mirror of
https://github.com/reactos/reactos.git
synced 2024-11-02 04:37:32 +00:00
245 lines
7.5 KiB
C
245 lines
7.5 KiB
C
|
|
/*******************************************************************************
|
|
MIT License
|
|
-----------
|
|
|
|
Copyright (c) 2002-2019 Advanced Micro Devices, Inc.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this Software and associated documentaon files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
*******************************************************************************/
|
|
|
|
#include "libm.h"
|
|
#include "libm_util.h"
|
|
|
|
#define USE_NAN_WITH_FLAGS
|
|
#define USE_VAL_WITH_FLAGS
|
|
#define USE_HANDLE_ERROR
|
|
#include "libm_inlines.h"
|
|
#undef USE_NAN_WITH_FLAGS
|
|
#undef USE_VAL_WITH_FLAGS
|
|
#undef USE_HANDLE_ERROR
|
|
|
|
#include "libm_errno.h"
|
|
|
|
/* tan(x + xx) approximation valid on the interval [-pi/4,pi/4].
|
|
If recip is true return -1/tan(x + xx) instead. */
|
|
static inline double tan_piby4(double x, double xx, int recip)
|
|
{
|
|
double r, t1, t2, xl;
|
|
int transform = 0;
|
|
static const double
|
|
piby4_lead = 7.85398163397448278999e-01, /* 0x3fe921fb54442d18 */
|
|
piby4_tail = 3.06161699786838240164e-17; /* 0x3c81a62633145c06 */
|
|
|
|
/* In order to maintain relative precision transform using the identity:
|
|
tan(pi/4-x) = (1-tan(x))/(1+tan(x)) for arguments close to pi/4.
|
|
Similarly use tan(x-pi/4) = (tan(x)-1)/(tan(x)+1) close to -pi/4. */
|
|
|
|
if (x > 0.68)
|
|
{
|
|
transform = 1;
|
|
x = piby4_lead - x;
|
|
xl = piby4_tail - xx;
|
|
x += xl;
|
|
xx = 0.0;
|
|
}
|
|
else if (x < -0.68)
|
|
{
|
|
transform = -1;
|
|
x = piby4_lead + x;
|
|
xl = piby4_tail + xx;
|
|
x += xl;
|
|
xx = 0.0;
|
|
}
|
|
|
|
/* Core Remez [2,3] approximation to tan(x+xx) on the
|
|
interval [0,0.68]. */
|
|
|
|
r = x*x + 2.0 * x * xx;
|
|
t1 = x;
|
|
t2 = xx + x*r*
|
|
(0.372379159759792203640806338901e0 +
|
|
(-0.229345080057565662883358588111e-1 +
|
|
0.224044448537022097264602535574e-3*r)*r)/
|
|
(0.111713747927937668539901657944e1 +
|
|
(-0.515658515729031149329237816945e0 +
|
|
(0.260656620398645407524064091208e-1 -
|
|
0.232371494088563558304549252913e-3*r)*r)*r);
|
|
|
|
/* Reconstruct tan(x) in the transformed case. */
|
|
|
|
if (transform)
|
|
{
|
|
double t;
|
|
t = t1 + t2;
|
|
if (recip)
|
|
return transform*(2*t/(t-1) - 1.0);
|
|
else
|
|
return transform*(1.0 - 2*t/(1+t));
|
|
}
|
|
|
|
if (recip)
|
|
{
|
|
/* Compute -1.0/(t1 + t2) accurately */
|
|
double trec, trec_top, z1, z2, t;
|
|
unsigned long long u;
|
|
t = t1 + t2;
|
|
GET_BITS_DP64(t, u);
|
|
u &= 0xffffffff00000000;
|
|
PUT_BITS_DP64(u, z1);
|
|
z2 = t2 - (z1 - t1);
|
|
trec = -1.0 / t;
|
|
GET_BITS_DP64(trec, u);
|
|
u &= 0xffffffff00000000;
|
|
PUT_BITS_DP64(u, trec_top);
|
|
return trec_top + trec * ((1.0 + trec_top * z1) + trec_top * z2);
|
|
|
|
}
|
|
else
|
|
return t1 + t2;
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma function(tan)
|
|
#endif
|
|
|
|
double tan(double x)
|
|
{
|
|
double r, rr;
|
|
int region, xneg;
|
|
|
|
unsigned long long ux, ax;
|
|
GET_BITS_DP64(x, ux);
|
|
ax = (ux & ~SIGNBIT_DP64);
|
|
if (ax <= 0x3fe921fb54442d18) /* abs(x) <= pi/4 */
|
|
{
|
|
if (ax < 0x3f20000000000000) /* abs(x) < 2.0^(-13) */
|
|
{
|
|
if (ax < 0x3e40000000000000) /* abs(x) < 2.0^(-27) */
|
|
{
|
|
if (ax == 0x0000000000000000) return x;
|
|
else return val_with_flags(x, AMD_F_INEXACT);
|
|
}
|
|
else
|
|
{
|
|
/* Using a temporary variable prevents 64-bit VC++ from
|
|
rearranging
|
|
x + x*x*x*0.333333333333333333;
|
|
into
|
|
x * (1 + x*x*0.333333333333333333);
|
|
The latter results in an incorrectly rounded answer. */
|
|
double tmp;
|
|
tmp = x*x*x*0.333333333333333333;
|
|
return x + tmp;
|
|
}
|
|
}
|
|
else
|
|
return tan_piby4(x, 0.0, 0);
|
|
}
|
|
else if ((ux & EXPBITS_DP64) == EXPBITS_DP64)
|
|
{
|
|
/* x is either NaN or infinity */
|
|
if (ux & MANTBITS_DP64)
|
|
/* x is NaN */
|
|
return _handle_error("tan", OP_TAN, ux|0x0008000000000000, _DOMAIN, 0,
|
|
EDOM, x, 0.0, 1);
|
|
else
|
|
/* x is infinity. Return a NaN */
|
|
return _handle_error("tan", OP_TAN, INDEFBITPATT_DP64, _DOMAIN, AMD_F_INVALID,
|
|
EDOM, x, 0.0, 1);
|
|
}
|
|
xneg = (ax != ux);
|
|
|
|
|
|
if (xneg)
|
|
x = -x;
|
|
|
|
if (x < 5.0e5)
|
|
{
|
|
/* For these size arguments we can just carefully subtract the
|
|
appropriate multiple of pi/2, using extra precision where
|
|
x is close to an exact multiple of pi/2 */
|
|
static const double
|
|
twobypi = 6.36619772367581382433e-01, /* 0x3fe45f306dc9c883 */
|
|
piby2_1 = 1.57079632673412561417e+00, /* 0x3ff921fb54400000 */
|
|
piby2_1tail = 6.07710050650619224932e-11, /* 0x3dd0b4611a626331 */
|
|
piby2_2 = 6.07710050630396597660e-11, /* 0x3dd0b4611a600000 */
|
|
piby2_2tail = 2.02226624879595063154e-21, /* 0x3ba3198a2e037073 */
|
|
piby2_3 = 2.02226624871116645580e-21, /* 0x3ba3198a2e000000 */
|
|
piby2_3tail = 8.47842766036889956997e-32; /* 0x397b839a252049c1 */
|
|
double t, rhead, rtail;
|
|
int npi2;
|
|
unsigned long long uy, xexp, expdiff;
|
|
xexp = ax >> EXPSHIFTBITS_DP64;
|
|
/* How many pi/2 is x a multiple of? */
|
|
if (ax <= 0x400f6a7a2955385e) /* 5pi/4 */
|
|
{
|
|
if (ax <= 0x4002d97c7f3321d2) /* 3pi/4 */
|
|
npi2 = 1;
|
|
else
|
|
npi2 = 2;
|
|
}
|
|
else if (ax <= 0x401c463abeccb2bb) /* 9pi/4 */
|
|
{
|
|
if (ax <= 0x4015fdbbe9bba775) /* 7pi/4 */
|
|
npi2 = 3;
|
|
else
|
|
npi2 = 4;
|
|
}
|
|
else
|
|
npi2 = (int)(x * twobypi + 0.5);
|
|
/* Subtract the multiple from x to get an extra-precision remainder */
|
|
rhead = x - npi2 * piby2_1;
|
|
rtail = npi2 * piby2_1tail;
|
|
GET_BITS_DP64(rhead, uy);
|
|
expdiff = xexp - ((uy & EXPBITS_DP64) >> EXPSHIFTBITS_DP64);
|
|
if (expdiff > 15)
|
|
{
|
|
/* The remainder is pretty small compared with x, which
|
|
implies that x is a near multiple of pi/2
|
|
(x matches the multiple to at least 15 bits) */
|
|
t = rhead;
|
|
rtail = npi2 * piby2_2;
|
|
rhead = t - rtail;
|
|
rtail = npi2 * piby2_2tail - ((t - rhead) - rtail);
|
|
if (expdiff > 48)
|
|
{
|
|
/* x matches a pi/2 multiple to at least 48 bits */
|
|
t = rhead;
|
|
rtail = npi2 * piby2_3;
|
|
rhead = t - rtail;
|
|
rtail = npi2 * piby2_3tail - ((t - rhead) - rtail);
|
|
}
|
|
}
|
|
r = rhead - rtail;
|
|
rr = (rhead - r) - rtail;
|
|
region = npi2 & 3;
|
|
}
|
|
else
|
|
{
|
|
/* Reduce x into range [-pi/4,pi/4] */
|
|
__remainder_piby2(x, &r, &rr, ®ion);
|
|
}
|
|
|
|
if (xneg)
|
|
return -tan_piby4(r, rr, region & 1);
|
|
else
|
|
return tan_piby4(r, rr, region & 1);
|
|
}
|