reactos/sdk/lib/fslib/vfatlib/check/fat.c
Pierre Schweitzer b0bf7dfb62
[VFATLIB] Never touch the file system if not in interactive or RW mode.
It's critical not to perform any write on a volume without an exclusive lock on it.
That lock is only acquired if ChkDsk is started in RW mode.
Also added an assert in write routine, to make sure that when we're about to perform
a write operation, we're really allowed to do so.

This will avoid volume corruptions when a simple "chkdsk" is issued from cmd.
To put it simple: check will really check now, and won't attempt any repair.

CORE-14119
2017-12-17 14:02:31 +01:00

574 lines
17 KiB
C

/* fat.c - Read/write access to the FAT
Copyright (C) 1993 Werner Almesberger <werner.almesberger@lrc.di.epfl.ch>
Copyright (C) 1998 Roman Hodek <Roman.Hodek@informatik.uni-erlangen.de>
Copyright (C) 2008-2014 Daniel Baumann <mail@daniel-baumann.ch>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
The complete text of the GNU General Public License
can be found in /usr/share/common-licenses/GPL-3 file.
*/
/* FAT32, VFAT, Atari format support, and various fixes additions May 1998
* by Roman Hodek <Roman.Hodek@informatik.uni-erlangen.de> */
#include "vfatlib.h"
#define NDEBUG
#include <debug.h>
/**
* Fetch the FAT entry for a specified cluster.
*
* @param[out] entry Cluster to which cluster of interest is linked
* @param[in] fat FAT table for the partition
* @param[in] cluster Cluster of interest
* @param[in] fs Information from the FAT boot sectors (bits per FAT entry)
*/
void get_fat(FAT_ENTRY * entry, void *fat, uint32_t cluster, DOS_FS * fs)
{
unsigned char *ptr;
if (cluster > fs->data_clusters + 1) {
die("Internal error: cluster out of range in get_fat() (%lu > %lu).",
(unsigned long)cluster, (unsigned long)(fs->data_clusters + 1));
}
switch (fs->fat_bits) {
case 12:
ptr = &((unsigned char *)fat)[cluster * 3 / 2];
entry->value = 0xfff & (cluster & 1 ? (ptr[0] >> 4) | (ptr[1] << 4) :
(ptr[0] | ptr[1] << 8));
break;
case 16:
entry->value = le16toh(((unsigned short *)fat)[cluster]);
break;
case 32:
/* According to M$, the high 4 bits of a FAT32 entry are reserved and
* are not part of the cluster number. So we cut them off. */
{
uint32_t e = le32toh(((unsigned int *)fat)[cluster]);
entry->value = e & 0xfffffff;
entry->reserved = e >> 28;
}
break;
default:
die("Bad FAT entry size: %d bits.", fs->fat_bits);
}
}
/**
* Build a bookkeeping structure from the partition's FAT table.
* If the partition has multiple FATs and they don't agree, try to pick a winner,
* and queue a command to overwrite the loser.
* One error that is fixed here is a cluster that links to something out of range.
*
* @param[inout] fs Information about the filesystem
*/
void read_fat(DOS_FS * fs)
{
int eff_size, alloc_size;
uint32_t i;
void *first, *second = NULL;
int first_ok, second_ok;
uint32_t total_num_clusters;
/* Clean up from previous pass */
if (fs->fat)
free(fs->fat);
if (fs->cluster_owner)
free(fs->cluster_owner);
fs->fat = NULL;
fs->cluster_owner = NULL;
total_num_clusters = fs->data_clusters + 2;
eff_size = (total_num_clusters * fs->fat_bits + 7) / 8ULL;
if (fs->fat_bits != 12)
alloc_size = eff_size;
else
/* round up to an even number of FAT entries to avoid special
* casing the last entry in get_fat() */
alloc_size = (total_num_clusters * 12 + 23) / 24 * 3;
first = alloc(alloc_size);
fs_read(fs->fat_start, eff_size, first);
if (fs->nfats > 1) {
second = alloc(alloc_size);
fs_read(fs->fat_start + fs->fat_size, eff_size, second);
}
if (second && memcmp(first, second, eff_size) != 0) {
FAT_ENTRY first_media, second_media;
get_fat(&first_media, first, 0, fs);
get_fat(&second_media, second, 0, fs);
first_ok = (first_media.value & FAT_EXTD(fs)) == FAT_EXTD(fs);
second_ok = (second_media.value & FAT_EXTD(fs)) == FAT_EXTD(fs);
if (first_ok && !second_ok) {
printf("FATs differ - using first FAT.\n");
fs_write(fs->fat_start + fs->fat_size, eff_size, first);
}
if (!first_ok && second_ok) {
printf("FATs differ - using second FAT.\n");
fs_write(fs->fat_start, eff_size, second);
memcpy(first, second, eff_size);
}
if (first_ok && second_ok) {
if (interactive) {
printf("FATs differ but appear to be intact. Use which FAT ?\n"
"1) Use first FAT\n2) Use second FAT\n");
if (get_key("12", "?") == '1') {
fs_write(fs->fat_start + fs->fat_size, eff_size, first);
} else {
fs_write(fs->fat_start, eff_size, second);
memcpy(first, second, eff_size);
}
} else {
printf("FATs differ but appear to be intact. Using first "
"FAT.\n");
fs_write(fs->fat_start + fs->fat_size, eff_size, first);
}
}
if (!first_ok && !second_ok) {
printf("Both FATs appear to be corrupt. Giving up.\n");
exit(1);
}
}
if (second) {
free(second);
}
fs->fat = (unsigned char *)first;
fs->cluster_owner = alloc(total_num_clusters * sizeof(DOS_FILE *));
memset(fs->cluster_owner, 0, (total_num_clusters * sizeof(DOS_FILE *)));
/* Truncate any cluster chains that link to something out of range */
for (i = 2; i < fs->data_clusters + 2; i++) {
FAT_ENTRY curEntry;
get_fat(&curEntry, fs->fat, i, fs);
if (curEntry.value == 1) {
printf("Cluster %ld out of range (1). Setting to EOF.\n",
(long)(i - 2));
set_fat(fs, i, -1);
}
if (curEntry.value >= fs->data_clusters + 2 &&
(curEntry.value < FAT_MIN_BAD(fs))) {
printf("Cluster %ld out of range (%ld > %ld). Setting to EOF.\n",
(long)(i - 2), (long)curEntry.value,
(long)(fs->data_clusters + 2 - 1));
set_fat(fs, i, -1);
}
}
}
/**
* Update the FAT entry for a specified cluster
* (i.e., change the cluster it links to).
* Queue a command to write out this change.
*
* @param[in,out] fs Information about the filesystem
* @param[in] cluster Cluster to change
* @param[in] new Cluster to link to
* Special values:
* 0 == free cluster
* -1 == end-of-chain
* -2 == bad cluster
*/
void set_fat(DOS_FS * fs, uint32_t cluster, int32_t new)
{
unsigned char *data = NULL;
int size;
off_t offs;
if (cluster > fs->data_clusters + 1) {
die("Internal error: cluster out of range in set_fat() (%lu > %lu).",
(unsigned long)cluster, (unsigned long)(fs->data_clusters + 1));
}
if (new == -1)
new = FAT_EOF(fs);
else if ((long)new == -2)
new = FAT_BAD(fs);
else if (new > fs->data_clusters + 1) {
die("Internal error: new cluster out of range in set_fat() (%lu > %lu).",
(unsigned long)new, (unsigned long)(fs->data_clusters + 1));
}
switch (fs->fat_bits) {
case 12:
data = fs->fat + cluster * 3 / 2;
offs = fs->fat_start + cluster * 3 / 2;
if (cluster & 1) {
FAT_ENTRY prevEntry;
get_fat(&prevEntry, fs->fat, cluster - 1, fs);
data[0] = ((new & 0xf) << 4) | (prevEntry.value >> 8);
data[1] = new >> 4;
} else {
FAT_ENTRY subseqEntry;
if (cluster != fs->data_clusters + 1)
get_fat(&subseqEntry, fs->fat, cluster + 1, fs);
else
subseqEntry.value = 0;
data[0] = new & 0xff;
data[1] = (new >> 8) | ((0xff & subseqEntry.value) << 4);
}
size = 2;
break;
case 16:
data = fs->fat + cluster * 2;
offs = fs->fat_start + cluster * 2;
*(unsigned short *)data = htole16(new);
size = 2;
break;
case 32:
{
FAT_ENTRY curEntry;
get_fat(&curEntry, fs->fat, cluster, fs);
data = fs->fat + cluster * 4;
offs = fs->fat_start + cluster * 4;
/* According to M$, the high 4 bits of a FAT32 entry are reserved and
* are not part of the cluster number. So we never touch them. */
*(uint32_t *)data = htole32((new & 0xfffffff) |
(curEntry.reserved << 28));
size = 4;
}
break;
default:
die("Bad FAT entry size: %d bits.", fs->fat_bits);
}
fs_write(offs, size, data);
if (fs->nfats > 1) {
fs_write(offs + fs->fat_size, size, data);
}
}
int bad_cluster(DOS_FS * fs, uint32_t cluster)
{
FAT_ENTRY curEntry;
get_fat(&curEntry, fs->fat, cluster, fs);
return FAT_IS_BAD(fs, curEntry.value);
}
/**
* Get the cluster to which the specified cluster is linked.
* If the linked cluster is marked bad, abort.
*
* @param[in] fs Information about the filesystem
* @param[in] cluster Cluster to follow
*
* @return -1 'cluster' is at the end of the chain
* @return Other values Next cluster in this chain
*/
uint32_t next_cluster(DOS_FS * fs, uint32_t cluster)
{
uint32_t value;
FAT_ENTRY curEntry;
get_fat(&curEntry, fs->fat, cluster, fs);
value = curEntry.value;
if (FAT_IS_BAD(fs, value))
die("Internal error: next_cluster on bad cluster");
return FAT_IS_EOF(fs, value) ? -1 : value;
}
off_t cluster_start(DOS_FS * fs, uint32_t cluster)
{
return fs->data_start + ((off_t)cluster - 2) * (uint64_t)fs->cluster_size;
}
/**
* Update internal bookkeeping to show that the specified cluster belongs
* to the specified dentry.
*
* @param[in,out] fs Information about the filesystem
* @param[in] cluster Cluster being assigned
* @param[in] owner Information on dentry that owns this cluster
* (may be NULL)
*/
void set_owner(DOS_FS * fs, uint32_t cluster, DOS_FILE * owner)
{
if (fs->cluster_owner == NULL)
die("Internal error: attempt to set owner in non-existent table");
if (owner && fs->cluster_owner[cluster]
&& (fs->cluster_owner[cluster] != owner))
die("Internal error: attempt to change file owner");
fs->cluster_owner[cluster] = owner;
}
DOS_FILE *get_owner(DOS_FS * fs, uint32_t cluster)
{
if (fs->cluster_owner == NULL)
return NULL;
else
return fs->cluster_owner[cluster];
}
void fix_bad(DOS_FS * fs)
{
uint32_t i;
if (verbose)
printf("Checking for bad clusters.\n");
for (i = 2; i < fs->data_clusters + 2; i++) {
FAT_ENTRY curEntry;
get_fat(&curEntry, fs->fat, i, fs);
if (!get_owner(fs, i) && !FAT_IS_BAD(fs, curEntry.value))
if (!fs_test(cluster_start(fs, i), fs->cluster_size)) {
printf("Cluster %lu is unreadable.\n", (unsigned long)i);
set_fat(fs, i, -2);
}
}
}
void reclaim_free(DOS_FS * fs)
{
int reclaimed;
uint32_t i;
if (verbose)
printf("Checking for unused clusters.\n");
reclaimed = 0;
for (i = 2; i < fs->data_clusters + 2; i++) {
FAT_ENTRY curEntry;
get_fat(&curEntry, fs->fat, i, fs);
if (!get_owner(fs, i) && curEntry.value &&
!FAT_IS_BAD(fs, curEntry.value) && rw) {
set_fat(fs, i, 0);
reclaimed++;
}
}
if (reclaimed)
printf("Reclaimed %d unused cluster%s (%llu bytes).\n", (int)reclaimed,
reclaimed == 1 ? "" : "s",
(unsigned long long)reclaimed * fs->cluster_size);
}
/**
* Assign the specified owner to all orphan chains (except cycles).
* Break cross-links between orphan chains.
*
* @param[in,out] fs Information about the filesystem
* @param[in] owner dentry to be assigned ownership of orphans
* @param[in,out] num_refs For each orphan cluster [index], how many
* clusters link to it.
* @param[in] start_cluster Where to start scanning for orphans
*/
static void tag_free(DOS_FS * fs, DOS_FILE * owner, uint32_t *num_refs,
uint32_t start_cluster)
{
int prev;
uint32_t i, walk;
if (start_cluster == 0)
start_cluster = 2;
for (i = start_cluster; i < fs->data_clusters + 2; i++) {
FAT_ENTRY curEntry;
get_fat(&curEntry, fs->fat, i, fs);
/* If the current entry is the head of an un-owned chain... */
if (curEntry.value && !FAT_IS_BAD(fs, curEntry.value) &&
!get_owner(fs, i) && !num_refs[i]) {
prev = 0;
/* Walk the chain, claiming ownership as we go */
for (walk = i; walk != -1; walk = next_cluster(fs, walk)) {
if (!get_owner(fs, walk)) {
set_owner(fs, walk, owner);
} else {
/* We've run into cross-links between orphaned chains,
* or a cycle with a tail.
* Terminate this orphan chain (break the link)
*/
set_fat(fs, prev, -1);
/* This is not necessary because 'walk' is owned and thus
* will never become the head of a chain (the only case
* that would matter during reclaim to files).
* It's easier to decrement than to prove that it's
* unnecessary.
*/
num_refs[walk]--;
break;
}
prev = walk;
}
}
}
}
/**
* Recover orphan chains to files, handling any cycles or cross-links.
*
* @param[in,out] fs Information about the filesystem
*/
void reclaim_file(DOS_FS * fs)
{
DOS_FILE orphan;
int reclaimed, files;
int changed = 0;
uint32_t i, next, walk;
uint32_t *num_refs = NULL; /* Only for orphaned clusters */
uint32_t total_num_clusters;
if (verbose)
printf("Reclaiming unconnected clusters.\n");
total_num_clusters = fs->data_clusters + 2;
num_refs = alloc(total_num_clusters * sizeof(uint32_t));
memset(num_refs, 0, (total_num_clusters * sizeof(uint32_t)));
/* Guarantee that all orphan chains (except cycles) end cleanly
* with an end-of-chain mark.
*/
for (i = 2; i < total_num_clusters; i++) {
FAT_ENTRY curEntry;
get_fat(&curEntry, fs->fat, i, fs);
next = curEntry.value;
if (!get_owner(fs, i) && next && next < fs->data_clusters + 2) {
/* Cluster is linked, but not owned (orphan) */
FAT_ENTRY nextEntry;
get_fat(&nextEntry, fs->fat, next, fs);
/* Mark it end-of-chain if it links into an owned cluster,
* a free cluster, or a bad cluster.
*/
if (get_owner(fs, next) || !nextEntry.value ||
FAT_IS_BAD(fs, nextEntry.value))
set_fat(fs, i, -1);
else
num_refs[next]++;
}
}
/* Scan until all the orphans are accounted for,
* and all cycles and cross-links are broken
*/
do {
tag_free(fs, &orphan, num_refs, changed);
changed = 0;
/* Any unaccounted-for orphans must be part of a cycle */
for (i = 2; i < total_num_clusters; i++) {
FAT_ENTRY curEntry;
get_fat(&curEntry, fs->fat, i, fs);
if (curEntry.value && !FAT_IS_BAD(fs, curEntry.value) &&
!get_owner(fs, i)) {
if (!num_refs[curEntry.value]--)
die("Internal error: num_refs going below zero");
set_fat(fs, i, -1);
changed = curEntry.value;
printf("Broke cycle at cluster %lu in free chain.\n", (unsigned long)i);
/* If we've created a new chain head,
* tag_free() can claim it
*/
if (num_refs[curEntry.value] == 0)
break;
}
}
}
while (changed);
if (rw) {
/* Now we can start recovery */
files = reclaimed = 0;
for (i = 2; i < total_num_clusters; i++)
/* If this cluster is the head of an orphan chain... */
if (get_owner(fs, i) == &orphan && !num_refs[i]) {
DIR_ENT de;
off_t offset;
files++;
offset = alloc_rootdir_entry(fs, &de, "FSCK%04dREC");
de.start = htole16(i & 0xffff);
if (fs->fat_bits == 32)
de.starthi = htole16(i >> 16);
for (walk = i; walk > 0 && walk != -1;
walk = next_cluster(fs, walk)) {
de.size = htole32(le32toh(de.size) + fs->cluster_size);
reclaimed++;
}
fs_write(offset, sizeof(DIR_ENT), &de);
}
if (reclaimed)
printf("Reclaimed %d unused cluster%s (%llu bytes) in %d chain%s.\n",
reclaimed, reclaimed == 1 ? "" : "s",
(unsigned long long)reclaimed * fs->cluster_size, files,
files == 1 ? "" : "s");
}
free(num_refs);
}
uint32_t update_free(DOS_FS * fs)
{
uint32_t i;
uint32_t free = 0;
int do_set = 0;
for (i = 2; i < fs->data_clusters + 2; i++) {
FAT_ENTRY curEntry;
get_fat(&curEntry, fs->fat, i, fs);
if (!get_owner(fs, i) && !FAT_IS_BAD(fs, curEntry.value))
++free;
}
if (!fs->fsinfo_start)
return free;
if (verbose)
printf("Checking free cluster summary.\n");
if (fs->free_clusters != 0xFFFFFFFF) {
if (free != fs->free_clusters) {
printf("Free cluster summary wrong (%ld vs. really %ld)\n",
(long)fs->free_clusters, (long)free);
if (interactive)
printf("1) Correct\n2) Don't correct\n");
else if (rw)
printf(" Auto-correcting.\n");
if ((!interactive && rw) || (interactive && get_key("12", "?") == '1'))
do_set = 1;
}
} else {
printf("Free cluster summary uninitialized (should be %ld)\n", (long)free);
if (rw) {
if (interactive)
printf("1) Set it\n2) Leave it uninitialized\n");
else
printf(" Auto-setting.\n");
if (!interactive || get_key("12", "?") == '1')
do_set = 1;
}
}
if (do_set) {
uint32_t le_free = htole32(free);
fs->free_clusters = free;
fs_write(fs->fsinfo_start + offsetof(struct info_sector, free_clusters),
sizeof(le_free), &le_free);
}
return free;
}