reactos/rosapps/smartpdf/fitz/raster/pathstroke.c
Daniel Reimer a7fddf9c07 Delete all Trailing spaces in code.
svn path=/trunk/; revision=29689
2007-10-19 23:05:02 +00:00

728 lines
14 KiB
C

#include "fitz-base.h"
#include "fitz-world.h"
#include "fitz-draw.h"
enum { BUTT = 0, ROUND = 1, SQUARE = 2, MITER = 0, BEVEL = 2 };
struct sctx
{
fz_gel *gel;
fz_matrix *ctm;
float flatness;
int linecap;
int linejoin;
float linewidth;
float miterlimit;
fz_point beg[2];
fz_point seg[2];
int sn, bn;
int dot;
fz_dash *dash;
int toggle;
int offset;
float phase;
fz_point cur;
};
static fz_error *
line(struct sctx *s, float x0, float y0, float x1, float y1)
{
float tx0 = s->ctm->a * x0 + s->ctm->c * y0 + s->ctm->e;
float ty0 = s->ctm->b * x0 + s->ctm->d * y0 + s->ctm->f;
float tx1 = s->ctm->a * x1 + s->ctm->c * y1 + s->ctm->e;
float ty1 = s->ctm->b * x1 + s->ctm->d * y1 + s->ctm->f;
return fz_insertgel(s->gel, tx0, ty0, tx1, ty1);
}
static fz_error *
arc(struct sctx *s,
float xc, float yc,
float x0, float y0,
float x1, float y1)
{
fz_error *error;
float th0, th1, r;
float theta;
float ox, oy, nx, ny;
int n, i;
r = fabs(s->linewidth);
theta = 2 * M_SQRT2 * sqrt(s->flatness / r);
th0 = atan2(y0, x0);
th1 = atan2(y1, x1);
if (r > 0)
{
if (th0 < th1)
th0 += M_PI * 2;
n = ceil((th0 - th1) / theta);
}
else
{
if (th1 < th0)
th1 += M_PI * 2;
n = ceil((th1 - th0) / theta);
}
ox = x0;
oy = y0;
for (i = 1; i < n; i++)
{
theta = th0 + (th1 - th0) * i / n;
nx = cos(theta) * r;
ny = sin(theta) * r;
error = line(s, xc + ox, yc + oy, xc + nx, yc + ny);
if (error) return error;
ox = nx;
oy = ny;
}
error = line(s, xc + ox, yc + oy, xc + x1, yc + y1);
if (error) return error;
return nil;
}
static fz_error *
linestroke(struct sctx *s, fz_point a, fz_point b)
{
fz_error *error;
float dx = b.x - a.x;
float dy = b.y - a.y;
float scale = s->linewidth / sqrt(dx * dx + dy * dy);
float dlx = dy * scale;
float dly = -dx * scale;
error = line(s, a.x - dlx, a.y - dly, b.x - dlx, b.y - dly);
if (error) return error;
error = line(s, b.x + dlx, b.y + dly, a.x + dlx, a.y + dly);
if (error) return error;
return nil;
}
static fz_error *
linejoin(struct sctx *s, fz_point a, fz_point b, fz_point c)
{
fz_error *error;
float miterlimit = s->miterlimit;
float linewidth = s->linewidth;
int linejoin = s->linejoin;
float dx0, dy0;
float dx1, dy1;
float dlx0, dly0;
float dlx1, dly1;
float dmx, dmy;
float dmr2;
float scale;
float cross;
dx0 = b.x - a.x;
dy0 = b.y - a.y;
dx1 = c.x - b.x;
dy1 = c.y - b.y;
if (dx0 * dx0 + dy0 * dy0 < FLT_EPSILON)
return nil;
if (dx1 * dx1 + dy1 * dy1 < FLT_EPSILON)
return nil;
scale = linewidth / sqrt(dx0 * dx0 + dy0 * dy0);
dlx0 = dy0 * scale;
dly0 = -dx0 * scale;
scale = linewidth / sqrt(dx1 * dx1 + dy1 * dy1);
dlx1 = dy1 * scale;
dly1 = -dx1 * scale;
cross = dx1 * dy0 - dx0 * dy1;
dmx = (dlx0 + dlx1) * 0.5;
dmy = (dly0 + dly1) * 0.5;
dmr2 = dmx * dmx + dmy * dmy;
if (cross * cross < FLT_EPSILON && dx0 * dx1 + dy0 * dy1 >= 0)
linejoin = BEVEL;
if (linejoin == MITER)
if (dmr2 * miterlimit * miterlimit < linewidth * linewidth)
linejoin = BEVEL;
if (linejoin == BEVEL)
{
error = line(s, b.x - dlx0, b.y - dly0, b.x - dlx1, b.y - dly1);
if (error) return error;
error = line(s, b.x + dlx1, b.y + dly1, b.x + dlx0, b.y + dly0);
if (error) return error;
}
if (linejoin == MITER)
{
scale = linewidth * linewidth / dmr2;
dmx *= scale;
dmy *= scale;
if (cross < 0)
{
error = line(s, b.x - dlx0, b.y - dly0, b.x - dlx1, b.y - dly1);
if (error) return error;
error = line(s, b.x + dlx1, b.y + dly1, b.x + dmx, b.y + dmy);
if (error) return error;
error = line(s, b.x + dmx, b.y + dmy, b.x + dlx0, b.y + dly0);
if (error) return error;
}
else
{
error = line(s, b.x + dlx1, b.y + dly1, b.x + dlx0, b.y + dly0);
if (error) return error;
error = line(s, b.x - dlx0, b.y - dly0, b.x - dmx, b.y - dmy);
if (error) return error;
error = line(s, b.x - dmx, b.y - dmy, b.x - dlx1, b.y - dly1);
if (error) return error;
}
}
if (linejoin == ROUND)
{
if (cross < 0)
{
error = line(s, b.x - dlx0, b.y - dly0, b.x - dlx1, b.y - dly1);
if (error) return error;
error = arc(s, b.x, b.y, dlx1, dly1, dlx0, dly0);
if (error) return error;
}
else
{
error = line(s, b.x + dlx1, b.y + dly1, b.x + dlx0, b.y + dly0);
if (error) return error;
error = arc(s, b.x, b.y, -dlx0, -dly0, -dlx1, -dly1);
if (error) return error;
}
}
return nil;
}
static fz_error *
linecap(struct sctx *s, fz_point a, fz_point b)
{
fz_error *error;
float flatness = s->flatness;
float linewidth = s->linewidth;
int linecap = s->linecap;
float dx = b.x - a.x;
float dy = b.y - a.y;
float scale = linewidth / sqrt(dx * dx + dy * dy);
float dlx = dy * scale;
float dly = -dx * scale;
if (linecap == BUTT)
return line(s, b.x - dlx, b.y - dly, b.x + dlx, b.y + dly);
if (linecap == ROUND)
{
int i;
int n = ceil(M_PI / (2.0 * M_SQRT2 * sqrt(flatness / linewidth)));
float ox = b.x - dlx;
float oy = b.y - dly;
for (i = 1; i < n; i++)
{
float theta = M_PI * i / n;
float cth = cos(theta);
float sth = sin(theta);
float nx = b.x - dlx * cth - dly * sth;
float ny = b.y - dly * cth + dlx * sth;
error = line(s, ox, oy, nx, ny);
if (error) return error;
ox = nx;
oy = ny;
}
error = line(s, ox, oy, b.x + dlx, b.y + dly);
if (error) return error;
}
if (linecap == SQUARE)
{
error = line(s, b.x - dlx, b.y - dly,
b.x - dlx - dly,
b.y - dly + dlx);
if (error) return error;
error = line(s, b.x - dlx - dly,
b.y - dly + dlx,
b.x + dlx - dly,
b.y + dly + dlx);
if (error) return error;
error = line(s, b.x + dlx - dly,
b.y + dly + dlx,
b.x + dlx, b.y + dly);
if (error) return error;
}
return nil;
}
static fz_error *
linedot(struct sctx *s, fz_point a)
{
fz_error *error;
float flatness = s->flatness;
float linewidth = s->linewidth;
int n = ceil(M_PI / (M_SQRT2 * sqrt(flatness / linewidth)));
float ox = a.x - linewidth;
float oy = a.y;
int i;
for (i = 1; i < n; i++)
{
float theta = M_PI * 2 * i / n;
float cth = cos(theta);
float sth = sin(theta);
float nx = a.x - cth * linewidth;
float ny = a.y + sth * linewidth;
error = line(s, ox, oy, nx, ny);
if (error) return error;
ox = nx;
oy = ny;
}
error = line(s, ox, oy, a.x - linewidth, a.y);
if (error) return error;
return nil;
}
static fz_error *
strokeflush(struct sctx *s)
{
fz_error *error;
if (s->sn == 2)
{
error = linecap(s, s->beg[1], s->beg[0]);
if (error) return error;
error = linecap(s, s->seg[0], s->seg[1]);
if (error) return error;
}
else if (s->dot)
{
error = linedot(s, s->beg[0]);
if (error) return error;
}
s->dot = 0;
return nil;
}
static fz_error *
strokemoveto(struct sctx *s, fz_point cur)
{
fz_error *error;
error = strokeflush(s);
if (error) return error;
s->seg[0] = cur;
s->beg[0] = cur;
s->sn = 1;
s->bn = 1;
return nil;
}
static fz_error *
strokelineto(struct sctx *s, fz_point cur)
{
fz_error *error;
float dx = cur.x - s->seg[s->sn-1].x;
float dy = cur.y - s->seg[s->sn-1].y;
if (dx * dx + dy * dy < s->flatness * s->flatness * 0.25)
{
s->dot = 1;
return nil;
}
error = linestroke(s, s->seg[s->sn-1], cur);
if (error) return error;
if (s->sn == 2)
{
error = linejoin(s, s->seg[0], s->seg[1], cur);
if (error) return error;
s->seg[0] = s->seg[1];
s->seg[1] = cur;
}
if (s->sn == 1)
s->seg[s->sn++] = cur;
if (s->bn == 1)
s->beg[s->bn++] = cur;
return nil;
}
static fz_error *
strokeclosepath(struct sctx *s)
{
fz_error *error;
if (s->sn == 2)
{
error = strokelineto(s, s->beg[0]);
if (error) return error;
if (s->seg[1].x == s->beg[0].x && s->seg[1].y == s->beg[0].y)
error = linejoin(s, s->seg[0], s->beg[0], s->beg[1]);
else
error = linejoin(s, s->seg[1], s->beg[0], s->beg[1]);
if (error) return error;
}
else if (s->dot)
{
error = linedot(s, s->beg[0]);
if (error) return error;
}
s->bn = 0;
s->sn = 0;
s->dot = 0;
return nil;
}
static fz_error *
strokebezier(struct sctx *s,
float xa, float ya,
float xb, float yb,
float xc, float yc,
float xd, float yd)
{
fz_error *error;
float dmax;
float xab, yab;
float xbc, ybc;
float xcd, ycd;
float xabc, yabc;
float xbcd, ybcd;
float xabcd, yabcd;
/* termination check */
dmax = ABS(xa - xb);
dmax = MAX(dmax, ABS(ya - yb));
dmax = MAX(dmax, ABS(xd - xc));
dmax = MAX(dmax, ABS(yd - yc));
if (dmax < s->flatness) {
fz_point p;
p.x = xd;
p.y = yd;
return strokelineto(s, p);
}
xab = xa + xb;
yab = ya + yb;
xbc = xb + xc;
ybc = yb + yc;
xcd = xc + xd;
ycd = yc + yd;
xabc = xab + xbc;
yabc = yab + ybc;
xbcd = xbc + xcd;
ybcd = ybc + ycd;
xabcd = xabc + xbcd;
yabcd = yabc + ybcd;
xab *= 0.5f; yab *= 0.5f;
xbc *= 0.5f; ybc *= 0.5f;
xcd *= 0.5f; ycd *= 0.5f;
xabc *= 0.25f; yabc *= 0.25f;
xbcd *= 0.25f; ybcd *= 0.25f;
xabcd *= 0.125f; yabcd *= 0.125f;
error = strokebezier(s, xa, ya, xab, yab, xabc, yabc, xabcd, yabcd);
if (error)
return error;
return strokebezier(s, xabcd, yabcd, xbcd, ybcd, xcd, ycd, xd, yd);
}
fz_error *
fz_strokepath(fz_gel *gel, fz_pathnode *path, fz_matrix ctm, float flatness)
{
fz_error *error;
struct sctx s;
fz_point p0, p1, p2, p3;
int i;
s.gel = gel;
s.ctm = &ctm;
s.flatness = flatness;
s.linecap = path->linecap;
s.linejoin = path->linejoin;
s.linewidth = path->linewidth * 0.5;
s.miterlimit = path->miterlimit;
s.sn = 0;
s.bn = 0;
s.dot = 0;
i = 0;
while (i < path->len)
{
switch (path->els[i++].k)
{
case FZ_MOVETO:
p1.x = path->els[i++].v;
p1.y = path->els[i++].v;
error = strokemoveto(&s, p1);
if (error)
return error;
p0 = p1;
break;
case FZ_LINETO:
p1.x = path->els[i++].v;
p1.y = path->els[i++].v;
error = strokelineto(&s, p1);
if (error)
return error;
p0 = p1;
break;
case FZ_CURVETO:
p1.x = path->els[i++].v;
p1.y = path->els[i++].v;
p2.x = path->els[i++].v;
p2.y = path->els[i++].v;
p3.x = path->els[i++].v;
p3.y = path->els[i++].v;
error = strokebezier(&s, p0.x, p0.y, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y);
if (error)
return error;
p0 = p3;
break;
case FZ_CLOSEPATH:
error = strokeclosepath(&s);
if (error)
return error;
break;
}
}
return strokeflush(&s);
}
static fz_error *
dashmoveto(struct sctx *s, fz_point a)
{
s->toggle = 1;
s->offset = 0;
s->phase = s->dash->phase;
while (s->phase >= s->dash->array[s->offset])
{
s->toggle = !s->toggle;
s->phase -= s->dash->array[s->offset];
s->offset ++;
if (s->offset == s->dash->len)
s->offset = 0;
}
s->cur = a;
if (s->toggle)
return strokemoveto(s, a);
return nil;
}
static fz_error *
dashlineto(struct sctx *s, fz_point b)
{
fz_error *error;
float dx, dy;
float total, used, ratio;
fz_point a;
fz_point m;
a = s->cur;
dx = b.x - a.x;
dy = b.y - a.y;
total = sqrt(dx * dx + dy * dy);
used = 0;
while (total - used > s->dash->array[s->offset] - s->phase)
{
used += s->dash->array[s->offset] - s->phase;
ratio = used / total;
m.x = a.x + ratio * dx;
m.y = a.y + ratio * dy;
if (s->toggle)
error = strokelineto(s, m);
else
error = strokemoveto(s, m);
if (error)
return error;
s->toggle = !s->toggle;
s->phase = 0;
s->offset ++;
if (s->offset == s->dash->len)
s->offset = 0;
}
s->phase += total - used;
s->cur = b;
if (s->toggle)
return strokelineto(s, b);
return nil;
}
static fz_error *
dashbezier(struct sctx *s,
float xa, float ya,
float xb, float yb,
float xc, float yc,
float xd, float yd)
{
fz_error *error;
float dmax;
float xab, yab;
float xbc, ybc;
float xcd, ycd;
float xabc, yabc;
float xbcd, ybcd;
float xabcd, yabcd;
/* termination check */
dmax = ABS(xa - xb);
dmax = MAX(dmax, ABS(ya - yb));
dmax = MAX(dmax, ABS(xd - xc));
dmax = MAX(dmax, ABS(yd - yc));
if (dmax < s->flatness) {
fz_point p;
p.x = xd;
p.y = yd;
return dashlineto(s, p);
}
xab = xa + xb;
yab = ya + yb;
xbc = xb + xc;
ybc = yb + yc;
xcd = xc + xd;
ycd = yc + yd;
xabc = xab + xbc;
yabc = yab + ybc;
xbcd = xbc + xcd;
ybcd = ybc + ycd;
xabcd = xabc + xbcd;
yabcd = yabc + ybcd;
xab *= 0.5f; yab *= 0.5f;
xbc *= 0.5f; ybc *= 0.5f;
xcd *= 0.5f; ycd *= 0.5f;
xabc *= 0.25f; yabc *= 0.25f;
xbcd *= 0.25f; ybcd *= 0.25f;
xabcd *= 0.125f; yabcd *= 0.125f;
error = dashbezier(s, xa, ya, xab, yab, xabc, yabc, xabcd, yabcd);
if (error) return error;
return dashbezier(s, xabcd, yabcd, xbcd, ybcd, xcd, ycd, xd, yd);
}
fz_error *
fz_dashpath(fz_gel *gel, fz_pathnode *path, fz_matrix ctm, float flatness)
{
fz_error *error;
struct sctx s;
fz_point p0, p1, p2, p3, beg;
int i;
s.gel = gel;
s.ctm = &ctm;
s.flatness = flatness;
s.linecap = path->linecap;
s.linejoin = path->linejoin;
s.linewidth = path->linewidth * 0.5;
s.miterlimit = path->miterlimit;
s.sn = 0;
s.bn = 0;
s.dot = 0;
s.dash = path->dash;
s.toggle = 0;
s.offset = 0;
s.phase = 0;
i = 0;
while (i < path->len)
{
switch (path->els[i++].k)
{
case FZ_MOVETO:
p1.x = path->els[i++].v;
p1.y = path->els[i++].v;
error = dashmoveto(&s, p1);
if (error)
return error;
beg = p0 = p1;
break;
case FZ_LINETO:
p1.x = path->els[i++].v;
p1.y = path->els[i++].v;
error = dashlineto(&s, p1);
if (error)
return error;
p0 = p1;
break;
case FZ_CURVETO:
p1.x = path->els[i++].v;
p1.y = path->els[i++].v;
p2.x = path->els[i++].v;
p2.y = path->els[i++].v;
p3.x = path->els[i++].v;
p3.y = path->els[i++].v;
error = dashbezier(&s, p0.x, p0.y, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y);
if (error)
return error;
p0 = p3;
break;
case FZ_CLOSEPATH:
error = dashlineto(&s, beg);
if (error)
return error;
break;
}
}
return strokeflush(&s);
}