reactos/subsystems/win32/win32k/objects/path.c
Jérôme Gardou 88c9e7c6e8 Sync with trunk (r47116), hopefully without breaking anything.
svn path=/branches/reactos-yarotows/; revision=47117
2010-05-07 07:41:13 +00:00

2654 lines
70 KiB
C

/*
* Graphics paths (BeginPath, EndPath etc.)
*
* Copyright 1997, 1998 Martin Boehme
* 1999 Huw D M Davies
* Copyright 2005 Dmitry Timoshkov
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*
*
* Addaped for the use in ReactOS.
*
*/
/*
* PROJECT: ReactOS win32 kernel mode subsystem
* LICENSE: GPL - See COPYING in the top level directory
* FILE: subsystems/win32/win32k/objects/path.c
* PURPOSE: Path support
* PROGRAMMER:
*/
#include <win32k.h>
#include "math.h"
#define NDEBUG
#include <debug.h>
#define NUM_ENTRIES_INITIAL 16 /* Initial size of points / flags arrays */
#define GROW_FACTOR_NUMER 2 /* Numerator of grow factor for the array */
#define GROW_FACTOR_DENOM 1 /* Denominator of grow factor */
BOOL FASTCALL PATH_AddEntry (PPATH pPath, const POINT *pPoint, BYTE flags);
BOOL FASTCALL PATH_AddFlatBezier (PPATH pPath, POINT *pt, BOOL closed);
BOOL FASTCALL PATH_DoArcPart (PPATH pPath, FLOAT_POINT corners[], double angleStart, double angleEnd, BYTE startEntryType);
BOOL FASTCALL PATH_FillPath( PDC dc, PPATH pPath );
BOOL FASTCALL PATH_FlattenPath (PPATH pPath);
VOID FASTCALL PATH_NormalizePoint (FLOAT_POINT corners[], const FLOAT_POINT *pPoint, double *pX, double *pY);
BOOL FASTCALL PATH_ReserveEntries (PPATH pPath, INT numEntries);
VOID FASTCALL PATH_ScaleNormalizedPoint (FLOAT_POINT corners[], double x, double y, POINT *pPoint);
BOOL FASTCALL PATH_StrokePath(DC *dc, PPATH pPath);
BOOL PATH_CheckCorners(DC *dc, POINT corners[], INT x1, INT y1, INT x2, INT y2);
VOID FASTCALL IntGetCurrentPositionEx(PDC dc, LPPOINT pt);
/***********************************************************************
* Internal functions
*/
BOOL
FASTCALL
PATH_Delete(HPATH hPath)
{
PPATH pPath;
if (!hPath) return FALSE;
pPath = PATH_LockPath( hPath );
if (!pPath) return FALSE;
PATH_DestroyGdiPath( pPath );
PATH_UnlockPath( pPath );
PATH_FreeExtPathByHandle(hPath);
return TRUE;
}
VOID
FASTCALL
IntGdiCloseFigure(PPATH pPath)
{
ASSERT(pPath->state == PATH_Open);
// FIXME: Shouldn't we draw a line to the beginning of the figure?
// Set PT_CLOSEFIGURE on the last entry and start a new stroke
if(pPath->numEntriesUsed)
{
pPath->pFlags[pPath->numEntriesUsed-1]|=PT_CLOSEFIGURE;
pPath->newStroke=TRUE;
}
}
/* PATH_FillPath
*
*
*/
BOOL
FASTCALL
PATH_FillPath( PDC dc, PPATH pPath )
{
INT mapMode, graphicsMode;
SIZE ptViewportExt, ptWindowExt;
POINTL ptViewportOrg, ptWindowOrg;
XFORM xform;
HRGN hrgn;
PDC_ATTR pdcattr = dc->pdcattr;
if( pPath->state != PATH_Closed )
{
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
return FALSE;
}
if( PATH_PathToRegion( pPath, pdcattr->jFillMode, &hrgn ))
{
/* Since PaintRgn interprets the region as being in logical coordinates
* but the points we store for the path are already in device
* coordinates, we have to set the mapping mode to MM_TEXT temporarily.
* Using SaveDC to save information about the mapping mode / world
* transform would be easier but would require more overhead, especially
* now that SaveDC saves the current path.
*/
/* Save the information about the old mapping mode */
mapMode = pdcattr->iMapMode;
ptViewportExt = pdcattr->szlViewportExt;
ptViewportOrg = pdcattr->ptlViewportOrg;
ptWindowExt = pdcattr->szlWindowExt;
ptWindowOrg = pdcattr->ptlWindowOrg;
/* Save world transform
* NB: The Windows documentation on world transforms would lead one to
* believe that this has to be done only in GM_ADVANCED; however, my
* tests show that resetting the graphics mode to GM_COMPATIBLE does
* not reset the world transform.
*/
MatrixS2XForm(&xform, &dc->dclevel.mxWorldToPage);
/* Set MM_TEXT */
// IntGdiSetMapMode( dc, MM_TEXT );
// pdcattr->ptlViewportOrg.x = 0;
// pdcattr->ptlViewportOrg.y = 0;
// pdcattr->ptlWindowOrg.x = 0;
// pdcattr->ptlWindowOrg.y = 0;
graphicsMode = pdcattr->iGraphicsMode;
// pdcattr->iGraphicsMode = GM_ADVANCED;
// IntGdiModifyWorldTransform( dc, &xform, MWT_IDENTITY );
// pdcattr->iGraphicsMode = graphicsMode;
/* Paint the region */
IntGdiPaintRgn( dc, hrgn );
GreDeleteObject( hrgn );
/* Restore the old mapping mode */
// IntGdiSetMapMode( dc, mapMode );
// pdcattr->szlViewportExt = ptViewportExt;
// pdcattr->ptlViewportOrg = ptViewportOrg;
// pdcattr->szlWindowExt = ptWindowExt;
// pdcattr->ptlWindowOrg = ptWindowOrg;
/* Go to GM_ADVANCED temporarily to restore the world transform */
graphicsMode = pdcattr->iGraphicsMode;
// pdcattr->iGraphicsMode = GM_ADVANCED;
// IntGdiModifyWorldTransform( dc, &xform, MWT_MAX+1 );
// pdcattr->iGraphicsMode = graphicsMode;
return TRUE;
}
return FALSE;
}
/* PATH_InitGdiPath
*
* Initializes the GdiPath structure.
*/
VOID
FASTCALL
PATH_InitGdiPath ( PPATH pPath )
{
ASSERT(pPath!=NULL);
pPath->state=PATH_Null;
pPath->pPoints=NULL;
pPath->pFlags=NULL;
pPath->numEntriesUsed=0;
pPath->numEntriesAllocated=0;
}
/* PATH_DestroyGdiPath
*
* Destroys a GdiPath structure (frees the memory in the arrays).
*/
VOID
FASTCALL
PATH_DestroyGdiPath ( PPATH pPath )
{
ASSERT(pPath!=NULL);
if (pPath->pPoints) ExFreePoolWithTag(pPath->pPoints, TAG_PATH);
if (pPath->pFlags) ExFreePoolWithTag(pPath->pFlags, TAG_PATH);
}
/* PATH_AssignGdiPath
*
* Copies the GdiPath structure "pPathSrc" to "pPathDest". A deep copy is
* performed, i.e. the contents of the pPoints and pFlags arrays are copied,
* not just the pointers. Since this means that the arrays in pPathDest may
* need to be resized, pPathDest should have been initialized using
* PATH_InitGdiPath (in C++, this function would be an assignment operator,
* not a copy constructor).
* Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_AssignGdiPath ( PPATH pPathDest, const PPATH pPathSrc )
{
ASSERT(pPathDest!=NULL && pPathSrc!=NULL);
/* Make sure destination arrays are big enough */
if ( !PATH_ReserveEntries(pPathDest, pPathSrc->numEntriesUsed) )
return FALSE;
/* Perform the copy operation */
memcpy(pPathDest->pPoints, pPathSrc->pPoints,
sizeof(POINT)*pPathSrc->numEntriesUsed);
memcpy(pPathDest->pFlags, pPathSrc->pFlags,
sizeof(BYTE)*pPathSrc->numEntriesUsed);
pPathDest->state=pPathSrc->state;
pPathDest->numEntriesUsed=pPathSrc->numEntriesUsed;
pPathDest->newStroke=pPathSrc->newStroke;
return TRUE;
}
/* PATH_MoveTo
*
* Should be called when a MoveTo is performed on a DC that has an
* open path. This starts a new stroke. Returns TRUE if successful, else
* FALSE.
*/
BOOL
FASTCALL
PATH_MoveTo ( PDC dc )
{
PPATH pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
/* Check that path is open */
if ( pPath->state != PATH_Open )
{
PATH_UnlockPath( pPath );
/* FIXME: Do we have to call SetLastError? */
return FALSE;
}
/* Start a new stroke */
pPath->newStroke = TRUE;
PATH_UnlockPath( pPath );
return TRUE;
}
/* PATH_LineTo
*
* Should be called when a LineTo is performed on a DC that has an
* open path. This adds a PT_LINETO entry to the path (and possibly
* a PT_MOVETO entry, if this is the first LineTo in a stroke).
* Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_LineTo ( PDC dc, INT x, INT y )
{
BOOL Ret;
PPATH pPath;
POINT point, pointCurPos;
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
/* Check that path is open */
if ( pPath->state != PATH_Open )
{
PATH_UnlockPath( pPath );
return FALSE;
}
/* Convert point to device coordinates */
point.x=x;
point.y=y;
CoordLPtoDP ( dc, &point );
/* Add a PT_MOVETO if necessary */
if ( pPath->newStroke )
{
pPath->newStroke = FALSE;
IntGetCurrentPositionEx ( dc, &pointCurPos );
CoordLPtoDP ( dc, &pointCurPos );
if ( !PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO) )
{
PATH_UnlockPath( pPath );
return FALSE;
}
}
/* Add a PT_LINETO entry */
Ret = PATH_AddEntry(pPath, &point, PT_LINETO);
PATH_UnlockPath( pPath );
return Ret;
}
/* PATH_Rectangle
*
* Should be called when a call to Rectangle is performed on a DC that has
* an open path. Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_Rectangle ( PDC dc, INT x1, INT y1, INT x2, INT y2 )
{
PPATH pPath;
POINT corners[2], pointTemp;
INT temp;
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
/* Check that path is open */
if ( pPath->state != PATH_Open )
{
PATH_UnlockPath( pPath );
return FALSE;
}
/* Convert points to device coordinates */
corners[0].x=x1;
corners[0].y=y1;
corners[1].x=x2;
corners[1].y=y2;
IntLPtoDP ( dc, corners, 2 );
/* Make sure first corner is top left and second corner is bottom right */
if ( corners[0].x > corners[1].x )
{
temp=corners[0].x;
corners[0].x=corners[1].x;
corners[1].x=temp;
}
if ( corners[0].y > corners[1].y )
{
temp=corners[0].y;
corners[0].y=corners[1].y;
corners[1].y=temp;
}
/* In GM_COMPATIBLE, don't include bottom and right edges */
if (dc->pdcattr->iGraphicsMode == GM_COMPATIBLE)
{
corners[1].x--;
corners[1].y--;
}
/* Close any previous figure */
IntGdiCloseFigure(pPath);
/* Add four points to the path */
pointTemp.x=corners[1].x;
pointTemp.y=corners[0].y;
if ( !PATH_AddEntry(pPath, &pointTemp, PT_MOVETO) )
{
PATH_UnlockPath( pPath );
return FALSE;
}
if ( !PATH_AddEntry(pPath, corners, PT_LINETO) )
{
PATH_UnlockPath( pPath );
return FALSE;
}
pointTemp.x=corners[0].x;
pointTemp.y=corners[1].y;
if ( !PATH_AddEntry(pPath, &pointTemp, PT_LINETO) )
{
PATH_UnlockPath( pPath );
return FALSE;
}
if ( !PATH_AddEntry(pPath, corners+1, PT_LINETO) )
{
PATH_UnlockPath( pPath );
return FALSE;
}
/* Close the rectangle figure */
IntGdiCloseFigure(pPath) ;
PATH_UnlockPath( pPath );
return TRUE;
}
/* PATH_RoundRect
*
* Should be called when a call to RoundRect is performed on a DC that has
* an open path. Returns TRUE if successful, else FALSE.
*
* FIXME: it adds the same entries to the path as windows does, but there
* is an error in the bezier drawing code so that there are small pixel-size
* gaps when the resulting path is drawn by StrokePath()
*/
BOOL FASTCALL PATH_RoundRect(DC *dc, INT x1, INT y1, INT x2, INT y2, INT ell_width, INT ell_height)
{
PPATH pPath;
POINT corners[2], pointTemp;
FLOAT_POINT ellCorners[2];
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
/* Check that path is open */
if(pPath->state!=PATH_Open)
{
PATH_UnlockPath( pPath );
return FALSE;
}
if(!PATH_CheckCorners(dc,corners,x1,y1,x2,y2))
{
PATH_UnlockPath( pPath );
return FALSE;
}
/* Add points to the roundrect path */
ellCorners[0].x = corners[1].x-ell_width;
ellCorners[0].y = corners[0].y;
ellCorners[1].x = corners[1].x;
ellCorners[1].y = corners[0].y+ell_height;
if(!PATH_DoArcPart(pPath, ellCorners, 0, -M_PI_2, PT_MOVETO))
{
PATH_UnlockPath( pPath );
return FALSE;
}
pointTemp.x = corners[0].x+ell_width/2;
pointTemp.y = corners[0].y;
if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
{
PATH_UnlockPath( pPath );
return FALSE;
}
ellCorners[0].x = corners[0].x;
ellCorners[1].x = corners[0].x+ell_width;
if(!PATH_DoArcPart(pPath, ellCorners, -M_PI_2, -M_PI, FALSE))
{
PATH_UnlockPath( pPath );
return FALSE;
}
pointTemp.x = corners[0].x;
pointTemp.y = corners[1].y-ell_height/2;
if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
{
PATH_UnlockPath( pPath );
return FALSE;
}
ellCorners[0].y = corners[1].y-ell_height;
ellCorners[1].y = corners[1].y;
if(!PATH_DoArcPart(pPath, ellCorners, M_PI, M_PI_2, FALSE))
{
PATH_UnlockPath( pPath );
return FALSE;
}
pointTemp.x = corners[1].x-ell_width/2;
pointTemp.y = corners[1].y;
if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
{
PATH_UnlockPath( pPath );
return FALSE;
}
ellCorners[0].x = corners[1].x-ell_width;
ellCorners[1].x = corners[1].x;
if(!PATH_DoArcPart(pPath, ellCorners, M_PI_2, 0, FALSE))
{
PATH_UnlockPath( pPath );
return FALSE;
}
IntGdiCloseFigure(pPath);
PATH_UnlockPath( pPath );
return TRUE;
}
/* PATH_Ellipse
*
* Should be called when a call to Ellipse is performed on a DC that has
* an open path. This adds four Bezier splines representing the ellipse
* to the path. Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_Ellipse ( PDC dc, INT x1, INT y1, INT x2, INT y2 )
{
PPATH pPath;
/* TODO: This should probably be revised to call PATH_AngleArc */
/* (once it exists) */
BOOL Ret = PATH_Arc ( dc, x1, y1, x2, y2, x1, (y1+y2)/2, x1, (y1+y2)/2, GdiTypeArc );
if (Ret)
{
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
IntGdiCloseFigure(pPath);
PATH_UnlockPath( pPath );
}
return Ret;
}
/* PATH_Arc
*
* Should be called when a call to Arc is performed on a DC that has
* an open path. This adds up to five Bezier splines representing the arc
* to the path. When 'lines' is 1, we add 1 extra line to get a chord,
* when 'lines' is 2, we add 2 extra lines to get a pie, and when 'lines' is
* -1 we add 1 extra line from the current DC position to the starting position
* of the arc before drawing the arc itself (arcto). Returns TRUE if successful,
* else FALSE.
*/
BOOL
FASTCALL
PATH_Arc ( PDC dc, INT x1, INT y1, INT x2, INT y2,
INT xStart, INT yStart, INT xEnd, INT yEnd, INT lines)
{
double angleStart, angleEnd, angleStartQuadrant, angleEndQuadrant=0.0;
/* Initialize angleEndQuadrant to silence gcc's warning */
double x, y;
FLOAT_POINT corners[2], pointStart, pointEnd;
POINT centre, pointCurPos;
BOOL start, end, Ret = TRUE;
INT temp;
BOOL clockwise;
PPATH pPath;
/* FIXME: This function should check for all possible error returns */
/* FIXME: Do we have to respect newStroke? */
ASSERT ( dc );
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
clockwise = ((dc->dclevel.flPath & DCPATH_CLOCKWISE) != 0);
/* Check that path is open */
if ( pPath->state != PATH_Open )
{
Ret = FALSE;
goto ArcExit;
}
/* Check for zero height / width */
/* FIXME: Only in GM_COMPATIBLE? */
if ( x1==x2 || y1==y2 )
{
Ret = TRUE;
goto ArcExit;
}
/* Convert points to device coordinates */
corners[0].x=(FLOAT)x1;
corners[0].y=(FLOAT)y1;
corners[1].x=(FLOAT)x2;
corners[1].y=(FLOAT)y2;
pointStart.x=(FLOAT)xStart;
pointStart.y=(FLOAT)yStart;
pointEnd.x=(FLOAT)xEnd;
pointEnd.y=(FLOAT)yEnd;
INTERNAL_LPTODP_FLOAT(dc, corners);
INTERNAL_LPTODP_FLOAT(dc, corners+1);
INTERNAL_LPTODP_FLOAT(dc, &pointStart);
INTERNAL_LPTODP_FLOAT(dc, &pointEnd);
/* Make sure first corner is top left and second corner is bottom right */
if ( corners[0].x > corners[1].x )
{
temp=corners[0].x;
corners[0].x=corners[1].x;
corners[1].x=temp;
}
if ( corners[0].y > corners[1].y )
{
temp=corners[0].y;
corners[0].y=corners[1].y;
corners[1].y=temp;
}
/* Compute start and end angle */
PATH_NormalizePoint(corners, &pointStart, &x, &y);
angleStart=atan2(y, x);
PATH_NormalizePoint(corners, &pointEnd, &x, &y);
angleEnd=atan2(y, x);
/* Make sure the end angle is "on the right side" of the start angle */
if ( clockwise )
{
if ( angleEnd <= angleStart )
{
angleEnd+=2*M_PI;
ASSERT(angleEnd>=angleStart);
}
}
else
{
if(angleEnd>=angleStart)
{
angleEnd-=2*M_PI;
ASSERT(angleEnd<=angleStart);
}
}
/* In GM_COMPATIBLE, don't include bottom and right edges */
if (dc->pdcattr->iGraphicsMode == GM_COMPATIBLE )
{
corners[1].x--;
corners[1].y--;
}
/* arcto: Add a PT_MOVETO only if this is the first entry in a stroke */
if(lines==GdiTypeArcTo && pPath->newStroke) // -1
{
pPath->newStroke=FALSE;
IntGetCurrentPositionEx ( dc, &pointCurPos );
CoordLPtoDP(dc, &pointCurPos);
if(!PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO))
{
Ret = FALSE;
goto ArcExit;
}
}
/* Add the arc to the path with one Bezier spline per quadrant that the
* arc spans */
start=TRUE;
end=FALSE;
do
{
/* Determine the start and end angles for this quadrant */
if(start)
{
angleStartQuadrant=angleStart;
if ( clockwise )
angleEndQuadrant=(floor(angleStart/M_PI_2)+1.0)*M_PI_2;
else
angleEndQuadrant=(ceil(angleStart/M_PI_2)-1.0)*M_PI_2;
}
else
{
angleStartQuadrant=angleEndQuadrant;
if ( clockwise )
angleEndQuadrant+=M_PI_2;
else
angleEndQuadrant-=M_PI_2;
}
/* Have we reached the last part of the arc? */
if ( (clockwise && angleEnd<angleEndQuadrant)
|| (!clockwise && angleEnd>angleEndQuadrant)
)
{
/* Adjust the end angle for this quadrant */
angleEndQuadrant = angleEnd;
end = TRUE;
}
/* Add the Bezier spline to the path */
PATH_DoArcPart ( pPath, corners, angleStartQuadrant, angleEndQuadrant,
start ? (lines==GdiTypeArcTo ? PT_LINETO : PT_MOVETO) : FALSE ); // -1
start = FALSE;
} while(!end);
/* chord: close figure. pie: add line and close figure */
if (lines==GdiTypeChord) // 1
{
IntGdiCloseFigure(pPath);
}
else if (lines==GdiTypePie) // 2
{
centre.x = (corners[0].x+corners[1].x)/2;
centre.y = (corners[0].y+corners[1].y)/2;
if(!PATH_AddEntry(pPath, &centre, PT_LINETO | PT_CLOSEFIGURE))
Ret = FALSE;
}
ArcExit:
PATH_UnlockPath( pPath );
return Ret;
}
BOOL
FASTCALL
PATH_PolyBezierTo ( PDC dc, const POINT *pts, DWORD cbPoints )
{
POINT pt;
ULONG i;
PPATH pPath;
ASSERT ( dc );
ASSERT ( pts );
ASSERT ( cbPoints );
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
/* Check that path is open */
if ( pPath->state != PATH_Open )
{
PATH_UnlockPath( pPath );
return FALSE;
}
/* Add a PT_MOVETO if necessary */
if ( pPath->newStroke )
{
pPath->newStroke=FALSE;
IntGetCurrentPositionEx ( dc, &pt );
CoordLPtoDP ( dc, &pt );
if ( !PATH_AddEntry(pPath, &pt, PT_MOVETO) )
{
PATH_UnlockPath( pPath );
return FALSE;
}
}
for(i = 0; i < cbPoints; i++)
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
PATH_AddEntry(pPath, &pt, PT_BEZIERTO);
}
PATH_UnlockPath( pPath );
return TRUE;
}
BOOL
FASTCALL
PATH_PolyBezier ( PDC dc, const POINT *pts, DWORD cbPoints )
{
POINT pt;
ULONG i;
PPATH pPath;
ASSERT ( dc );
ASSERT ( pts );
ASSERT ( cbPoints );
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
/* Check that path is open */
if ( pPath->state != PATH_Open )
{
PATH_UnlockPath( pPath );
return FALSE;
}
for ( i = 0; i < cbPoints; i++ )
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
PATH_AddEntry ( pPath, &pt, (i == 0) ? PT_MOVETO : PT_BEZIERTO );
}
PATH_UnlockPath( pPath );
return TRUE;
}
BOOL
FASTCALL
PATH_Polyline ( PDC dc, const POINT *pts, DWORD cbPoints )
{
POINT pt;
ULONG i;
PPATH pPath;
ASSERT ( dc );
ASSERT ( pts );
ASSERT ( cbPoints );
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
/* Check that path is open */
if ( pPath->state != PATH_Open )
{
PATH_UnlockPath( pPath );
return FALSE;
}
for ( i = 0; i < cbPoints; i++ )
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_LINETO);
}
PATH_UnlockPath( pPath );
return TRUE;
}
BOOL
FASTCALL
PATH_PolylineTo ( PDC dc, const POINT *pts, DWORD cbPoints )
{
POINT pt;
ULONG i;
PPATH pPath;
ASSERT ( dc );
ASSERT ( pts );
ASSERT ( cbPoints );
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
/* Check that path is open */
if ( pPath->state != PATH_Open )
{
PATH_UnlockPath( pPath );
return FALSE;
}
/* Add a PT_MOVETO if necessary */
if ( pPath->newStroke )
{
pPath->newStroke = FALSE;
IntGetCurrentPositionEx ( dc, &pt );
CoordLPtoDP ( dc, &pt );
if ( !PATH_AddEntry(pPath, &pt, PT_MOVETO) )
{
PATH_UnlockPath( pPath );
return FALSE;
}
}
for(i = 0; i < cbPoints; i++)
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
PATH_AddEntry(pPath, &pt, PT_LINETO);
}
PATH_UnlockPath( pPath );
return TRUE;
}
BOOL
FASTCALL
PATH_Polygon ( PDC dc, const POINT *pts, DWORD cbPoints )
{
POINT pt;
ULONG i;
PPATH pPath;
ASSERT ( dc );
ASSERT ( pts );
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
/* Check that path is open */
if ( pPath->state != PATH_Open )
{
PATH_UnlockPath( pPath );
return FALSE;
}
for(i = 0; i < cbPoints; i++)
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO :
((i == cbPoints-1) ? PT_LINETO | PT_CLOSEFIGURE :
PT_LINETO));
}
PATH_UnlockPath( pPath );
return TRUE;
}
BOOL
FASTCALL
PATH_PolyPolygon ( PDC dc, const POINT* pts, const INT* counts, UINT polygons )
{
POINT pt, startpt;
ULONG poly, point, i;
PPATH pPath;
ASSERT ( dc );
ASSERT ( pts );
ASSERT ( counts );
ASSERT ( polygons );
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
/* Check that path is open */
if ( pPath->state != PATH_Open )
{
PATH_UnlockPath( pPath );
return FALSE;
}
for(i = 0, poly = 0; poly < polygons; poly++)
{
for(point = 0; point < (ULONG) counts[poly]; point++, i++)
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
if(point == 0) startpt = pt;
PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO);
}
/* win98 adds an extra line to close the figure for some reason */
PATH_AddEntry(pPath, &startpt, PT_LINETO | PT_CLOSEFIGURE);
}
PATH_UnlockPath( pPath );
return TRUE;
}
BOOL
FASTCALL
PATH_PolyPolyline ( PDC dc, const POINT* pts, const DWORD* counts, DWORD polylines )
{
POINT pt;
ULONG poly, point, i;
PPATH pPath;
ASSERT ( dc );
ASSERT ( pts );
ASSERT ( counts );
ASSERT ( polylines );
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
/* Check that path is open */
if ( pPath->state != PATH_Open )
{
PATH_UnlockPath( pPath );
return FALSE;
}
for(i = 0, poly = 0; poly < polylines; poly++)
{
for(point = 0; point < counts[poly]; point++, i++)
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO);
}
}
PATH_UnlockPath( pPath );
return TRUE;
}
/* PATH_CheckCorners
*
* Helper function for PATH_RoundRect() and PATH_Rectangle()
*/
BOOL PATH_CheckCorners(DC *dc, POINT corners[], INT x1, INT y1, INT x2, INT y2)
{
INT temp;
PDC_ATTR pdcattr = dc->pdcattr;
/* Convert points to device coordinates */
corners[0].x=x1;
corners[0].y=y1;
corners[1].x=x2;
corners[1].y=y2;
CoordLPtoDP(dc, &corners[0]);
CoordLPtoDP(dc, &corners[1]);
/* Make sure first corner is top left and second corner is bottom right */
if(corners[0].x>corners[1].x)
{
temp=corners[0].x;
corners[0].x=corners[1].x;
corners[1].x=temp;
}
if(corners[0].y>corners[1].y)
{
temp=corners[0].y;
corners[0].y=corners[1].y;
corners[1].y=temp;
}
/* In GM_COMPATIBLE, don't include bottom and right edges */
if(pdcattr->iGraphicsMode==GM_COMPATIBLE)
{
corners[1].x--;
corners[1].y--;
}
return TRUE;
}
/* PATH_AddFlatBezier
*
*/
BOOL
FASTCALL
PATH_AddFlatBezier ( PPATH pPath, POINT *pt, BOOL closed )
{
POINT *pts;
INT no, i;
pts = GDI_Bezier( pt, 4, &no );
if ( !pts ) return FALSE;
for(i = 1; i < no; i++)
PATH_AddEntry(pPath, &pts[i], (i == no-1 && closed) ? PT_LINETO | PT_CLOSEFIGURE : PT_LINETO);
ExFreePoolWithTag(pts, TAG_BEZIER);
return TRUE;
}
/* PATH_FlattenPath
*
* Replaces Beziers with line segments
*
*/
BOOL
FASTCALL
PATH_FlattenPath(PPATH pPath)
{
PATH newPath;
INT srcpt;
RtlZeroMemory(&newPath, sizeof(newPath));
newPath.state = PATH_Open;
for(srcpt = 0; srcpt < pPath->numEntriesUsed; srcpt++) {
switch(pPath->pFlags[srcpt] & ~PT_CLOSEFIGURE) {
case PT_MOVETO:
case PT_LINETO:
PATH_AddEntry(&newPath, &pPath->pPoints[srcpt], pPath->pFlags[srcpt]);
break;
case PT_BEZIERTO:
PATH_AddFlatBezier(&newPath, &pPath->pPoints[srcpt-1], pPath->pFlags[srcpt+2] & PT_CLOSEFIGURE);
srcpt += 2;
break;
}
}
newPath.state = PATH_Closed;
PATH_AssignGdiPath(pPath, &newPath);
PATH_EmptyPath(&newPath);
return TRUE;
}
/* PATH_PathToRegion
*
* Creates a region from the specified path using the specified polygon
* filling mode. The path is left unchanged. A handle to the region that
* was created is stored in *pHrgn. If successful, TRUE is returned; if an
* error occurs, SetLastError is called with the appropriate value and
* FALSE is returned.
*/
BOOL
FASTCALL
PATH_PathToRegion ( PPATH pPath, INT nPolyFillMode, HRGN *pHrgn )
{
int numStrokes, iStroke, i;
PULONG pNumPointsInStroke;
HRGN hrgn = 0;
ASSERT(pPath!=NULL);
ASSERT(pHrgn!=NULL);
PATH_FlattenPath ( pPath );
/* FIXME: What happens when number of points is zero? */
/* First pass: Find out how many strokes there are in the path */
/* FIXME: We could eliminate this with some bookkeeping in GdiPath */
numStrokes=0;
for(i=0; i<pPath->numEntriesUsed; i++)
if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO)
numStrokes++;
/* Allocate memory for number-of-points-in-stroke array */
pNumPointsInStroke = ExAllocatePoolWithTag(PagedPool, sizeof(ULONG) * numStrokes, TAG_PATH);
if(!pNumPointsInStroke)
{
SetLastWin32Error(ERROR_NOT_ENOUGH_MEMORY);
return FALSE;
}
/* Second pass: remember number of points in each polygon */
iStroke=-1; /* Will get incremented to 0 at beginning of first stroke */
for(i=0; i<pPath->numEntriesUsed; i++)
{
/* Is this the beginning of a new stroke? */
if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO)
{
iStroke++;
pNumPointsInStroke[iStroke]=0;
}
pNumPointsInStroke[iStroke]++;
}
/* Create a region from the strokes */
hrgn = IntCreatePolyPolygonRgn( pPath->pPoints,
pNumPointsInStroke,
numStrokes,
nPolyFillMode);
if(hrgn==(HRGN)0)
{
SetLastWin32Error(ERROR_NOT_ENOUGH_MEMORY);
return FALSE;
}
/* Free memory for number-of-points-in-stroke array */
ExFreePoolWithTag(pNumPointsInStroke, TAG_PATH);
/* Success! */
*pHrgn=hrgn;
return TRUE;
}
/* PATH_EmptyPath
*
* Removes all entries from the path and sets the path state to PATH_Null.
*/
VOID
FASTCALL
PATH_EmptyPath ( PPATH pPath )
{
ASSERT(pPath!=NULL);
pPath->state=PATH_Null;
pPath->numEntriesUsed=0;
}
/* PATH_AddEntry
*
* Adds an entry to the path. For "flags", pass either PT_MOVETO, PT_LINETO
* or PT_BEZIERTO, optionally ORed with PT_CLOSEFIGURE. Returns TRUE if
* successful, FALSE otherwise (e.g. if not enough memory was available).
*/
BOOL
FASTCALL
PATH_AddEntry ( PPATH pPath, const POINT *pPoint, BYTE flags )
{
ASSERT(pPath!=NULL);
/* FIXME: If newStroke is true, perhaps we want to check that we're
* getting a PT_MOVETO
*/
/* Check that path is open */
if ( pPath->state != PATH_Open )
return FALSE;
/* Reserve enough memory for an extra path entry */
if ( !PATH_ReserveEntries(pPath, pPath->numEntriesUsed+1) )
return FALSE;
/* Store information in path entry */
pPath->pPoints[pPath->numEntriesUsed]=*pPoint;
pPath->pFlags[pPath->numEntriesUsed]=flags;
/* If this is PT_CLOSEFIGURE, we have to start a new stroke next time */
if((flags & PT_CLOSEFIGURE) == PT_CLOSEFIGURE)
pPath->newStroke=TRUE;
/* Increment entry count */
pPath->numEntriesUsed++;
return TRUE;
}
/* PATH_ReserveEntries
*
* Ensures that at least "numEntries" entries (for points and flags) have
* been allocated; allocates larger arrays and copies the existing entries
* to those arrays, if necessary. Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_ReserveEntries ( PPATH pPath, INT numEntries )
{
INT numEntriesToAllocate;
POINT *pPointsNew;
BYTE *pFlagsNew;
ASSERT(pPath!=NULL);
ASSERT(numEntries>=0);
/* Do we have to allocate more memory? */
if(numEntries > pPath->numEntriesAllocated)
{
/* Find number of entries to allocate. We let the size of the array
* grow exponentially, since that will guarantee linear time
* complexity. */
if(pPath->numEntriesAllocated)
{
numEntriesToAllocate=pPath->numEntriesAllocated;
while(numEntriesToAllocate<numEntries)
numEntriesToAllocate=numEntriesToAllocate*GROW_FACTOR_NUMER/GROW_FACTOR_DENOM;
} else
numEntriesToAllocate=numEntries;
/* Allocate new arrays */
pPointsNew=(POINT *)ExAllocatePoolWithTag(PagedPool, numEntriesToAllocate * sizeof(POINT), TAG_PATH);
if(!pPointsNew)
return FALSE;
pFlagsNew=(BYTE *)ExAllocatePoolWithTag(PagedPool, numEntriesToAllocate * sizeof(BYTE), TAG_PATH);
if(!pFlagsNew)
{
ExFreePoolWithTag(pPointsNew, TAG_PATH);
return FALSE;
}
/* Copy old arrays to new arrays and discard old arrays */
if(pPath->pPoints)
{
ASSERT(pPath->pFlags);
memcpy(pPointsNew, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed);
memcpy(pFlagsNew, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed);
ExFreePoolWithTag(pPath->pPoints, TAG_PATH);
ExFreePoolWithTag(pPath->pFlags, TAG_PATH);
}
pPath->pPoints=pPointsNew;
pPath->pFlags=pFlagsNew;
pPath->numEntriesAllocated=numEntriesToAllocate;
}
return TRUE;
}
/* PATH_DoArcPart
*
* Creates a Bezier spline that corresponds to part of an arc and appends the
* corresponding points to the path. The start and end angles are passed in
* "angleStart" and "angleEnd"; these angles should span a quarter circle
* at most. If "startEntryType" is non-zero, an entry of that type for the first
* control point is added to the path; otherwise, it is assumed that the current
* position is equal to the first control point.
*/
BOOL
FASTCALL
PATH_DoArcPart ( PPATH pPath, FLOAT_POINT corners[],
double angleStart, double angleEnd, BYTE startEntryType )
{
double halfAngle, a;
double xNorm[4], yNorm[4];
POINT point;
int i;
ASSERT(fabs(angleEnd-angleStart)<=M_PI_2);
/* FIXME: Is there an easier way of computing this? */
/* Compute control points */
halfAngle=(angleEnd-angleStart)/2.0;
if(fabs(halfAngle)>1e-8)
{
a=4.0/3.0*(1-cos(halfAngle))/sin(halfAngle);
xNorm[0]=cos(angleStart);
yNorm[0]=sin(angleStart);
xNorm[1]=xNorm[0] - a*yNorm[0];
yNorm[1]=yNorm[0] + a*xNorm[0];
xNorm[3]=cos(angleEnd);
yNorm[3]=sin(angleEnd);
xNorm[2]=xNorm[3] + a*yNorm[3];
yNorm[2]=yNorm[3] - a*xNorm[3];
} else
for(i=0; i<4; i++)
{
xNorm[i]=cos(angleStart);
yNorm[i]=sin(angleStart);
}
/* Add starting point to path if desired */
if(startEntryType)
{
PATH_ScaleNormalizedPoint(corners, xNorm[0], yNorm[0], &point);
if(!PATH_AddEntry(pPath, &point, startEntryType))
return FALSE;
}
/* Add remaining control points */
for(i=1; i<4; i++)
{
PATH_ScaleNormalizedPoint(corners, xNorm[i], yNorm[i], &point);
if(!PATH_AddEntry(pPath, &point, PT_BEZIERTO))
return FALSE;
}
return TRUE;
}
/* PATH_ScaleNormalizedPoint
*
* Scales a normalized point (x, y) with respect to the box whose corners are
* passed in "corners". The point is stored in "*pPoint". The normalized
* coordinates (-1.0, -1.0) correspond to corners[0], the coordinates
* (1.0, 1.0) correspond to corners[1].
*/
VOID
FASTCALL
PATH_ScaleNormalizedPoint ( FLOAT_POINT corners[], double x,
double y, POINT *pPoint )
{
ASSERT ( corners );
ASSERT ( pPoint );
pPoint->x=GDI_ROUND( (double)corners[0].x + (double)(corners[1].x-corners[0].x)*0.5*(x+1.0) );
pPoint->y=GDI_ROUND( (double)corners[0].y + (double)(corners[1].y-corners[0].y)*0.5*(y+1.0) );
}
/* PATH_NormalizePoint
*
* Normalizes a point with respect to the box whose corners are passed in
* corners. The normalized coordinates are stored in *pX and *pY.
*/
VOID
FASTCALL
PATH_NormalizePoint ( FLOAT_POINT corners[],
const FLOAT_POINT *pPoint,
double *pX, double *pY)
{
ASSERT ( corners );
ASSERT ( pPoint );
ASSERT ( pX );
ASSERT ( pY );
*pX=(double)(pPoint->x-corners[0].x)/(double)(corners[1].x-corners[0].x) * 2.0 - 1.0;
*pY=(double)(pPoint->y-corners[0].y)/(double)(corners[1].y-corners[0].y) * 2.0 - 1.0;
}
BOOL FASTCALL PATH_StrokePath(DC *dc, PPATH pPath)
{
BOOL ret = FALSE;
INT i=0;
INT nLinePts, nAlloc;
POINT *pLinePts = NULL;
POINT ptViewportOrg, ptWindowOrg;
SIZE szViewportExt, szWindowExt;
DWORD mapMode, graphicsMode;
XFORM xform;
PDC_ATTR pdcattr = dc->pdcattr;
DPRINT("Enter %s\n", __FUNCTION__);
if (pPath->state != PATH_Closed)
return FALSE;
/* Save the mapping mode info */
mapMode = pdcattr->iMapMode;
DC_vUpdateViewportExt(dc);
szViewportExt = dc->pdcattr->szlViewportExt;
ptViewportOrg = dc->pdcattr->ptlViewportOrg;
szWindowExt = dc->pdcattr->szlWindowExt;
ptWindowOrg = dc->pdcattr->ptlWindowOrg;
MatrixS2XForm(&xform, &dc->dclevel.mxWorldToPage);
/* Set MM_TEXT */
pdcattr->iMapMode = MM_TEXT;
pdcattr->ptlViewportOrg.x = 0;
pdcattr->ptlViewportOrg.y = 0;
pdcattr->ptlWindowOrg.x = 0;
pdcattr->ptlWindowOrg.y = 0;
graphicsMode = pdcattr->iGraphicsMode;
pdcattr->iGraphicsMode = GM_ADVANCED;
IntGdiModifyWorldTransform(dc, &xform, MWT_IDENTITY);
pdcattr->iGraphicsMode = graphicsMode;
/* Allocate enough memory for the worst case without beziers (one PT_MOVETO
* and the rest PT_LINETO with PT_CLOSEFIGURE at the end) plus some buffer
* space in case we get one to keep the number of reallocations small. */
nAlloc = pPath->numEntriesUsed + 1 + 300;
pLinePts = ExAllocatePoolWithTag(PagedPool, nAlloc * sizeof(POINT), TAG_PATH);
if(!pLinePts)
{
DPRINT1("Can't allocate pool!\n");
SetLastWin32Error(ERROR_NOT_ENOUGH_MEMORY);
goto end;
}
nLinePts = 0;
for(i = 0; i < pPath->numEntriesUsed; i++)
{
if((i == 0 || (pPath->pFlags[i-1] & PT_CLOSEFIGURE))
&& (pPath->pFlags[i] != PT_MOVETO))
{
DPRINT1("Expected PT_MOVETO %s, got path flag %d\n",
i == 0 ? "as first point" : "after PT_CLOSEFIGURE",
(INT)pPath->pFlags[i]);
goto end;
}
switch(pPath->pFlags[i])
{
case PT_MOVETO:
DPRINT("Got PT_MOVETO (%ld, %ld)\n",
pPath->pPoints[i].x, pPath->pPoints[i].y);
if(nLinePts >= 2) IntGdiPolyline(dc, pLinePts, nLinePts);
nLinePts = 0;
pLinePts[nLinePts++] = pPath->pPoints[i];
break;
case PT_LINETO:
case (PT_LINETO | PT_CLOSEFIGURE):
DPRINT("Got PT_LINETO (%ld, %ld)\n",
pPath->pPoints[i].x, pPath->pPoints[i].y);
pLinePts[nLinePts++] = pPath->pPoints[i];
break;
case PT_BEZIERTO:
DPRINT("Got PT_BEZIERTO\n");
if(pPath->pFlags[i+1] != PT_BEZIERTO ||
(pPath->pFlags[i+2] & ~PT_CLOSEFIGURE) != PT_BEZIERTO)
{
DPRINT1("Path didn't contain 3 successive PT_BEZIERTOs\n");
ret = FALSE;
goto end;
}
else
{
INT nBzrPts, nMinAlloc;
POINT *pBzrPts = GDI_Bezier(&pPath->pPoints[i-1], 4, &nBzrPts);
/* Make sure we have allocated enough memory for the lines of
* this bezier and the rest of the path, assuming we won't get
* another one (since we won't reallocate again then). */
nMinAlloc = nLinePts + (pPath->numEntriesUsed - i) + nBzrPts;
if(nAlloc < nMinAlloc)
{
// Reallocate memory
POINT *Realloc = NULL;
nAlloc = nMinAlloc * 2;
Realloc = ExAllocatePoolWithTag(PagedPool,
nAlloc * sizeof(POINT),
TAG_PATH);
if(!Realloc)
{
DPRINT1("Can't allocate pool!\n");
goto end;
}
memcpy(Realloc, pLinePts, nLinePts*sizeof(POINT));
ExFreePoolWithTag(pLinePts, TAG_PATH);
pLinePts = Realloc;
}
memcpy(&pLinePts[nLinePts], &pBzrPts[1], (nBzrPts - 1) * sizeof(POINT));
nLinePts += nBzrPts - 1;
ExFreePoolWithTag(pBzrPts, TAG_BEZIER);
i += 2;
}
break;
default:
DPRINT1("Got path flag %d (not supported)\n", (INT)pPath->pFlags[i]);
goto end;
}
if(pPath->pFlags[i] & PT_CLOSEFIGURE)
{
pLinePts[nLinePts++] = pLinePts[0];
}
}
if(nLinePts >= 2)
IntGdiPolyline(dc, pLinePts, nLinePts);
ret = TRUE;
end:
if(pLinePts) ExFreePoolWithTag(pLinePts, TAG_PATH);
/* Restore the old mapping mode */
pdcattr->iMapMode = mapMode;
pdcattr->szlWindowExt.cx = szWindowExt.cx;
pdcattr->szlWindowExt.cy = szWindowExt.cy;
pdcattr->ptlWindowOrg.x = ptWindowOrg.x;
pdcattr->ptlWindowOrg.y = ptWindowOrg.y;
pdcattr->szlViewportExt.cx = szViewportExt.cx;
pdcattr->szlViewportExt.cy = szViewportExt.cy;
pdcattr->ptlViewportOrg.x = ptViewportOrg.x;
pdcattr->ptlViewportOrg.y = ptViewportOrg.y;
/* Restore the world transform */
XForm2MatrixS(&dc->dclevel.mxWorldToPage, &xform);
/* If we've moved the current point then get its new position
which will be in device (MM_TEXT) co-ords, convert it to
logical co-ords and re-set it. This basically updates
dc->CurPosX|Y so that their values are in the correct mapping
mode.
*/
if(i > 0)
{
POINT pt;
IntGetCurrentPositionEx(dc, &pt);
IntDPtoLP(dc, &pt, 1);
IntGdiMoveToEx(dc, pt.x, pt.y, NULL, FALSE);
}
DPRINT("Leave %s, ret=%d\n", __FUNCTION__, ret);
return ret;
}
#define round(x) ((int)((x)>0?(x)+0.5:(x)-0.5))
static
BOOL
FASTCALL
PATH_WidenPath(DC *dc)
{
INT i, j, numStrokes, penWidth, penWidthIn, penWidthOut, size, penStyle;
BOOL ret = FALSE;
PPATH pPath, pNewPath, *pStrokes = NULL, *pOldStrokes, pUpPath, pDownPath;
EXTLOGPEN *elp;
DWORD obj_type, joint, endcap, penType;
PDC_ATTR pdcattr = dc->pdcattr;
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath) return FALSE;
if(pPath->state == PATH_Open)
{
PATH_UnlockPath( pPath );
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
return FALSE;
}
PATH_FlattenPath(pPath);
size = IntGdiGetObject( pdcattr->hpen, 0, NULL);
if (!size)
{
PATH_UnlockPath( pPath );
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
return FALSE;
}
elp = ExAllocatePoolWithTag(PagedPool, size, TAG_PATH);
(VOID) IntGdiGetObject( pdcattr->hpen, size, elp);
obj_type = GDIOBJ_GetObjectType(pdcattr->hpen);
if(obj_type == GDI_OBJECT_TYPE_PEN)
{
penStyle = ((LOGPEN*)elp)->lopnStyle;
}
else if(obj_type == GDI_OBJECT_TYPE_EXTPEN)
{
penStyle = elp->elpPenStyle;
}
else
{
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
ExFreePoolWithTag(elp, TAG_PATH);
PATH_UnlockPath( pPath );
return FALSE;
}
penWidth = elp->elpWidth;
ExFreePoolWithTag(elp, TAG_PATH);
endcap = (PS_ENDCAP_MASK & penStyle);
joint = (PS_JOIN_MASK & penStyle);
penType = (PS_TYPE_MASK & penStyle);
/* The function cannot apply to cosmetic pens */
if(obj_type == GDI_OBJECT_TYPE_EXTPEN && penType == PS_COSMETIC)
{
PATH_UnlockPath( pPath );
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
return FALSE;
}
penWidthIn = penWidth / 2;
penWidthOut = penWidth / 2;
if(penWidthIn + penWidthOut < penWidth)
penWidthOut++;
numStrokes = 0;
for(i = 0, j = 0; i < pPath->numEntriesUsed; i++, j++)
{
POINT point;
if((i == 0 || (pPath->pFlags[i-1] & PT_CLOSEFIGURE)) &&
(pPath->pFlags[i] != PT_MOVETO))
{
DPRINT1("Expected PT_MOVETO %s, got path flag %c\n",
i == 0 ? "as first point" : "after PT_CLOSEFIGURE",
pPath->pFlags[i]);
return FALSE;
}
switch(pPath->pFlags[i])
{
case PT_MOVETO:
if(numStrokes > 0)
{
pStrokes[numStrokes - 1]->state = PATH_Closed;
}
numStrokes++;
j = 0;
if (numStrokes == 1)
pStrokes = ExAllocatePoolWithTag(PagedPool, numStrokes * sizeof(PPATH), TAG_PATH);
else
{
pOldStrokes = pStrokes; // Save old pointer.
pStrokes = ExAllocatePoolWithTag(PagedPool, numStrokes * sizeof(PPATH), TAG_PATH);
if (!pStrokes) return FALSE;
RtlCopyMemory(pStrokes, pOldStrokes, numStrokes * sizeof(PPATH));
ExFreePoolWithTag(pOldStrokes, TAG_PATH); // Free old pointer.
}
if (!pStrokes) return FALSE;
pStrokes[numStrokes - 1] = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH);
PATH_InitGdiPath(pStrokes[numStrokes - 1]);
pStrokes[numStrokes - 1]->state = PATH_Open;
case PT_LINETO:
case (PT_LINETO | PT_CLOSEFIGURE):
point.x = pPath->pPoints[i].x;
point.y = pPath->pPoints[i].y;
PATH_AddEntry(pStrokes[numStrokes - 1], &point, pPath->pFlags[i]);
break;
case PT_BEZIERTO:
/* should never happen because of the FlattenPath call */
DPRINT1("Should never happen\n");
break;
default:
DPRINT1("Got path flag %c\n", pPath->pFlags[i]);
return FALSE;
}
}
pNewPath = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH);
PATH_InitGdiPath(pNewPath);
pNewPath->state = PATH_Open;
for(i = 0; i < numStrokes; i++)
{
pUpPath = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH);
PATH_InitGdiPath(pUpPath);
pUpPath->state = PATH_Open;
pDownPath = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH);
PATH_InitGdiPath(pDownPath);
pDownPath->state = PATH_Open;
for(j = 0; j < pStrokes[i]->numEntriesUsed; j++)
{
/* Beginning or end of the path if not closed */
if((!(pStrokes[i]->pFlags[pStrokes[i]->numEntriesUsed - 1] & PT_CLOSEFIGURE)) && (j == 0 || j == pStrokes[i]->numEntriesUsed - 1) )
{
/* Compute segment angle */
double xo, yo, xa, ya, theta;
POINT pt;
FLOAT_POINT corners[2];
if(j == 0)
{
xo = pStrokes[i]->pPoints[j].x;
yo = pStrokes[i]->pPoints[j].y;
xa = pStrokes[i]->pPoints[1].x;
ya = pStrokes[i]->pPoints[1].y;
}
else
{
xa = pStrokes[i]->pPoints[j - 1].x;
ya = pStrokes[i]->pPoints[j - 1].y;
xo = pStrokes[i]->pPoints[j].x;
yo = pStrokes[i]->pPoints[j].y;
}
theta = atan2( ya - yo, xa - xo );
switch(endcap)
{
case PS_ENDCAP_SQUARE :
pt.x = xo + round(sqrt(2) * penWidthOut * cos(M_PI_4 + theta));
pt.y = yo + round(sqrt(2) * penWidthOut * sin(M_PI_4 + theta));
PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO) );
pt.x = xo + round(sqrt(2) * penWidthIn * cos(- M_PI_4 + theta));
pt.y = yo + round(sqrt(2) * penWidthIn * sin(- M_PI_4 + theta));
PATH_AddEntry(pUpPath, &pt, PT_LINETO);
break;
case PS_ENDCAP_FLAT :
pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) );
pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) );
PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO));
pt.x = xo - round( penWidthIn * cos(theta + M_PI_2) );
pt.y = yo - round( penWidthIn * sin(theta + M_PI_2) );
PATH_AddEntry(pUpPath, &pt, PT_LINETO);
break;
case PS_ENDCAP_ROUND :
default :
corners[0].x = xo - penWidthIn;
corners[0].y = yo - penWidthIn;
corners[1].x = xo + penWidthOut;
corners[1].y = yo + penWidthOut;
PATH_DoArcPart(pUpPath ,corners, theta + M_PI_2 , theta + 3 * M_PI_4, (j == 0 ? PT_MOVETO : FALSE));
PATH_DoArcPart(pUpPath ,corners, theta + 3 * M_PI_4 , theta + M_PI, FALSE);
PATH_DoArcPart(pUpPath ,corners, theta + M_PI, theta + 5 * M_PI_4, FALSE);
PATH_DoArcPart(pUpPath ,corners, theta + 5 * M_PI_4 , theta + 3 * M_PI_2, FALSE);
break;
}
}
/* Corpse of the path */
else
{
/* Compute angle */
INT previous, next;
double xa, ya, xb, yb, xo, yo;
double alpha, theta, miterWidth;
DWORD _joint = joint;
POINT pt;
PPATH pInsidePath, pOutsidePath;
if(j > 0 && j < pStrokes[i]->numEntriesUsed - 1)
{
previous = j - 1;
next = j + 1;
}
else if (j == 0)
{
previous = pStrokes[i]->numEntriesUsed - 1;
next = j + 1;
}
else
{
previous = j - 1;
next = 0;
}
xo = pStrokes[i]->pPoints[j].x;
yo = pStrokes[i]->pPoints[j].y;
xa = pStrokes[i]->pPoints[previous].x;
ya = pStrokes[i]->pPoints[previous].y;
xb = pStrokes[i]->pPoints[next].x;
yb = pStrokes[i]->pPoints[next].y;
theta = atan2( yo - ya, xo - xa );
alpha = atan2( yb - yo, xb - xo ) - theta;
if (alpha > 0) alpha -= M_PI;
else alpha += M_PI;
if(_joint == PS_JOIN_MITER && dc->dclevel.laPath.eMiterLimit < fabs(1 / sin(alpha/2)))
{
_joint = PS_JOIN_BEVEL;
}
if(alpha > 0)
{
pInsidePath = pUpPath;
pOutsidePath = pDownPath;
}
else if(alpha < 0)
{
pInsidePath = pDownPath;
pOutsidePath = pUpPath;
}
else
{
continue;
}
/* Inside angle points */
if(alpha > 0)
{
pt.x = xo - round( penWidthIn * cos(theta + M_PI_2) );
pt.y = yo - round( penWidthIn * sin(theta + M_PI_2) );
}
else
{
pt.x = xo + round( penWidthIn * cos(theta + M_PI_2) );
pt.y = yo + round( penWidthIn * sin(theta + M_PI_2) );
}
PATH_AddEntry(pInsidePath, &pt, PT_LINETO);
if(alpha > 0)
{
pt.x = xo + round( penWidthIn * cos(M_PI_2 + alpha + theta) );
pt.y = yo + round( penWidthIn * sin(M_PI_2 + alpha + theta) );
}
else
{
pt.x = xo - round( penWidthIn * cos(M_PI_2 + alpha + theta) );
pt.y = yo - round( penWidthIn * sin(M_PI_2 + alpha + theta) );
}
PATH_AddEntry(pInsidePath, &pt, PT_LINETO);
/* Outside angle point */
switch(_joint)
{
case PS_JOIN_MITER :
miterWidth = fabs(penWidthOut / cos(M_PI_2 - fabs(alpha) / 2));
pt.x = xo + round( miterWidth * cos(theta + alpha / 2) );
pt.y = yo + round( miterWidth * sin(theta + alpha / 2) );
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
break;
case PS_JOIN_BEVEL :
if(alpha > 0)
{
pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) );
pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) );
}
else
{
pt.x = xo - round( penWidthOut * cos(theta + M_PI_2) );
pt.y = yo - round( penWidthOut * sin(theta + M_PI_2) );
}
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
if(alpha > 0)
{
pt.x = xo - round( penWidthOut * cos(M_PI_2 + alpha + theta) );
pt.y = yo - round( penWidthOut * sin(M_PI_2 + alpha + theta) );
}
else
{
pt.x = xo + round( penWidthOut * cos(M_PI_2 + alpha + theta) );
pt.y = yo + round( penWidthOut * sin(M_PI_2 + alpha + theta) );
}
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
break;
case PS_JOIN_ROUND :
default :
if(alpha > 0)
{
pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) );
pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) );
}
else
{
pt.x = xo - round( penWidthOut * cos(theta + M_PI_2) );
pt.y = yo - round( penWidthOut * sin(theta + M_PI_2) );
}
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
pt.x = xo + round( penWidthOut * cos(theta + alpha / 2) );
pt.y = yo + round( penWidthOut * sin(theta + alpha / 2) );
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
if(alpha > 0)
{
pt.x = xo - round( penWidthOut * cos(M_PI_2 + alpha + theta) );
pt.y = yo - round( penWidthOut * sin(M_PI_2 + alpha + theta) );
}
else
{
pt.x = xo + round( penWidthOut * cos(M_PI_2 + alpha + theta) );
pt.y = yo + round( penWidthOut * sin(M_PI_2 + alpha + theta) );
}
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
break;
}
}
}
for(j = 0; j < pUpPath->numEntriesUsed; j++)
{
POINT pt;
pt.x = pUpPath->pPoints[j].x;
pt.y = pUpPath->pPoints[j].y;
PATH_AddEntry(pNewPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO));
}
for(j = 0; j < pDownPath->numEntriesUsed; j++)
{
POINT pt;
pt.x = pDownPath->pPoints[pDownPath->numEntriesUsed - j - 1].x;
pt.y = pDownPath->pPoints[pDownPath->numEntriesUsed - j - 1].y;
PATH_AddEntry(pNewPath, &pt, ( (j == 0 && (pStrokes[i]->pFlags[pStrokes[i]->numEntriesUsed - 1] & PT_CLOSEFIGURE)) ? PT_MOVETO : PT_LINETO));
}
PATH_DestroyGdiPath(pStrokes[i]);
ExFreePoolWithTag(pStrokes[i], TAG_PATH);
PATH_DestroyGdiPath(pUpPath);
ExFreePoolWithTag(pUpPath, TAG_PATH);
PATH_DestroyGdiPath(pDownPath);
ExFreePoolWithTag(pDownPath, TAG_PATH);
}
ExFreePoolWithTag(pStrokes, TAG_PATH);
pNewPath->state = PATH_Closed;
if (!(ret = PATH_AssignGdiPath(pPath, pNewPath)))
DPRINT1("Assign path failed\n");
PATH_DestroyGdiPath(pNewPath);
ExFreePoolWithTag(pNewPath, TAG_PATH);
return ret;
}
static inline INT int_from_fixed(FIXED f)
{
return (f.fract >= 0x8000) ? (f.value + 1) : f.value;
}
/**********************************************************************
* PATH_BezierTo
*
* internally used by PATH_add_outline
*/
static
VOID
FASTCALL
PATH_BezierTo(PPATH pPath, POINT *lppt, INT n)
{
if (n < 2) return;
if (n == 2)
{
PATH_AddEntry(pPath, &lppt[1], PT_LINETO);
}
else if (n == 3)
{
PATH_AddEntry(pPath, &lppt[0], PT_BEZIERTO);
PATH_AddEntry(pPath, &lppt[1], PT_BEZIERTO);
PATH_AddEntry(pPath, &lppt[2], PT_BEZIERTO);
}
else
{
POINT pt[3];
INT i = 0;
pt[2] = lppt[0];
n--;
while (n > 2)
{
pt[0] = pt[2];
pt[1] = lppt[i+1];
pt[2].x = (lppt[i+2].x + lppt[i+1].x) / 2;
pt[2].y = (lppt[i+2].y + lppt[i+1].y) / 2;
PATH_BezierTo(pPath, pt, 3);
n--;
i++;
}
pt[0] = pt[2];
pt[1] = lppt[i+1];
pt[2] = lppt[i+2];
PATH_BezierTo(pPath, pt, 3);
}
}
static
BOOL
FASTCALL
PATH_add_outline(PDC dc, INT x, INT y, TTPOLYGONHEADER *header, DWORD size)
{
PPATH pPath;
TTPOLYGONHEADER *start;
POINT pt;
start = header;
pPath = PATH_LockPath(dc->dclevel.hPath);
{
return FALSE;
}
while ((char *)header < (char *)start + size)
{
TTPOLYCURVE *curve;
if (header->dwType != TT_POLYGON_TYPE)
{
DPRINT1("Unknown header type %d\n", header->dwType);
return FALSE;
}
pt.x = x + int_from_fixed(header->pfxStart.x);
pt.y = y - int_from_fixed(header->pfxStart.y);
IntLPtoDP(dc, &pt, 1);
PATH_AddEntry(pPath, &pt, PT_MOVETO);
curve = (TTPOLYCURVE *)(header + 1);
while ((char *)curve < (char *)header + header->cb)
{
/*DPRINT1("curve->wType %d\n", curve->wType);*/
switch(curve->wType)
{
case TT_PRIM_LINE:
{
WORD i;
for (i = 0; i < curve->cpfx; i++)
{
pt.x = x + int_from_fixed(curve->apfx[i].x);
pt.y = y - int_from_fixed(curve->apfx[i].y);
IntLPtoDP(dc, &pt, 1);
PATH_AddEntry(pPath, &pt, PT_LINETO);
}
break;
}
case TT_PRIM_QSPLINE:
case TT_PRIM_CSPLINE:
{
WORD i;
POINTFX ptfx;
POINT *pts = ExAllocatePoolWithTag(PagedPool, (curve->cpfx + 1) * sizeof(POINT), TAG_PATH);
if (!pts) return FALSE;
ptfx = *(POINTFX *)((char *)curve - sizeof(POINTFX));
pts[0].x = x + int_from_fixed(ptfx.x);
pts[0].y = y - int_from_fixed(ptfx.y);
IntLPtoDP(dc, &pts[0], 1);
for (i = 0; i < curve->cpfx; i++)
{
pts[i + 1].x = x + int_from_fixed(curve->apfx[i].x);
pts[i + 1].y = y - int_from_fixed(curve->apfx[i].y);
IntLPtoDP(dc, &pts[i + 1], 1);
}
PATH_BezierTo(pPath, pts, curve->cpfx + 1);
ExFreePoolWithTag(pts, TAG_PATH);
break;
}
default:
DPRINT1("Unknown curve type %04x\n", curve->wType);
return FALSE;
}
curve = (TTPOLYCURVE *)&curve->apfx[curve->cpfx];
}
header = (TTPOLYGONHEADER *)((char *)header + header->cb);
}
IntGdiCloseFigure( pPath );
PATH_UnlockPath( pPath );
return TRUE;
}
/**********************************************************************
* PATH_ExtTextOut
*/
BOOL
FASTCALL
PATH_ExtTextOut(PDC dc, INT x, INT y, UINT flags, const RECTL *lprc,
LPCWSTR str, UINT count, const INT *dx)
{
unsigned int idx;
double cosEsc, sinEsc;
PDC_ATTR pdcattr;
PTEXTOBJ TextObj;
LOGFONTW lf;
POINTL org;
INT offset = 0, xoff = 0, yoff = 0;
if (!count) return TRUE;
pdcattr = dc->pdcattr;
TextObj = RealizeFontInit( pdcattr->hlfntNew);
if ( !TextObj ) return FALSE;
FontGetObject( TextObj, sizeof(lf), &lf);
if (lf.lfEscapement != 0)
{
cosEsc = cos(lf.lfEscapement * M_PI / 1800);
sinEsc = sin(lf.lfEscapement * M_PI / 1800);
} else
{
cosEsc = 1;
sinEsc = 0;
}
IntGdiGetDCOrg(dc, &org);
for (idx = 0; idx < count; idx++)
{
GLYPHMETRICS gm;
DWORD dwSize;
void *outline;
dwSize = ftGdiGetGlyphOutline( dc,
str[idx],
GGO_GLYPH_INDEX | GGO_NATIVE,
&gm,
0,
NULL,
NULL,
TRUE);
if (!dwSize) return FALSE;
outline = ExAllocatePoolWithTag(PagedPool, dwSize, TAG_PATH);
if (!outline) return FALSE;
ftGdiGetGlyphOutline( dc,
str[idx],
GGO_GLYPH_INDEX | GGO_NATIVE,
&gm,
dwSize,
outline,
NULL,
TRUE);
PATH_add_outline(dc, org.x + x + xoff, org.x + y + yoff, outline, dwSize);
ExFreePoolWithTag(outline, TAG_PATH);
if (dx)
{
offset += dx[idx];
xoff = offset * cosEsc;
yoff = offset * -sinEsc;
}
else
{
xoff += gm.gmCellIncX;
yoff += gm.gmCellIncY;
}
}
return TRUE;
}
/***********************************************************************
* Exported functions
*/
BOOL
APIENTRY
NtGdiAbortPath(HDC hDC)
{
PPATH pPath;
PDC dc = DC_LockDc ( hDC );
if ( !dc )
{
SetLastWin32Error(ERROR_INVALID_HANDLE);
return FALSE;
}
pPath = PATH_LockPath(dc->dclevel.hPath);
{
DC_UnlockDc(dc);
return FALSE;
}
PATH_EmptyPath(pPath);
PATH_UnlockPath(pPath);
DC_UnlockDc ( dc );
return TRUE;
}
BOOL
APIENTRY
NtGdiBeginPath( HDC hDC )
{
PPATH pPath;
PDC dc;
dc = DC_LockDc ( hDC );
if ( !dc )
{
SetLastWin32Error(ERROR_INVALID_HANDLE);
return FALSE;
}
/* If path is already open, do nothing. Check if not Save DC state */
if ((dc->dclevel.flPath & DCPATH_ACTIVE) && !(dc->dclevel.flPath & DCPATH_SAVE))
{
DC_UnlockDc ( dc );
return TRUE;
}
if ( dc->dclevel.hPath )
{
DPRINT1("BeginPath 1 0x%x\n", dc->dclevel.hPath);
if ( !(dc->dclevel.flPath & DCPATH_SAVE) )
{ // Remove previous handle.
if (!PATH_Delete(dc->dclevel.hPath))
{
DC_UnlockDc ( dc );
return FALSE;
}
}
else
{ // Clear flags and Handle.
dc->dclevel.flPath &= ~(DCPATH_SAVE|DCPATH_ACTIVE);
dc->dclevel.hPath = NULL;
}
}
pPath = PATH_AllocPathWithHandle();
if (!pPath)
{
SetLastWin32Error(ERROR_NOT_ENOUGH_MEMORY);
return FALSE;
}
dc->dclevel.flPath |= DCPATH_ACTIVE; // Set active ASAP!
dc->dclevel.hPath = pPath->BaseObject.hHmgr;
DPRINT1("BeginPath 2 h 0x%x p 0x%x\n", dc->dclevel.hPath, pPath);
// Path handles are shared. Also due to recursion with in the same thread.
GDIOBJ_UnlockObjByPtr((POBJ)pPath); // Unlock
pPath = PATH_LockPath(dc->dclevel.hPath); // Share Lock.
/* Make sure that path is empty */
PATH_EmptyPath( pPath );
/* Initialize variables for new path */
pPath->newStroke = TRUE;
pPath->state = PATH_Open;
PATH_UnlockPath(pPath);
DC_UnlockDc ( dc );
return TRUE;
}
BOOL
APIENTRY
NtGdiCloseFigure(HDC hDC)
{
BOOL Ret = FALSE; // default to failure
PDC pDc;
PPATH pPath;
DPRINT("Enter %s\n", __FUNCTION__);
pDc = DC_LockDc(hDC);
if (!pDc)
{
SetLastWin32Error(ERROR_INVALID_PARAMETER);
return FALSE;
}
pPath = PATH_LockPath( pDc->dclevel.hPath );
if (!pPath)
{
DC_UnlockDc(pDc);
return FALSE;
}
if (pPath->state==PATH_Open)
{
IntGdiCloseFigure(pPath);
Ret = TRUE;
}
else
{
// FIXME: check if lasterror is set correctly
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
}
PATH_UnlockPath( pPath );
DC_UnlockDc(pDc);
return Ret;
}
BOOL
APIENTRY
NtGdiEndPath(HDC hDC)
{
BOOL ret = TRUE;
PPATH pPath;
PDC dc = DC_LockDc ( hDC );
if ( !dc )
{
SetLastWin32Error(ERROR_INVALID_HANDLE);
return FALSE;
}
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath)
{
DC_UnlockDc ( dc );
return FALSE;
}
/* Check that path is currently being constructed */
if ( (pPath->state != PATH_Open) || !(dc->dclevel.flPath & DCPATH_ACTIVE) )
{
DPRINT1("EndPath ERROR! 0x%x\n", dc->dclevel.hPath);
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
ret = FALSE;
}
/* Set flag to indicate that path is finished */
else
{
DPRINT1("EndPath 0x%x\n", dc->dclevel.hPath);
pPath->state = PATH_Closed;
dc->dclevel.flPath &= ~DCPATH_ACTIVE;
}
PATH_UnlockPath( pPath );
DC_UnlockDc ( dc );
return ret;
}
BOOL
APIENTRY
NtGdiFillPath(HDC hDC)
{
BOOL ret = FALSE;
PPATH pPath;
PDC_ATTR pdcattr;
PDC dc = DC_LockDc ( hDC );
if ( !dc )
{
SetLastWin32Error(ERROR_INVALID_PARAMETER);
return FALSE;
}
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath)
{
DC_UnlockDc ( dc );
return FALSE;
}
DC_vPrepareDCsForBlit(dc, dc->rosdc.CombinedClip->rclBounds,
NULL, dc->rosdc.CombinedClip->rclBounds);
pdcattr = dc->pdcattr;
if (pdcattr->ulDirty_ & (DIRTY_LINE | DC_PEN_DIRTY))
DC_vUpdateLineBrush(dc);
if (pdcattr->ulDirty_ & (DIRTY_FILL | DC_BRUSH_DIRTY))
DC_vUpdateFillBrush(dc);
ret = PATH_FillPath( dc, pPath );
if ( ret )
{
/* FIXME: Should the path be emptied even if conversion
failed? */
PATH_EmptyPath( pPath );
}
PATH_UnlockPath( pPath );
DC_vFinishBlit(dc, NULL);
DC_UnlockDc ( dc );
return ret;
}
BOOL
APIENTRY
NtGdiFlattenPath(HDC hDC)
{
BOOL Ret = FALSE;
DC *pDc;
PPATH pPath;
DPRINT("Enter %s\n", __FUNCTION__);
pDc = DC_LockDc(hDC);
if (!pDc)
{
SetLastWin32Error(ERROR_INVALID_HANDLE);
return FALSE;
}
pPath = PATH_LockPath( pDc->dclevel.hPath );
if (!pPath)
{
DC_UnlockDc ( pDc );
return FALSE;
}
if (pPath->state == PATH_Open)
Ret = PATH_FlattenPath(pPath);
PATH_UnlockPath( pPath );
DC_UnlockDc(pDc);
return Ret;
}
BOOL
APIENTRY
NtGdiGetMiterLimit(
IN HDC hdc,
OUT PDWORD pdwOut)
{
DC *pDc;
gxf_long worker;
NTSTATUS Status = STATUS_SUCCESS;
if (!(pDc = DC_LockDc(hdc)))
{
SetLastWin32Error(ERROR_INVALID_PARAMETER);
return FALSE;
}
worker.f = pDc->dclevel.laPath.eMiterLimit;
if (pdwOut)
{
_SEH2_TRY
{
ProbeForWrite(pdwOut,
sizeof(DWORD),
1);
*pdwOut = worker.l;
}
_SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
{
Status = _SEH2_GetExceptionCode();
}
_SEH2_END;
if (!NT_SUCCESS(Status))
{
SetLastNtError(Status);
DC_UnlockDc(pDc);
return FALSE;
}
}
DC_UnlockDc(pDc);
return TRUE;
}
INT
APIENTRY
NtGdiGetPath(
HDC hDC,
LPPOINT Points,
LPBYTE Types,
INT nSize)
{
INT ret = -1;
PPATH pPath;
DC *dc = DC_LockDc(hDC);
if (!dc)
{
DPRINT1("Can't lock dc!\n");
SetLastWin32Error(ERROR_INVALID_PARAMETER);
return -1;
}
pPath = PATH_LockPath( dc->dclevel.hPath );
if (!pPath)
{
DC_UnlockDc ( dc );
return -1;
}
if (pPath->state != PATH_Closed)
{
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
goto done;
}
if (nSize==0)
{
ret = pPath->numEntriesUsed;
}
else if(nSize<pPath->numEntriesUsed)
{
SetLastWin32Error(ERROR_INVALID_PARAMETER);
goto done;
}
else
{
_SEH2_TRY
{
memcpy(Points, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed);
memcpy(Types, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed);
/* Convert the points to logical coordinates */
IntDPtoLP(dc, Points, pPath->numEntriesUsed);
ret = pPath->numEntriesUsed;
}
_SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
{
SetLastNtError(_SEH2_GetExceptionCode());
}
_SEH2_END
}
done:
PATH_UnlockPath( pPath );
DC_UnlockDc(dc);
return ret;
}
HRGN
APIENTRY
NtGdiPathToRegion(HDC hDC)
{
PPATH pPath;
HRGN hrgnRval = 0;
DC *pDc;
PDC_ATTR pdcattr;
DPRINT("Enter %s\n", __FUNCTION__);
pDc = DC_LockDc(hDC);
if (!pDc)
{
SetLastWin32Error(ERROR_INVALID_PARAMETER);
return NULL;
}
pdcattr = pDc->pdcattr;
pPath = PATH_LockPath( pDc->dclevel.hPath );
if (!pPath)
{
DC_UnlockDc ( pDc );
return NULL;
}
if (pPath->state!=PATH_Closed)
{
//FIXME: check that setlasterror is being called correctly
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
}
else
{
/* FIXME: Should we empty the path even if conversion failed? */
if(PATH_PathToRegion(pPath, pdcattr->jFillMode, &hrgnRval))
PATH_EmptyPath(pPath);
}
PATH_UnlockPath( pPath );
DC_UnlockDc(pDc);
return hrgnRval;
}
BOOL
APIENTRY
NtGdiSetMiterLimit(
IN HDC hdc,
IN DWORD dwNew,
IN OUT OPTIONAL PDWORD pdwOut)
{
DC *pDc;
gxf_long worker, worker1;
NTSTATUS Status = STATUS_SUCCESS;
if (!(pDc = DC_LockDc(hdc)))
{
SetLastWin32Error(ERROR_INVALID_PARAMETER);
return FALSE;
}
worker.l = dwNew;
worker1.f = pDc->dclevel.laPath.eMiterLimit;
pDc->dclevel.laPath.eMiterLimit = worker.f;
if (pdwOut)
{
_SEH2_TRY
{
ProbeForWrite(pdwOut,
sizeof(DWORD),
1);
*pdwOut = worker1.l;
}
_SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
{
Status = _SEH2_GetExceptionCode();
}
_SEH2_END;
if (!NT_SUCCESS(Status))
{
SetLastNtError(Status);
DC_UnlockDc(pDc);
return FALSE;
}
}
DC_UnlockDc(pDc);
return TRUE;
}
BOOL
APIENTRY
NtGdiStrokeAndFillPath(HDC hDC)
{
DC *pDc;
PDC_ATTR pdcattr;
PPATH pPath;
BOOL bRet = FALSE;
DPRINT1("Enter %s\n", __FUNCTION__);
if (!(pDc = DC_LockDc(hDC)))
{
SetLastWin32Error(ERROR_INVALID_PARAMETER);
return FALSE;
}
pPath = PATH_LockPath( pDc->dclevel.hPath );
if (!pPath)
{
DC_UnlockDc ( pDc );
return FALSE;
}
DC_vPrepareDCsForBlit(pDc, pDc->rosdc.CombinedClip->rclBounds,
NULL, pDc->rosdc.CombinedClip->rclBounds);
pdcattr = pDc->pdcattr;
if (pdcattr->ulDirty_ & (DIRTY_FILL | DC_BRUSH_DIRTY))
DC_vUpdateFillBrush(pDc);
if (pdcattr->ulDirty_ & (DIRTY_LINE | DC_PEN_DIRTY))
DC_vUpdateLineBrush(pDc);
bRet = PATH_FillPath(pDc, pPath);
if (bRet) bRet = PATH_StrokePath(pDc, pPath);
if (bRet) PATH_EmptyPath(pPath);
PATH_UnlockPath( pPath );
DC_vFinishBlit(pDc, NULL);
DC_UnlockDc(pDc);
return bRet;
}
BOOL
APIENTRY
NtGdiStrokePath(HDC hDC)
{
DC *pDc;
PDC_ATTR pdcattr;
PPATH pPath;
BOOL bRet = FALSE;
DPRINT("Enter %s\n", __FUNCTION__);
if (!(pDc = DC_LockDc(hDC)))
{
SetLastWin32Error(ERROR_INVALID_PARAMETER);
return FALSE;
}
pPath = PATH_LockPath( pDc->dclevel.hPath );
if (!pPath)
{
DC_UnlockDc ( pDc );
return FALSE;
}
DC_vPrepareDCsForBlit(pDc, pDc->rosdc.CombinedClip->rclBounds,
NULL, pDc->rosdc.CombinedClip->rclBounds);
pdcattr = pDc->pdcattr;
if (pdcattr->ulDirty_ & (DIRTY_LINE | DC_PEN_DIRTY))
DC_vUpdateLineBrush(pDc);
bRet = PATH_StrokePath(pDc, pPath);
DC_vFinishBlit(pDc, NULL);
PATH_EmptyPath(pPath);
PATH_UnlockPath( pPath );
DC_UnlockDc(pDc);
return bRet;
}
BOOL
APIENTRY
NtGdiWidenPath(HDC hDC)
{
BOOL Ret;
PDC pdc = DC_LockDc ( hDC );
if ( !pdc )
{
SetLastWin32Error(ERROR_INVALID_PARAMETER);
return FALSE;
}
Ret = PATH_WidenPath(pdc);
DC_UnlockDc ( pdc );
return Ret;
}
/* EOF */