reactos/ntoskrnl/include/internal/amd64/mm.h
Serge Gautherie 8110a66b08 [NTOS:MM] MI_IS_*(): Improve documentation
Intel 64 and IA-32 Architectures Software Developer’s Manual
version 075 (June 2021)
2021-11-04 23:20:21 +03:00

372 lines
13 KiB
C

/*
* kernel internal memory management definitions for amd64
*/
#pragma once
#define _MI_PAGING_LEVELS 4
#define _MI_HAS_NO_EXECUTE 1
/* Memory layout base addresses (This is based on Vista!) */
#define MI_USER_PROBE_ADDRESS (PVOID)0x000007FFFFFF0000ULL
#define MI_DEFAULT_SYSTEM_RANGE_START (PVOID)0xFFFF080000000000ULL
#define MI_REAL_SYSTEM_RANGE_START 0xFFFF800000000000ULL
//#define MI_PAGE_TABLE_BASE 0xFFFFF68000000000ULL // 512 GB page tables
#define HYPER_SPACE 0xFFFFF70000000000ULL // 512 GB hyper space [MiVaProcessSpace]
#define HYPER_SPACE_END 0xFFFFF77FFFFFFFFFULL
//#define MI_SHARED_SYSTEM_PAGE 0xFFFFF78000000000ULL
#define MI_SYSTEM_CACHE_WS_START 0xFFFFF78000001000ULL // 512 GB - 4 KB system cache working set
//#define MI_LOADER_MAPPINGS 0xFFFFF80000000000ULL // 512 GB loader mappings aka KSEG0_BASE (NDK) [MiVaBootLoaded]
#define MM_SYSTEM_SPACE_START 0xFFFFF88000000000ULL // 128 GB system PTEs [MiVaSystemPtes]
#define MI_DEBUG_MAPPING (PVOID)0xFFFFF89FFFFFF000ULL // FIXME should be allocated from System PTEs
#define MI_PAGED_POOL_START (PVOID)0xFFFFF8A000000000ULL // 128 GB paged pool [MiVaPagedPool]
//#define MI_PAGED_POOL_END 0xFFFFF8BFFFFFFFFFULL
//#define MI_SESSION_SPACE_START 0xFFFFF90000000000ULL // 512 GB session space [MiVaSessionSpace]
//#define MI_SESSION_VIEW_END 0xFFFFF97FFF000000ULL
#define MI_SESSION_SPACE_END 0xFFFFF98000000000ULL
#define MI_SYSTEM_CACHE_START 0xFFFFF98000000000ULL // 1 TB system cache (on Vista+ this is dynamic VA space) [MiVaSystemCache,MiVaSpecialPoolPaged,MiVaSpecialPoolNonPaged]
#define MI_SYSTEM_CACHE_END 0xFFFFFA7FFFFFFFFFULL
#define MI_PFN_DATABASE 0xFFFFFA8000000000ULL // up to 5.5 TB PFN database followed by non paged pool [MiVaPfnDatabase/MiVaNonPagedPool]
#define MI_NONPAGED_POOL_END (PVOID)0xFFFFFFFFFFBFFFFFULL
//#define MM_HAL_VA_START 0xFFFFFFFFFFC00000ULL // 4 MB HAL mappings, defined in NDK [MiVaHal]
#define MI_HIGHEST_SYSTEM_ADDRESS (PVOID)0xFFFFFFFFFFFFFFFFULL
#define MmSystemRangeStart ((PVOID)MI_REAL_SYSTEM_RANGE_START)
/* WOW64 address definitions */
#define MM_HIGHEST_USER_ADDRESS_WOW64 0x7FFEFFFF
#define MM_SYSTEM_RANGE_START_WOW64 0x80000000
/* The size of the virtual memory area that is mapped using a single PDE */
#define PDE_MAPPED_VA (PTE_PER_PAGE * PAGE_SIZE)
/* Misc address definitions */
//#define MI_NON_PAGED_SYSTEM_START_MIN MM_SYSTEM_SPACE_START // FIXME
//#define MI_SYSTEM_PTE_START MM_SYSTEM_SPACE_START
//#define MI_SYSTEM_PTE_END (MI_SYSTEM_PTE_START + MI_NUMBER_SYSTEM_PTES * PAGE_SIZE - 1)
#define MI_SYSTEM_PTE_BASE (PVOID)MiAddressToPte(KSEG0_BASE)
#define MM_HIGHEST_VAD_ADDRESS (PVOID)((ULONG_PTR)MM_HIGHEST_USER_ADDRESS - (16 * PAGE_SIZE))
#define MI_MAPPING_RANGE_START HYPER_SPACE
#define MI_MAPPING_RANGE_END (MI_MAPPING_RANGE_START + MI_HYPERSPACE_PTES * PAGE_SIZE)
#define MI_DUMMY_PTE (MI_MAPPING_RANGE_END + PAGE_SIZE)
#define MI_VAD_BITMAP (MI_DUMMY_PTE + PAGE_SIZE)
#define MI_WORKING_SET_LIST (MI_VAD_BITMAP + PAGE_SIZE)
/* Memory sizes */
#define MI_MIN_PAGES_FOR_NONPAGED_POOL_TUNING ((255 * _1MB) >> PAGE_SHIFT)
#define MI_MIN_PAGES_FOR_SYSPTE_TUNING ((19 * _1MB) >> PAGE_SHIFT)
#define MI_MIN_PAGES_FOR_SYSPTE_BOOST ((32 * _1MB) >> PAGE_SHIFT)
#define MI_MIN_PAGES_FOR_SYSPTE_BOOST_BOOST ((256 * _1MB) >> PAGE_SHIFT)
#define MI_MIN_INIT_PAGED_POOLSIZE (32 * _1MB)
#define MI_MAX_INIT_NONPAGED_POOL_SIZE (128ULL * 1024 * 1024 * 1024)
#define MI_MAX_NONPAGED_POOL_SIZE (128ULL * 1024 * 1024 * 1024)
#define MI_SYSTEM_VIEW_SIZE (104 * _1MB)
#define MI_SESSION_VIEW_SIZE (104 * _1MB)
#define MI_SESSION_POOL_SIZE (64 * _1MB)
#define MI_SESSION_IMAGE_SIZE (16 * _1MB)
#define MI_SESSION_WORKING_SET_SIZE (16 * _1MB)
#define MI_SESSION_SIZE (MI_SESSION_VIEW_SIZE + \
MI_SESSION_POOL_SIZE + \
MI_SESSION_IMAGE_SIZE + \
MI_SESSION_WORKING_SET_SIZE)
#define MI_MIN_ALLOCATION_FRAGMENT (4 * _1KB)
#define MI_ALLOCATION_FRAGMENT (64 * _1KB)
#define MI_MAX_ALLOCATION_FRAGMENT (2 * _1MB)
/* Misc constants */
#define MM_PTE_SOFTWARE_PROTECTION_BITS 5
#define MI_MIN_SECONDARY_COLORS 8
#define MI_SECONDARY_COLORS 64
#define MI_MAX_SECONDARY_COLORS 1024
#define MI_NUMBER_SYSTEM_PTES 22000
#define MI_MAX_FREE_PAGE_LISTS 4
#define MI_HYPERSPACE_PTES (256 - 1)
#define MI_ZERO_PTES (32)
#define MI_MAX_ZERO_BITS 53
#define SESSION_POOL_LOOKASIDES 21
/* MMPTE related defines */
#define MM_EMPTY_PTE_LIST ((ULONG64)0xFFFFFFFF)
#define MM_EMPTY_LIST ((ULONG_PTR)-1)
/* Easy accessing PFN in PTE */
#define PFN_FROM_PTE(v) ((v)->u.Hard.PageFrameNumber)
#define PFN_FROM_PDE(v) ((v)->u.Hard.PageFrameNumber)
#define PFN_FROM_PPE(v) ((v)->u.Hard.PageFrameNumber)
#define PFN_FROM_PXE(v) ((v)->u.Hard.PageFrameNumber)
/* Macros for portable PTE modification */
#define MI_MAKE_DIRTY_PAGE(x) ((x)->u.Hard.Dirty = 1)
#define MI_MAKE_CLEAN_PAGE(x) ((x)->u.Hard.Dirty = 0)
#define MI_MAKE_ACCESSED_PAGE(x) ((x)->u.Hard.Accessed = 1)
#define MI_PAGE_DISABLE_CACHE(x) ((x)->u.Hard.CacheDisable = 1)
#define MI_PAGE_WRITE_THROUGH(x) ((x)->u.Hard.WriteThrough = 1)
#define MI_PAGE_WRITE_COMBINED(x) ((x)->u.Hard.WriteThrough = 0)
#define MI_IS_PAGE_LARGE(x) ((x)->u.Hard.LargePage == 1)
#if !defined(CONFIG_SMP)
#define MI_IS_PAGE_WRITEABLE(x) ((x)->u.Hard.Write == 1)
#else
#define MI_IS_PAGE_WRITEABLE(x) ((x)->u.Hard.Writable == 1)
#endif
#define MI_IS_PAGE_COPY_ON_WRITE(x)((x)->u.Hard.CopyOnWrite == 1)
#define MI_IS_PAGE_EXECUTABLE(x) ((x)->u.Hard.NoExecute == 0)
#define MI_IS_PAGE_DIRTY(x) ((x)->u.Hard.Dirty == 1)
#define MI_MAKE_OWNER_PAGE(x) ((x)->u.Hard.Owner = 1)
#if !defined(CONFIG_SMP)
#define MI_MAKE_WRITE_PAGE(x) ((x)->u.Hard.Write = 1)
#else
#define MI_MAKE_WRITE_PAGE(x) ((x)->u.Hard.Writable = 1)
#endif
/* Macros to identify the page fault reason from the error code */
#define MI_IS_NOT_PRESENT_FAULT(FaultCode) !BooleanFlagOn(FaultCode, 0x00000001)
#define MI_IS_WRITE_ACCESS(FaultCode) BooleanFlagOn(FaultCode, 0x00000002)
// 0x00000004: user-mode access.
// 0x00000008: reserved bit violation.
#define MI_IS_INSTRUCTION_FETCH(FaultCode) BooleanFlagOn(FaultCode, 0x00000010)
// 0x00000020: protection-key violation.
// 0x00000040: shadow-stack access.
// Bits 7-14: reserved.
// 0x00008000: violation of SGX-specific access-control requirements.
// Bits 16-31: reserved.
/* On x64, these are the same */
#define MI_WRITE_VALID_PPE MI_WRITE_VALID_PTE
#define ValidKernelPpe ValidKernelPde
/* Convert an address to a corresponding PTE */
FORCEINLINE
PMMPTE
_MiAddressToPte(PVOID Address)
{
ULONG64 Offset = (ULONG64)Address >> (PTI_SHIFT - 3);
Offset &= 0xFFFFFFFFFULL << 3;
return (PMMPTE)(PTE_BASE + Offset);
}
#define MiAddressToPte(x) _MiAddressToPte((PVOID)(x))
/* Convert an address to a corresponding PDE */
FORCEINLINE
PMMPTE
_MiAddressToPde(PVOID Address)
{
ULONG64 Offset = (ULONG64)Address >> (PDI_SHIFT - 3);
Offset &= 0x7FFFFFF << 3;
return (PMMPTE)(PDE_BASE + Offset);
}
#define MiAddressToPde(x) _MiAddressToPde((PVOID)(x))
/* Convert an address to a corresponding PPE */
FORCEINLINE
PMMPTE
MiAddressToPpe(PVOID Address)
{
ULONG64 Offset = (ULONG64)Address >> (PPI_SHIFT - 3);
Offset &= 0x3FFFF << 3;
return (PMMPTE)(PPE_BASE + Offset);
}
/* Convert an address to a corresponding PXE */
FORCEINLINE
PMMPTE
MiAddressToPxe(PVOID Address)
{
ULONG64 Offset = (ULONG64)Address >> (PXI_SHIFT - 3);
Offset &= PXI_MASK << 3;
return (PMMPTE)(PXE_BASE + Offset);
}
/* Convert an address to a corresponding PTE offset/index */
FORCEINLINE
ULONG
MiAddressToPti(PVOID Address)
{
return ((((ULONG64)Address) >> PTI_SHIFT) & 0x1FF);
}
#define MiAddressToPteOffset(x) MiAddressToPti(x) // FIXME: bad name
/* Convert an address to a corresponding PDE offset/index */
FORCEINLINE
ULONG
MiAddressToPdi(PVOID Address)
{
return ((((ULONG64)Address) >> PDI_SHIFT) & 0x1FF);
}
#define MiAddressToPdeOffset(x) MiAddressToPdi(x)
#define MiGetPdeOffset(x) MiAddressToPdi(x)
/* Convert an address to a corresponding PXE offset/index */
FORCEINLINE
ULONG
MiAddressToPxi(PVOID Address)
{
return ((((ULONG64)Address) >> PXI_SHIFT) & 0x1FF);
}
/* Convert a PTE into a corresponding address */
FORCEINLINE
PVOID
MiPteToAddress(PMMPTE PointerPte)
{
/* Use signed math */
return (PVOID)(((LONG64)PointerPte << 25) >> 16);
}
/* Convert a PDE into a corresponding address */
FORCEINLINE
PVOID
MiPdeToAddress(PMMPTE PointerPde)
{
/* Use signed math */
return (PVOID)(((LONG64)PointerPde << 34) >> 16);
}
/* Convert a PPE into a corresponding address */
FORCEINLINE
PVOID
MiPpeToAddress(PMMPTE PointerPpe)
{
/* Use signed math */
return (PVOID)(((LONG64)PointerPpe << 43) >> 16);
}
/* Convert a PXE into a corresponding address */
FORCEINLINE
PVOID
MiPxeToAddress(PMMPTE PointerPxe)
{
/* Use signed math */
return (PVOID)(((LONG64)PointerPxe << 52) >> 16);
}
/* Convert a PDE into its lowest PTE */
FORCEINLINE
PMMPTE
MiPdeToPte(PMMPDE PointerPde)
{
return (PMMPTE)MiPteToAddress(PointerPde);
}
/* Convert a PPE into its lowest PTE */
FORCEINLINE
PMMPTE
MiPpeToPte(PMMPPE PointerPpe)
{
return (PMMPTE)MiPdeToAddress(PointerPpe);
}
/* Convert a PXE into its lowest PTE */
FORCEINLINE
PMMPTE
MiPxeToPte(PMMPXE PointerPxe)
{
return (PMMPTE)MiPpeToAddress(PointerPxe);
}
/* Convert a PTE to a corresponding PDE */
FORCEINLINE
PMMPDE
MiPteToPde(PMMPTE PointerPte)
{
return (PMMPDE)MiAddressToPte(PointerPte);
}
/* Convert a PTE to a corresponding PPE */
FORCEINLINE
PMMPPE
MiPteToPpe(PMMPTE PointerPte)
{
return (PMMPPE)MiAddressToPde(PointerPte);
}
/* Convert a PTE to a corresponding PXE */
FORCEINLINE
PMMPXE
MiPteToPxe(PMMPTE PointerPte)
{
return (PMMPXE)MiAddressToPpe(PointerPte);
}
/* Convert a PDE to a corresponding PPE */
FORCEINLINE
PMMPDE
MiPdeToPpe(PMMPDE PointerPde)
{
return (PMMPPE)MiAddressToPte(PointerPde);
}
/* Convert a PDE to a corresponding PXE */
FORCEINLINE
PMMPXE
MiPdeToPxe(PMMPDE PointerPde)
{
return (PMMPXE)MiAddressToPde(PointerPde);
}
/* Check P*E boundaries */
#define MiIsPteOnPdeBoundary(PointerPte) \
((((ULONG_PTR)PointerPte) & (PAGE_SIZE - 1)) == 0)
#define MiIsPteOnPpeBoundary(PointerPte) \
((((ULONG_PTR)PointerPte) & (PDE_PER_PAGE * PAGE_SIZE - 1)) == 0)
#define MiIsPteOnPxeBoundary(PointerPte) \
((((ULONG_PTR)PointerPte) & (PPE_PER_PAGE * PDE_PER_PAGE * PAGE_SIZE - 1)) == 0)
//
// Decodes a Prototype PTE into the underlying PTE
//
#define MiProtoPteToPte(x) \
(PMMPTE)(((LONG64)(x)->u.Long) >> 16) /* Sign extend 48 bits */
//
// Decodes a Prototype PTE into the underlying PTE
// The 48 bit signed value gets sign-extended to 64 bits.
//
#define MiSubsectionPteToSubsection(x) \
(PMMPTE)((LONG64)(x)->u.Subsect.SubsectionAddress)
FORCEINLINE
VOID
MI_MAKE_SUBSECTION_PTE(
_Out_ PMMPTE NewPte,
_In_ PVOID Segment)
{
/* Mark this as a prototype */
NewPte->u.Long = 0;
NewPte->u.Subsect.Prototype = 1;
/* Store the lower 48 bits of the Segment address */
NewPte->u.Subsect.SubsectionAddress = ((ULONG_PTR)Segment & 0x0000FFFFFFFFFFFF);
}
FORCEINLINE
VOID
MI_MAKE_PROTOTYPE_PTE(IN PMMPTE NewPte,
IN PMMPTE PointerPte)
{
/* Store the Address */
NewPte->u.Long = (ULONG64)PointerPte << 16;
/* Mark this as a prototype PTE */
NewPte->u.Proto.Prototype = 1;
ASSERT(MiProtoPteToPte(NewPte) == PointerPte);
}
FORCEINLINE
BOOLEAN
MI_IS_MAPPED_PTE(PMMPTE PointerPte)
{
return ((PointerPte->u.Hard.Valid != 0) ||
(PointerPte->u.Proto.Prototype != 0) ||
(PointerPte->u.Trans.Transition != 0) ||
(PointerPte->u.Hard.PageFrameNumber != 0));
}
FORCEINLINE
BOOLEAN
MiIsPdeForAddressValid(PVOID Address)
{
return ((MiAddressToPxe(Address)->u.Hard.Valid) &&
(MiAddressToPpe(Address)->u.Hard.Valid) &&
(MiAddressToPde(Address)->u.Hard.Valid));
}