfmt->DrawArrays = 0;
vfmt->DrawElements = 0;
#endif
}
void
_mesa_install_dlist_vtxfmt(struct _glapi_table *disp,
const GLvertexformat *vfmt)
{
SET_CallList(disp, vfmt->CallList);
SET_CallLists(disp, vfmt->CallLists);
}
void _mesa_init_dlist_dispatch(struct _glapi_table *disp)
{
SET_CallList(disp, _mesa_CallList);
SET_CallLists(disp, _mesa_CallLists);
SET_DeleteLists(disp, _mesa_DeleteLists);
SET_EndList(disp, _mesa_EndList);
SET_GenLists(disp, _mesa_GenLists);
SET_IsList(disp, _mesa_IsList);
SET_ListBase(disp, _mesa_ListBase);
SET_NewList(disp, _mesa_NewList);
}
#endif /* FEATURE_dlist */
/**
* Initialize display list state for given context.
*/
void
_mesa_init_display_list(struct gl_context *ctx)
{
static GLboolean tableInitialized = GL_FALSE;
/* zero-out the instruction size table, just once */
if (!tableInitialized) {
memset(InstSize, 0, sizeof(InstSize));
tableInitialized = GL_TRUE;
}
/* extension info */
ctx->ListExt = CALLOC_STRUCT(gl_list_extensions);
/* Display list */
ctx->ListState.CallDepth = 0;
ctx->ExecuteFlag = GL_TRUE;
ctx->CompileFlag = GL_FALSE;
ctx->ListState.CurrentBlock = NULL;
ctx->ListState.CurrentPos = 0;
/* Display List group */
ctx->List.ListBase = 0;
#if FEATURE_dlist
_mesa_save_vtxfmt_init(&ctx->ListState.ListVtxfmt);
#endif
}
void
_mesa_free_display_list_data(struct gl_context *ctx)
{
free(ctx->ListExt);
ctx->ListExt = NULL;
}