reactos/ntoskrnl/kdbg/kdb_cli.c
Hervé Poussineau e5bffe49da [NTOS:KDBG] Use CONTEXT instead of KTRAP_FRAME
Change KdbpTrapFrameToKdbTrapFrame to prefer CONTEXT (if available) over
KTRAP_FRAME.
2019-05-23 11:04:40 +02:00

3864 lines
115 KiB
C

/*
* ReactOS kernel
* Copyright (C) 2005 ReactOS Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* PROJECT: ReactOS kernel
* FILE: ntoskrnl/kdbg/kdb_cli.c
* PURPOSE: Kernel debugger command line interface
* PROGRAMMER: Gregor Anich (blight@blight.eu.org)
* Hervé Poussineau
* UPDATE HISTORY:
* Created 16/01/2005
*/
/* INCLUDES ******************************************************************/
#include <ntoskrnl.h>
#define NDEBUG
#include <debug.h>
/* DEFINES *******************************************************************/
#define KEY_BS 8
#define KEY_ESC 27
#define KEY_DEL 127
#define KEY_SCAN_UP 72
#define KEY_SCAN_DOWN 80
/* Scan codes of keyboard keys: */
#define KEYSC_END 0x004f
#define KEYSC_PAGEUP 0x0049
#define KEYSC_PAGEDOWN 0x0051
#define KEYSC_HOME 0x0047
#define KEYSC_ARROWUP 0x0048
#define KDB_ENTER_CONDITION_TO_STRING(cond) \
((cond) == KdbDoNotEnter ? "never" : \
((cond) == KdbEnterAlways ? "always" : \
((cond) == KdbEnterFromKmode ? "kmode" : "umode")))
#define KDB_ACCESS_TYPE_TO_STRING(type) \
((type) == KdbAccessRead ? "read" : \
((type) == KdbAccessWrite ? "write" : \
((type) == KdbAccessReadWrite ? "rdwr" : "exec")))
#define NPX_STATE_TO_STRING(state) \
((state) == NPX_STATE_LOADED ? "Loaded" : \
((state) == NPX_STATE_NOT_LOADED ? "Not loaded" : "Unknown"))
/* PROTOTYPES ****************************************************************/
static BOOLEAN KdbpCmdEvalExpression(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdDisassembleX(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdRegs(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdBackTrace(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdContinue(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdStep(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdBreakPointList(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdEnableDisableClearBreakPoint(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdBreakPoint(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdThread(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdProc(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdMod(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdGdtLdtIdt(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdPcr(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdTss(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdBugCheck(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdReboot(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdFilter(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdSet(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdHelp(ULONG Argc, PCHAR Argv[]);
static BOOLEAN KdbpCmdDmesg(ULONG Argc, PCHAR Argv[]);
BOOLEAN ExpKdbgExtPool(ULONG Argc, PCHAR Argv[]);
BOOLEAN ExpKdbgExtPoolUsed(ULONG Argc, PCHAR Argv[]);
BOOLEAN ExpKdbgExtPoolFind(ULONG Argc, PCHAR Argv[]);
BOOLEAN ExpKdbgExtFileCache(ULONG Argc, PCHAR Argv[]);
BOOLEAN ExpKdbgExtDefWrites(ULONG Argc, PCHAR Argv[]);
BOOLEAN ExpKdbgExtIrpFind(ULONG Argc, PCHAR Argv[]);
BOOLEAN ExpKdbgExtHandle(ULONG Argc, PCHAR Argv[]);
#ifdef __ROS_DWARF__
static BOOLEAN KdbpCmdPrintStruct(ULONG Argc, PCHAR Argv[]);
#endif
/* GLOBALS *******************************************************************/
static PKDBG_CLI_ROUTINE KdbCliCallbacks[10];
static BOOLEAN KdbUseIntelSyntax = FALSE; /* Set to TRUE for intel syntax */
static BOOLEAN KdbBreakOnModuleLoad = FALSE; /* Set to TRUE to break into KDB when a module is loaded */
static CHAR KdbCommandHistoryBuffer[2048]; /* Command history string ringbuffer */
static PCHAR KdbCommandHistory[sizeof(KdbCommandHistoryBuffer) / 8] = { NULL }; /* Command history ringbuffer */
static LONG KdbCommandHistoryBufferIndex = 0;
static LONG KdbCommandHistoryIndex = 0;
static ULONG KdbNumberOfRowsPrinted = 0;
static ULONG KdbNumberOfColsPrinted = 0;
static BOOLEAN KdbOutputAborted = FALSE;
static BOOLEAN KdbRepeatLastCommand = FALSE;
static LONG KdbNumberOfRowsTerminal = -1;
static LONG KdbNumberOfColsTerminal = -1;
PCHAR KdbInitFileBuffer = NULL; /* Buffer where KDBinit file is loaded into during initialization */
BOOLEAN KdbpBugCheckRequested = FALSE;
/* Vars for dmesg */
/* defined in ../kd/kdio.c, declare here: */
extern volatile BOOLEAN KdbpIsInDmesgMode;
extern const ULONG KdpDmesgBufferSize;
extern PCHAR KdpDmesgBuffer;
extern volatile ULONG KdpDmesgCurrentPosition;
extern volatile ULONG KdpDmesgFreeBytes;
extern volatile ULONG KdbDmesgTotalWritten;
static const struct
{
PCHAR Name;
PCHAR Syntax;
PCHAR Help;
BOOLEAN (*Fn)(ULONG Argc, PCHAR Argv[]);
} KdbDebuggerCommands[] = {
/* Data */
{ NULL, NULL, "Data", NULL },
{ "?", "? expression", "Evaluate expression.", KdbpCmdEvalExpression },
{ "disasm", "disasm [address] [L count]", "Disassemble count instructions at address.", KdbpCmdDisassembleX },
{ "x", "x [address] [L count]", "Display count dwords, starting at addr.", KdbpCmdDisassembleX },
{ "regs", "regs", "Display general purpose registers.", KdbpCmdRegs },
{ "cregs", "cregs", "Display control registers.", KdbpCmdRegs },
{ "sregs", "sregs", "Display status registers.", KdbpCmdRegs },
{ "dregs", "dregs", "Display debug registers.", KdbpCmdRegs },
{ "bt", "bt [*frameaddr|thread id]", "Prints current backtrace or from given frame addr", KdbpCmdBackTrace },
#ifdef __ROS_DWARF__
{ "dt", "dt [mod] [type] [addr]", "Print a struct. Addr is optional.", KdbpCmdPrintStruct },
#endif
/* Flow control */
{ NULL, NULL, "Flow control", NULL },
{ "cont", "cont", "Continue execution (leave debugger)", KdbpCmdContinue },
{ "step", "step [count]", "Execute single instructions, stepping into interrupts.", KdbpCmdStep },
{ "next", "next [count]", "Execute single instructions, skipping calls and reps.", KdbpCmdStep },
{ "bl", "bl", "List breakpoints.", KdbpCmdBreakPointList },
{ "be", "be [breakpoint]", "Enable breakpoint.", KdbpCmdEnableDisableClearBreakPoint },
{ "bd", "bd [breakpoint]", "Disable breakpoint.", KdbpCmdEnableDisableClearBreakPoint },
{ "bc", "bc [breakpoint]", "Clear breakpoint.", KdbpCmdEnableDisableClearBreakPoint },
{ "bpx", "bpx [address] [IF condition]", "Set software execution breakpoint at address.", KdbpCmdBreakPoint },
{ "bpm", "bpm [r|w|rw|x] [byte|word|dword] [address] [IF condition]", "Set memory breakpoint at address.", KdbpCmdBreakPoint },
/* Process/Thread */
{ NULL, NULL, "Process/Thread", NULL },
{ "thread", "thread [list[ pid]|[attach ]tid]", "List threads in current or specified process, display thread with given id or attach to thread.", KdbpCmdThread },
{ "proc", "proc [list|[attach ]pid]", "List processes, display process with given id or attach to process.", KdbpCmdProc },
/* System information */
{ NULL, NULL, "System info", NULL },
{ "mod", "mod [address]", "List all modules or the one containing address.", KdbpCmdMod },
{ "gdt", "gdt", "Display global descriptor table.", KdbpCmdGdtLdtIdt },
{ "ldt", "ldt", "Display local descriptor table.", KdbpCmdGdtLdtIdt },
{ "idt", "idt", "Display interrupt descriptor table.", KdbpCmdGdtLdtIdt },
{ "pcr", "pcr", "Display processor control region.", KdbpCmdPcr },
{ "tss", "tss", "Display task state segment.", KdbpCmdTss },
/* Others */
{ NULL, NULL, "Others", NULL },
{ "bugcheck", "bugcheck", "Bugchecks the system.", KdbpCmdBugCheck },
{ "reboot", "reboot", "Reboots the system.", KdbpCmdReboot},
{ "filter", "filter [error|warning|trace|info|level]+|-[componentname|default]", "Enable/disable debug channels", KdbpCmdFilter },
{ "set", "set [var] [value]", "Sets var to value or displays value of var.", KdbpCmdSet },
{ "dmesg", "dmesg", "Display debug messages on screen, with navigation on pages.", KdbpCmdDmesg },
{ "kmsg", "kmsg", "Kernel dmesg. Alias for dmesg.", KdbpCmdDmesg },
{ "help", "help", "Display help screen.", KdbpCmdHelp },
{ "!pool", "!pool [Address [Flags]]", "Display information about pool allocations.", ExpKdbgExtPool },
{ "!poolused", "!poolused [Flags [Tag]]", "Display pool usage.", ExpKdbgExtPoolUsed },
{ "!poolfind", "!poolfind Tag [Pool]", "Search for pool tag allocations.", ExpKdbgExtPoolFind },
{ "!filecache", "!filecache", "Display cache usage.", ExpKdbgExtFileCache },
{ "!defwrites", "!defwrites", "Display cache write values.", ExpKdbgExtDefWrites },
{ "!irpfind", "!irpfind [Pool [startaddress [criteria data]]]", "Lists IRPs potentially matching criteria", ExpKdbgExtIrpFind },
{ "!handle", "!handle [Handle]", "Displays info about handles", ExpKdbgExtHandle },
};
/* FUNCTIONS *****************************************************************/
/*!\brief Transform a component name to an integer
*
* \param ComponentName The name of the component.
* \param ComponentId Receives the component id on success.
*
* \retval TRUE Success.
* \retval FALSE Failure.
*/
static BOOLEAN
KdbpGetComponentId(
IN PCCH ComponentName,
OUT PULONG ComponentId)
{
ULONG i;
static struct
{
PCCH Name;
ULONG Id;
}
ComponentTable[] =
{
{ "DEFAULT", MAXULONG },
{ "SYSTEM", DPFLTR_SYSTEM_ID },
{ "SMSS", DPFLTR_SMSS_ID },
{ "SETUP", DPFLTR_SETUP_ID },
{ "NTFS", DPFLTR_NTFS_ID },
{ "FSTUB", DPFLTR_FSTUB_ID },
{ "CRASHDUMP", DPFLTR_CRASHDUMP_ID },
{ "CDAUDIO", DPFLTR_CDAUDIO_ID },
{ "CDROM", DPFLTR_CDROM_ID },
{ "CLASSPNP", DPFLTR_CLASSPNP_ID },
{ "DISK", DPFLTR_DISK_ID },
{ "REDBOOK", DPFLTR_REDBOOK_ID },
{ "STORPROP", DPFLTR_STORPROP_ID },
{ "SCSIPORT", DPFLTR_SCSIPORT_ID },
{ "SCSIMINIPORT", DPFLTR_SCSIMINIPORT_ID },
{ "CONFIG", DPFLTR_CONFIG_ID },
{ "I8042PRT", DPFLTR_I8042PRT_ID },
{ "SERMOUSE", DPFLTR_SERMOUSE_ID },
{ "LSERMOUS", DPFLTR_LSERMOUS_ID },
{ "KBDHID", DPFLTR_KBDHID_ID },
{ "MOUHID", DPFLTR_MOUHID_ID },
{ "KBDCLASS", DPFLTR_KBDCLASS_ID },
{ "MOUCLASS", DPFLTR_MOUCLASS_ID },
{ "TWOTRACK", DPFLTR_TWOTRACK_ID },
{ "WMILIB", DPFLTR_WMILIB_ID },
{ "ACPI", DPFLTR_ACPI_ID },
{ "AMLI", DPFLTR_AMLI_ID },
{ "HALIA64", DPFLTR_HALIA64_ID },
{ "VIDEO", DPFLTR_VIDEO_ID },
{ "SVCHOST", DPFLTR_SVCHOST_ID },
{ "VIDEOPRT", DPFLTR_VIDEOPRT_ID },
{ "TCPIP", DPFLTR_TCPIP_ID },
{ "DMSYNTH", DPFLTR_DMSYNTH_ID },
{ "NTOSPNP", DPFLTR_NTOSPNP_ID },
{ "FASTFAT", DPFLTR_FASTFAT_ID },
{ "SAMSS", DPFLTR_SAMSS_ID },
{ "PNPMGR", DPFLTR_PNPMGR_ID },
{ "NETAPI", DPFLTR_NETAPI_ID },
{ "SCSERVER", DPFLTR_SCSERVER_ID },
{ "SCCLIENT", DPFLTR_SCCLIENT_ID },
{ "SERIAL", DPFLTR_SERIAL_ID },
{ "SERENUM", DPFLTR_SERENUM_ID },
{ "UHCD", DPFLTR_UHCD_ID },
{ "RPCPROXY", DPFLTR_RPCPROXY_ID },
{ "AUTOCHK", DPFLTR_AUTOCHK_ID },
{ "DCOMSS", DPFLTR_DCOMSS_ID },
{ "UNIMODEM", DPFLTR_UNIMODEM_ID },
{ "SIS", DPFLTR_SIS_ID },
{ "FLTMGR", DPFLTR_FLTMGR_ID },
{ "WMICORE", DPFLTR_WMICORE_ID },
{ "BURNENG", DPFLTR_BURNENG_ID },
{ "IMAPI", DPFLTR_IMAPI_ID },
{ "SXS", DPFLTR_SXS_ID },
{ "FUSION", DPFLTR_FUSION_ID },
{ "IDLETASK", DPFLTR_IDLETASK_ID },
{ "SOFTPCI", DPFLTR_SOFTPCI_ID },
{ "TAPE", DPFLTR_TAPE_ID },
{ "MCHGR", DPFLTR_MCHGR_ID },
{ "IDEP", DPFLTR_IDEP_ID },
{ "PCIIDE", DPFLTR_PCIIDE_ID },
{ "FLOPPY", DPFLTR_FLOPPY_ID },
{ "FDC", DPFLTR_FDC_ID },
{ "TERMSRV", DPFLTR_TERMSRV_ID },
{ "W32TIME", DPFLTR_W32TIME_ID },
{ "PREFETCHER", DPFLTR_PREFETCHER_ID },
{ "RSFILTER", DPFLTR_RSFILTER_ID },
{ "FCPORT", DPFLTR_FCPORT_ID },
{ "PCI", DPFLTR_PCI_ID },
{ "DMIO", DPFLTR_DMIO_ID },
{ "DMCONFIG", DPFLTR_DMCONFIG_ID },
{ "DMADMIN", DPFLTR_DMADMIN_ID },
{ "WSOCKTRANSPORT", DPFLTR_WSOCKTRANSPORT_ID },
{ "VSS", DPFLTR_VSS_ID },
{ "PNPMEM", DPFLTR_PNPMEM_ID },
{ "PROCESSOR", DPFLTR_PROCESSOR_ID },
{ "DMSERVER", DPFLTR_DMSERVER_ID },
{ "SR", DPFLTR_SR_ID },
{ "INFINIBAND", DPFLTR_INFINIBAND_ID },
{ "IHVDRIVER", DPFLTR_IHVDRIVER_ID },
{ "IHVVIDEO", DPFLTR_IHVVIDEO_ID },
{ "IHVAUDIO", DPFLTR_IHVAUDIO_ID },
{ "IHVNETWORK", DPFLTR_IHVNETWORK_ID },
{ "IHVSTREAMING", DPFLTR_IHVSTREAMING_ID },
{ "IHVBUS", DPFLTR_IHVBUS_ID },
{ "HPS", DPFLTR_HPS_ID },
{ "RTLTHREADPOOL", DPFLTR_RTLTHREADPOOL_ID },
{ "LDR", DPFLTR_LDR_ID },
{ "TCPIP6", DPFLTR_TCPIP6_ID },
{ "ISAPNP", DPFLTR_ISAPNP_ID },
{ "SHPC", DPFLTR_SHPC_ID },
{ "STORPORT", DPFLTR_STORPORT_ID },
{ "STORMINIPORT", DPFLTR_STORMINIPORT_ID },
{ "PRINTSPOOLER", DPFLTR_PRINTSPOOLER_ID },
{ "VSSDYNDISK", DPFLTR_VSSDYNDISK_ID },
{ "VERIFIER", DPFLTR_VERIFIER_ID },
{ "VDS", DPFLTR_VDS_ID },
{ "VDSBAS", DPFLTR_VDSBAS_ID },
{ "VDSDYN", DPFLTR_VDSDYN_ID },
{ "VDSDYNDR", DPFLTR_VDSDYNDR_ID },
{ "VDSLDR", DPFLTR_VDSLDR_ID },
{ "VDSUTIL", DPFLTR_VDSUTIL_ID },
{ "DFRGIFC", DPFLTR_DFRGIFC_ID },
{ "MM", DPFLTR_MM_ID },
{ "DFSC", DPFLTR_DFSC_ID },
{ "WOW64", DPFLTR_WOW64_ID },
{ "ALPC", DPFLTR_ALPC_ID },
{ "WDI", DPFLTR_WDI_ID },
{ "PERFLIB", DPFLTR_PERFLIB_ID },
{ "KTM", DPFLTR_KTM_ID },
{ "IOSTRESS", DPFLTR_IOSTRESS_ID },
{ "HEAP", DPFLTR_HEAP_ID },
{ "WHEA", DPFLTR_WHEA_ID },
{ "USERGDI", DPFLTR_USERGDI_ID },
{ "MMCSS", DPFLTR_MMCSS_ID },
{ "TPM", DPFLTR_TPM_ID },
{ "THREADORDER", DPFLTR_THREADORDER_ID },
{ "ENVIRON", DPFLTR_ENVIRON_ID },
{ "EMS", DPFLTR_EMS_ID },
{ "WDT", DPFLTR_WDT_ID },
{ "FVEVOL", DPFLTR_FVEVOL_ID },
{ "NDIS", DPFLTR_NDIS_ID },
{ "NVCTRACE", DPFLTR_NVCTRACE_ID },
{ "LUAFV", DPFLTR_LUAFV_ID },
{ "APPCOMPAT", DPFLTR_APPCOMPAT_ID },
{ "USBSTOR", DPFLTR_USBSTOR_ID },
{ "SBP2PORT", DPFLTR_SBP2PORT_ID },
{ "COVERAGE", DPFLTR_COVERAGE_ID },
{ "CACHEMGR", DPFLTR_CACHEMGR_ID },
{ "MOUNTMGR", DPFLTR_MOUNTMGR_ID },
{ "CFR", DPFLTR_CFR_ID },
{ "TXF", DPFLTR_TXF_ID },
{ "KSECDD", DPFLTR_KSECDD_ID },
{ "FLTREGRESS", DPFLTR_FLTREGRESS_ID },
{ "MPIO", DPFLTR_MPIO_ID },
{ "MSDSM", DPFLTR_MSDSM_ID },
{ "UDFS", DPFLTR_UDFS_ID },
{ "PSHED", DPFLTR_PSHED_ID },
{ "STORVSP", DPFLTR_STORVSP_ID },
{ "LSASS", DPFLTR_LSASS_ID },
{ "SSPICLI", DPFLTR_SSPICLI_ID },
{ "CNG", DPFLTR_CNG_ID },
{ "EXFAT", DPFLTR_EXFAT_ID },
{ "FILETRACE", DPFLTR_FILETRACE_ID },
{ "XSAVE", DPFLTR_XSAVE_ID },
{ "SE", DPFLTR_SE_ID },
{ "DRIVEEXTENDER", DPFLTR_DRIVEEXTENDER_ID },
};
for (i = 0; i < sizeof(ComponentTable) / sizeof(ComponentTable[0]); i++)
{
if (_stricmp(ComponentName, ComponentTable[i].Name) == 0)
{
*ComponentId = ComponentTable[i].Id;
return TRUE;
}
}
return FALSE;
}
/*!\brief Evaluates an expression...
*
* Much like KdbpRpnEvaluateExpression, but prints the error message (if any)
* at the given offset.
*
* \param Expression Expression to evaluate.
* \param ErrOffset Offset (in characters) to print the error message at.
* \param Result Receives the result on success.
*
* \retval TRUE Success.
* \retval FALSE Failure.
*/
static BOOLEAN
KdbpEvaluateExpression(
IN PCHAR Expression,
IN LONG ErrOffset,
OUT PULONGLONG Result)
{
static CHAR ErrMsgBuffer[130] = "^ ";
LONG ExpressionErrOffset = -1;
PCHAR ErrMsg = ErrMsgBuffer;
BOOLEAN Ok;
Ok = KdbpRpnEvaluateExpression(Expression, KdbCurrentTrapFrame, Result,
&ExpressionErrOffset, ErrMsgBuffer + 2);
if (!Ok)
{
if (ExpressionErrOffset >= 0)
ExpressionErrOffset += ErrOffset;
else
ErrMsg += 2;
KdbpPrint("%*s%s\n", ExpressionErrOffset, "", ErrMsg);
}
return Ok;
}
BOOLEAN
NTAPI
KdbpGetHexNumber(
IN PCHAR pszNum,
OUT ULONG_PTR *pulValue)
{
char *endptr;
/* Skip optional '0x' prefix */
if ((pszNum[0] == '0') && ((pszNum[1] == 'x') || (pszNum[1] == 'X')))
pszNum += 2;
/* Make a number from the string (hex) */
*pulValue = strtoul(pszNum, &endptr, 16);
return (*endptr == '\0');
}
/*!\brief Evaluates an expression and displays the result.
*/
static BOOLEAN
KdbpCmdEvalExpression(
ULONG Argc,
PCHAR Argv[])
{
ULONG i, len;
ULONGLONG Result = 0;
ULONG ul;
LONG l = 0;
BOOLEAN Ok;
if (Argc < 2)
{
KdbpPrint("?: Argument required\n");
return TRUE;
}
/* Put the arguments back together */
Argc--;
for (i = 1; i < Argc; i++)
{
len = strlen(Argv[i]);
Argv[i][len] = ' ';
}
/* Evaluate the expression */
Ok = KdbpEvaluateExpression(Argv[1], sizeof("kdb:> ")-1 + (Argv[1]-Argv[0]), &Result);
if (Ok)
{
if (Result > 0x00000000ffffffffLL)
{
if (Result & 0x8000000000000000LL)
KdbpPrint("0x%016I64x %20I64u %20I64d\n", Result, Result, Result);
else
KdbpPrint("0x%016I64x %20I64u\n", Result, Result);
}
else
{
ul = (ULONG)Result;
if (ul <= 0xff && ul >= 0x80)
l = (LONG)((CHAR)ul);
else if (ul <= 0xffff && ul >= 0x8000)
l = (LONG)((SHORT)ul);
else
l = (LONG)ul;
if (l < 0)
KdbpPrint("0x%08lx %10lu %10ld\n", ul, ul, l);
else
KdbpPrint("0x%08lx %10lu\n", ul, ul);
}
}
return TRUE;
}
#ifdef __ROS_DWARF__
/*!\brief Print a struct
*/
static VOID
KdbpPrintStructInternal
(PROSSYM_INFO Info,
PCHAR Indent,
BOOLEAN DoRead,
PVOID BaseAddress,
PROSSYM_AGGREGATE Aggregate)
{
ULONG i;
ULONGLONG Result;
PROSSYM_AGGREGATE_MEMBER Member;
ULONG IndentLen = strlen(Indent);
ROSSYM_AGGREGATE MemberAggregate = {0 };
for (i = 0; i < Aggregate->NumElements; i++) {
Member = &Aggregate->Elements[i];
KdbpPrint("%s%p+%x: %s", Indent, ((PCHAR)BaseAddress) + Member->BaseOffset, Member->Size, Member->Name ? Member->Name : "<anoymous>");
if (DoRead) {
if (!strcmp(Member->Type, "_UNICODE_STRING")) {
KdbpPrint("\"%wZ\"\n", ((PCHAR)BaseAddress) + Member->BaseOffset);
continue;
} else if (!strcmp(Member->Type, "PUNICODE_STRING")) {
KdbpPrint("\"%wZ\"\n", *(((PUNICODE_STRING*)((PCHAR)BaseAddress) + Member->BaseOffset)));
continue;
}
switch (Member->Size) {
case 1:
case 2:
case 4:
case 8: {
Result = 0;
if (NT_SUCCESS(KdbpSafeReadMemory(&Result, ((PCHAR)BaseAddress) + Member->BaseOffset, Member->Size))) {
if (Member->Bits) {
Result >>= Member->FirstBit;
Result &= ((1 << Member->Bits) - 1);
}
KdbpPrint(" %lx\n", Result);
}
else goto readfail;
break;
}
default: {
if (Member->Size < 8) {
if (NT_SUCCESS(KdbpSafeReadMemory(&Result, ((PCHAR)BaseAddress) + Member->BaseOffset, Member->Size))) {
ULONG j;
for (j = 0; j < Member->Size; j++) {
KdbpPrint(" %02x", (int)(Result & 0xff));
Result >>= 8;
}
} else goto readfail;
} else {
KdbpPrint(" %s @ %p {\n", Member->Type, ((PCHAR)BaseAddress) + Member->BaseOffset);
Indent[IndentLen] = ' ';
if (RosSymAggregate(Info, Member->Type, &MemberAggregate)) {
KdbpPrintStructInternal(Info, Indent, DoRead, ((PCHAR)BaseAddress) + Member->BaseOffset, &MemberAggregate);
RosSymFreeAggregate(&MemberAggregate);
}
Indent[IndentLen] = 0;
KdbpPrint("%s}\n", Indent);
} break;
}
}
} else {
readfail:
if (Member->Size <= 8) {
KdbpPrint(" ??\n");
} else {
KdbpPrint(" %s @ %x {\n", Member->Type, Member->BaseOffset);
Indent[IndentLen] = ' ';
if (RosSymAggregate(Info, Member->Type, &MemberAggregate)) {
KdbpPrintStructInternal(Info, Indent, DoRead, BaseAddress, &MemberAggregate);
RosSymFreeAggregate(&MemberAggregate);
}
Indent[IndentLen] = 0;
KdbpPrint("%s}\n", Indent);
}
}
}
}
PROSSYM_INFO KdbpSymFindCachedFile(PUNICODE_STRING ModName);
static BOOLEAN
KdbpCmdPrintStruct(
ULONG Argc,
PCHAR Argv[])
{
ULONG i;
ULONGLONG Result = 0;
PVOID BaseAddress = 0;
ROSSYM_AGGREGATE Aggregate = {0};
UNICODE_STRING ModName = {0};
ANSI_STRING AnsiName = {0};
CHAR Indent[100] = {0};
PROSSYM_INFO Info;
if (Argc < 3) goto end;
AnsiName.Length = AnsiName.MaximumLength = strlen(Argv[1]);
AnsiName.Buffer = Argv[1];
RtlAnsiStringToUnicodeString(&ModName, &AnsiName, TRUE);
Info = KdbpSymFindCachedFile(&ModName);
if (!Info || !RosSymAggregate(Info, Argv[2], &Aggregate)) {
DPRINT1("Could not get aggregate\n");
goto end;
}
// Get an argument for location if it was given
if (Argc > 3) {
ULONG len;
PCHAR ArgStart = Argv[3];
DPRINT1("Trying to get expression\n");
for (i = 3; i < Argc - 1; i++)
{
len = strlen(Argv[i]);
Argv[i][len] = ' ';
}
/* Evaluate the expression */
DPRINT1("Arg: %s\n", ArgStart);
if (KdbpEvaluateExpression(ArgStart, strlen(ArgStart), &Result)) {
BaseAddress = (PVOID)(ULONG_PTR)Result;
DPRINT1("BaseAddress: %p\n", BaseAddress);
}
}
DPRINT1("BaseAddress %p\n", BaseAddress);
KdbpPrintStructInternal(Info, Indent, !!BaseAddress, BaseAddress, &Aggregate);
end:
RosSymFreeAggregate(&Aggregate);
RtlFreeUnicodeString(&ModName);
return TRUE;
}
#endif
/*!\brief Display list of active debug channels
*/
static BOOLEAN
KdbpCmdFilter(
ULONG Argc,
PCHAR Argv[])
{
ULONG i, j, ComponentId, Level;
ULONG set = DPFLTR_MASK, clear = DPFLTR_MASK;
PCHAR pend;
LPCSTR opt, p;
static struct
{
LPCSTR Name;
ULONG Level;
}
debug_classes[] =
{
{ "error", 1 << DPFLTR_ERROR_LEVEL },
{ "warning", 1 << DPFLTR_WARNING_LEVEL },
{ "trace", 1 << DPFLTR_TRACE_LEVEL },
{ "info", 1 << DPFLTR_INFO_LEVEL },
};
for (i = 1; i < Argc; i++)
{
opt = Argv[i];
p = opt + strcspn(opt, "+-");
if (!p[0]) p = opt; /* assume it's a debug channel name */
if (p > opt)
{
for (j = 0; j < sizeof(debug_classes) / sizeof(debug_classes[0]); j++)
{
SIZE_T len = strlen(debug_classes[j].Name);
if (len != (p - opt))
continue;
if (_strnicmp(opt, debug_classes[j].Name, len) == 0) /* found it */
{
if (*p == '+')
set |= debug_classes[j].Level;
else
clear |= debug_classes[j].Level;
break;
}
}
if (j == sizeof(debug_classes) / sizeof(debug_classes[0]))
{
Level = strtoul(opt, &pend, 0);
if (pend != p)
{
KdbpPrint("filter: bad class name '%.*s'\n", p - opt, opt);
continue;
}
if (*p == '+')
set |= Level;
else
clear |= Level;
}
}
else
{
if (*p == '-')
clear = MAXULONG;
else
set = MAXULONG;
}
if (*p == '+' || *p == '-')
p++;
if (!KdbpGetComponentId(p, &ComponentId))
{
KdbpPrint("filter: '%s' is not a valid component name!\n", p);
return TRUE;
}
/* Get current mask value */
NtSetDebugFilterState(ComponentId, set, TRUE);
NtSetDebugFilterState(ComponentId, clear, FALSE);
}
return TRUE;
}
/*!\brief Disassembles 10 instructions at eip or given address or
* displays 16 dwords from memory at given address.
*/
static BOOLEAN
KdbpCmdDisassembleX(
ULONG Argc,
PCHAR Argv[])
{
ULONG Count;
ULONG ul;
INT i;
ULONGLONG Result = 0;
ULONG_PTR Address = KdbCurrentTrapFrame->Tf.Eip;
LONG InstLen;
if (Argv[0][0] == 'x') /* display memory */
Count = 16;
else /* disassemble */
Count = 10;
if (Argc >= 2)
{
/* Check for [L count] part */
ul = 0;
if (strcmp(Argv[Argc-2], "L") == 0)
{
ul = strtoul(Argv[Argc-1], NULL, 0);
if (ul > 0)
{
Count = ul;
Argc -= 2;
}
}
else if (Argv[Argc-1][0] == 'L')
{
ul = strtoul(Argv[Argc-1] + 1, NULL, 0);
if (ul > 0)
{
Count = ul;
Argc--;
}
}
/* Put the remaining arguments back together */
Argc--;
for (ul = 1; ul < Argc; ul++)
{
Argv[ul][strlen(Argv[ul])] = ' ';
}
Argc++;
}
/* Evaluate the expression */
if (Argc > 1)
{
if (!KdbpEvaluateExpression(Argv[1], sizeof("kdb:> ")-1 + (Argv[1]-Argv[0]), &Result))
return TRUE;
if (Result > (ULONGLONG)(~((ULONG_PTR)0)))
KdbpPrint("Warning: Address %I64x is beeing truncated\n",Result);
Address = (ULONG_PTR)Result;
}
else if (Argv[0][0] == 'x')
{
KdbpPrint("x: Address argument required.\n");
return TRUE;
}
if (Argv[0][0] == 'x')
{
/* Display dwords */
ul = 0;
while (Count > 0)
{
if (!KdbSymPrintAddress((PVOID)Address, NULL))
KdbpPrint("<%x>:", Address);
else
KdbpPrint(":");
i = min(4, Count);
Count -= i;
while (--i >= 0)
{
if (!NT_SUCCESS(KdbpSafeReadMemory(&ul, (PVOID)Address, sizeof(ul))))
KdbpPrint(" ????????");
else
KdbpPrint(" %08x", ul);
Address += sizeof(ul);
}
KdbpPrint("\n");
}
}
else
{
/* Disassemble */
while (Count-- > 0)
{
if (!KdbSymPrintAddress((PVOID)Address, NULL))
KdbpPrint("<%08x>: ", Address);
else
KdbpPrint(": ");
InstLen = KdbpDisassemble(Address, KdbUseIntelSyntax);
if (InstLen < 0)
{
KdbpPrint("<INVALID>\n");
return TRUE;
}
KdbpPrint("\n");
Address += InstLen;
}
}
return TRUE;
}
/*!\brief Displays CPU registers.
*/
static BOOLEAN
KdbpCmdRegs(
ULONG Argc,
PCHAR Argv[])
{
PCONTEXT Tf = &KdbCurrentTrapFrame->Tf;
INT i;
static const PCHAR EflagsBits[32] = { " CF", NULL, " PF", " BIT3", " AF", " BIT5",
" ZF", " SF", " TF", " IF", " DF", " OF",
NULL, NULL, " NT", " BIT15", " RF", " VF",
" AC", " VIF", " VIP", " ID", " BIT22",
" BIT23", " BIT24", " BIT25", " BIT26",
" BIT27", " BIT28", " BIT29", " BIT30",
" BIT31" };
if (Argv[0][0] == 'r') /* regs */
{
KdbpPrint("CS:EIP 0x%04x:0x%08x\n"
"SS:ESP 0x%04x:0x%08x\n"
" EAX 0x%08x EBX 0x%08x\n"
" ECX 0x%08x EDX 0x%08x\n"
" ESI 0x%08x EDI 0x%08x\n"
" EBP 0x%08x\n",
Tf->SegCs & 0xFFFF, Tf->Eip,
Tf->SegSs, Tf->Esp,
Tf->Eax, Tf->Ebx,
Tf->Ecx, Tf->Edx,
Tf->Esi, Tf->Edi,
Tf->Ebp);
KdbpPrint("EFLAGS 0x%08x ", Tf->EFlags);
for (i = 0; i < 32; i++)
{
if (i == 1)
{
if ((Tf->EFlags & (1 << 1)) == 0)
KdbpPrint(" !BIT1");
}
else if (i == 12)
{
KdbpPrint(" IOPL%d", (Tf->EFlags >> 12) & 3);
}
else if (i == 13)
{
}
else if ((Tf->EFlags & (1 << i)) != 0)
{
KdbpPrint(EflagsBits[i]);
}
}
KdbpPrint("\n");
}
else if (Argv[0][0] == 'c') /* cregs */
{
ULONG Cr0, Cr2, Cr3, Cr4;
KDESCRIPTOR Gdtr = {0, 0, 0}, Idtr = {0, 0, 0};
USHORT Ldtr;
static const PCHAR Cr0Bits[32] = { " PE", " MP", " EM", " TS", " ET", " NE", NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
" WP", NULL, " AM", NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, " NW", " CD", " PG" };
static const PCHAR Cr4Bits[32] = { " VME", " PVI", " TSD", " DE", " PSE", " PAE", " MCE", " PGE",
" PCE", " OSFXSR", " OSXMMEXCPT", NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL };
Cr0 = KdbCurrentTrapFrame->Cr0;
Cr2 = KdbCurrentTrapFrame->Cr2;
Cr3 = KdbCurrentTrapFrame->Cr3;
Cr4 = KdbCurrentTrapFrame->Cr4;
/* Get descriptor table regs */
Ke386GetGlobalDescriptorTable(&Gdtr.Limit);
Ldtr = Ke386GetLocalDescriptorTable();
__sidt(&Idtr.Limit);
/* Display the control registers */
KdbpPrint("CR0 0x%08x ", Cr0);
for (i = 0; i < 32; i++)
{
if (!Cr0Bits[i])
continue;
if ((Cr0 & (1 << i)) != 0)
KdbpPrint(Cr0Bits[i]);
}
KdbpPrint("\nCR2 0x%08x\n", Cr2);
KdbpPrint("CR3 0x%08x Pagedir-Base 0x%08x %s%s\n", Cr3, (Cr3 & 0xfffff000),
(Cr3 & (1 << 3)) ? " PWT" : "", (Cr3 & (1 << 4)) ? " PCD" : "" );
KdbpPrint("CR4 0x%08x ", Cr4);
for (i = 0; i < 32; i++)
{
if (!Cr4Bits[i])
continue;
if ((Cr4 & (1 << i)) != 0)
KdbpPrint(Cr4Bits[i]);
}
/* Display the descriptor table regs */
KdbpPrint("\nGDTR Base 0x%08x Size 0x%04x\n", Gdtr.Base, Gdtr.Limit);
KdbpPrint("LDTR 0x%04x\n", Ldtr);
KdbpPrint("IDTR Base 0x%08x Size 0x%04x\n", Idtr.Base, Idtr.Limit);
}
else if (Argv[0][0] == 's') /* sregs */
{
KdbpPrint("CS 0x%04x Index 0x%04x %cDT RPL%d\n",
Tf->SegCs & 0xffff, (Tf->SegCs & 0xffff) >> 3,
(Tf->SegCs & (1 << 2)) ? 'L' : 'G', Tf->SegCs & 3);
KdbpPrint("DS 0x%04x Index 0x%04x %cDT RPL%d\n",
Tf->SegDs, Tf->SegDs >> 3, (Tf->SegDs & (1 << 2)) ? 'L' : 'G', Tf->SegDs & 3);
KdbpPrint("ES 0x%04x Index 0x%04x %cDT RPL%d\n",
Tf->SegEs, Tf->SegEs >> 3, (Tf->SegEs & (1 << 2)) ? 'L' : 'G', Tf->SegEs & 3);
KdbpPrint("FS 0x%04x Index 0x%04x %cDT RPL%d\n",
Tf->SegFs, Tf->SegFs >> 3, (Tf->SegFs & (1 << 2)) ? 'L' : 'G', Tf->SegFs & 3);
KdbpPrint("GS 0x%04x Index 0x%04x %cDT RPL%d\n",
Tf->SegGs, Tf->SegGs >> 3, (Tf->SegGs & (1 << 2)) ? 'L' : 'G', Tf->SegGs & 3);
KdbpPrint("SS 0x%04x Index 0x%04x %cDT RPL%d\n",
Tf->SegSs, Tf->SegSs >> 3, (Tf->SegSs & (1 << 2)) ? 'L' : 'G', Tf->SegSs & 3);
}
else /* dregs */
{
ASSERT(Argv[0][0] == 'd');
KdbpPrint("DR0 0x%08x\n"
"DR1 0x%08x\n"
"DR2 0x%08x\n"
"DR3 0x%08x\n"
"DR6 0x%08x\n"
"DR7 0x%08x\n",
Tf->Dr0, Tf->Dr1, Tf->Dr2, Tf->Dr3,
Tf->Dr6, Tf->Dr7);
}
return TRUE;
}
static BOOLEAN
KdbpTrapFrameFromPrevTss(
PCONTEXT TrapFrame)
{
ULONG_PTR Eip, Ebp;
KDESCRIPTOR Gdtr;
KGDTENTRY Desc;
USHORT Sel;
PKTSS Tss;
Ke386GetGlobalDescriptorTable(&Gdtr.Limit);
Sel = Ke386GetTr();
if ((Sel & (sizeof(KGDTENTRY) - 1)) ||
(Sel < sizeof(KGDTENTRY)) ||
(Sel + sizeof(KGDTENTRY) - 1 > Gdtr.Limit))
return FALSE;
if (!NT_SUCCESS(KdbpSafeReadMemory(&Desc,
(PVOID)(Gdtr.Base + Sel),
sizeof(KGDTENTRY))))
return FALSE;
if (Desc.HighWord.Bits.Type != 0xB)
return FALSE;
Tss = (PKTSS)(ULONG_PTR)(Desc.BaseLow |
Desc.HighWord.Bytes.BaseMid << 16 |
Desc.HighWord.Bytes.BaseHi << 24);
if (!NT_SUCCESS(KdbpSafeReadMemory(&Sel,
(PVOID)&Tss->Backlink,
sizeof(USHORT))))
return FALSE;
if ((Sel & (sizeof(KGDTENTRY) - 1)) ||
(Sel < sizeof(KGDTENTRY)) ||
(Sel + sizeof(KGDTENTRY) - 1 > Gdtr.Limit))
return FALSE;
if (!NT_SUCCESS(KdbpSafeReadMemory(&Desc,
(PVOID)(Gdtr.Base + Sel),
sizeof(KGDTENTRY))))
return FALSE;
if (Desc.HighWord.Bits.Type != 0xB)
return FALSE;
Tss = (PKTSS)(ULONG_PTR)(Desc.BaseLow |
Desc.HighWord.Bytes.BaseMid << 16 |
Desc.HighWord.Bytes.BaseHi << 24);
if (!NT_SUCCESS(KdbpSafeReadMemory(&Eip,
(PVOID)&Tss->Eip,
sizeof(ULONG_PTR))))
return FALSE;
if (!NT_SUCCESS(KdbpSafeReadMemory(&Ebp,
(PVOID)&Tss->Ebp,
sizeof(ULONG_PTR))))
return FALSE;
TrapFrame->Eip = Eip;
TrapFrame->Ebp = Ebp;
return TRUE;
}
VOID __cdecl KiTrap02(VOID);
VOID FASTCALL KiTrap03Handler(IN PKTRAP_FRAME);
VOID __cdecl KiTrap08(VOID);
VOID __cdecl KiTrap09(VOID);
static BOOLEAN
KdbpInNmiOrDoubleFaultHandler(
ULONG_PTR Address)
{
return (Address > (ULONG_PTR)KiTrap02 && Address < (ULONG_PTR)KiTrap03Handler) ||
(Address > (ULONG_PTR)KiTrap08 && Address < (ULONG_PTR)KiTrap09);
}
/*!\brief Displays a backtrace.
*/
static BOOLEAN
KdbpCmdBackTrace(
ULONG Argc,
PCHAR Argv[])
{
ULONG ul;
ULONGLONG Result = 0;
ULONG_PTR Frame = KdbCurrentTrapFrame->Tf.Ebp;
ULONG_PTR Address;
CONTEXT TrapFrame;
if (Argc >= 2)
{
/* Check for [L count] part */
ul = 0;
if (strcmp(Argv[Argc-2], "L") == 0)
{
ul = strtoul(Argv[Argc-1], NULL, 0);
if (ul > 0)
{
Argc -= 2;
}
}
else if (Argv[Argc-1][0] == 'L')
{
ul = strtoul(Argv[Argc-1] + 1, NULL, 0);
if (ul > 0)
{
Argc--;
}
}
/* Put the remaining arguments back together */
Argc--;
for (ul = 1; ul < Argc; ul++)
{
Argv[ul][strlen(Argv[ul])] = ' ';
}
Argc++;
}
/* Check if frame addr or thread id is given. */
if (Argc > 1)
{
if (Argv[1][0] == '*')
{
Argv[1]++;
/* Evaluate the expression */
if (!KdbpEvaluateExpression(Argv[1], sizeof("kdb:> ")-1 + (Argv[1]-Argv[0]), &Result))
return TRUE;
if (Result > (ULONGLONG)(~((ULONG_PTR)0)))
KdbpPrint("Warning: Address %I64x is beeing truncated\n",Result);
Frame = (ULONG_PTR)Result;
}
else
{
KdbpPrint("Thread backtrace not supported yet!\n");
return TRUE;
}
}
else
{
KdbpPrint("Eip:\n");
/* Try printing the function at EIP */
if (!KdbSymPrintAddress((PVOID)KdbCurrentTrapFrame->Tf.Eip, &KdbCurrentTrapFrame->Tf))
KdbpPrint("<%08x>\n", KdbCurrentTrapFrame->Tf.Eip);
else
KdbpPrint("\n");
}
TrapFrame = KdbCurrentTrapFrame->Tf;
KdbpPrint("Frames:\n");
for (;;)
{
BOOLEAN GotNextFrame;
if (Frame == 0)
break;
if (!NT_SUCCESS(KdbpSafeReadMemory(&Address, (PVOID)(Frame + sizeof(ULONG_PTR)), sizeof (ULONG_PTR))))
{
KdbpPrint("Couldn't access memory at 0x%p!\n", Frame + sizeof(ULONG_PTR));
break;
}
if ((GotNextFrame = NT_SUCCESS(KdbpSafeReadMemory(&Frame, (PVOID)Frame, sizeof (ULONG_PTR)))))
TrapFrame.Ebp = Frame;
/* Print the location of the call instruction */
if (!KdbSymPrintAddress((PVOID)(Address - 5), &TrapFrame))
KdbpPrint("<%08x>\n", Address);
else
KdbpPrint("\n");
if (KdbOutputAborted) break;
if (Address == 0)
break;
if (KdbpInNmiOrDoubleFaultHandler(Address))
{
if ((GotNextFrame = KdbpTrapFrameFromPrevTss(&TrapFrame)))
{
Address = TrapFrame.Eip;
Frame = TrapFrame.Ebp;
if (!KdbSymPrintAddress((PVOID)Address, &TrapFrame))
KdbpPrint("<%08x>\n", Address);
else
KdbpPrint("\n");
}
}
if (!GotNextFrame)
{
KdbpPrint("Couldn't access memory at 0x%p!\n", Frame);
break;
}
}
return TRUE;
}
/*!\brief Continues execution of the system/leaves KDB.
*/
static BOOLEAN
KdbpCmdContinue(
ULONG Argc,
PCHAR Argv[])
{
/* Exit the main loop */
return FALSE;
}
/*!\brief Continues execution of the system/leaves KDB.
*/
static BOOLEAN
KdbpCmdStep(
ULONG Argc,
PCHAR Argv[])
{
ULONG Count = 1;
if (Argc > 1)
{
Count = strtoul(Argv[1], NULL, 0);
if (Count == 0)
{
KdbpPrint("%s: Integer argument required\n", Argv[0]);
return TRUE;
}
}
if (Argv[0][0] == 'n')
KdbSingleStepOver = TRUE;
else
KdbSingleStepOver = FALSE;
/* Set the number of single steps and return to the interrupted code. */
KdbNumSingleSteps = Count;
return FALSE;
}
/*!\brief Lists breakpoints.
*/
static BOOLEAN
KdbpCmdBreakPointList(
ULONG Argc,
PCHAR Argv[])
{
LONG l;
ULONG_PTR Address = 0;
KDB_BREAKPOINT_TYPE Type = 0;
KDB_ACCESS_TYPE AccessType = 0;
UCHAR Size = 0;
UCHAR DebugReg = 0;
BOOLEAN Enabled = FALSE;
BOOLEAN Global = FALSE;
PEPROCESS Process = NULL;
PCHAR str1, str2, ConditionExpr, GlobalOrLocal;
CHAR Buffer[20];
l = KdbpGetNextBreakPointNr(0);
if (l < 0)
{
KdbpPrint("No breakpoints.\n");
return TRUE;
}
KdbpPrint("Breakpoints:\n");
do
{
if (!KdbpGetBreakPointInfo(l, &Address, &Type, &Size, &AccessType, &DebugReg,
&Enabled, &Global, &Process, &ConditionExpr))
{
continue;
}
if (l == KdbLastBreakPointNr)
{
str1 = "\x1b[1m*";
str2 = "\x1b[0m";
}
else
{
str1 = " ";
str2 = "";
}
if (Global)
{
GlobalOrLocal = " global";
}
else
{
GlobalOrLocal = Buffer;
sprintf(Buffer, " PID 0x%08lx",
(ULONG)(Process ? Process->UniqueProcessId : INVALID_HANDLE_VALUE));
}
if (Type == KdbBreakPointSoftware || Type == KdbBreakPointTemporary)
{
KdbpPrint(" %s%03d BPX 0x%08x%s%s%s%s%s\n",
str1, l, Address,
Enabled ? "" : " disabled",
GlobalOrLocal,
ConditionExpr ? " IF " : "",
ConditionExpr ? ConditionExpr : "",
str2);
}
else if (Type == KdbBreakPointHardware)
{
if (!Enabled)
{
KdbpPrint(" %s%03d BPM 0x%08x %-5s %-5s disabled%s%s%s%s\n", str1, l, Address,
KDB_ACCESS_TYPE_TO_STRING(AccessType),
Size == 1 ? "byte" : (Size == 2 ? "word" : "dword"),
GlobalOrLocal,
ConditionExpr ? " IF " : "",
ConditionExpr ? ConditionExpr : "",
str2);
}
else
{
KdbpPrint(" %s%03d BPM 0x%08x %-5s %-5s DR%d%s%s%s%s\n", str1, l, Address,
KDB_ACCESS_TYPE_TO_STRING(AccessType),
Size == 1 ? "byte" : (Size == 2 ? "word" : "dword"),
DebugReg,
GlobalOrLocal,
ConditionExpr ? " IF " : "",
ConditionExpr ? ConditionExpr : "",
str2);
}
}
}
while ((l = KdbpGetNextBreakPointNr(l+1)) >= 0);
return TRUE;
}
/*!\brief Enables, disables or clears a breakpoint.
*/
static BOOLEAN
KdbpCmdEnableDisableClearBreakPoint(
ULONG Argc,
PCHAR Argv[])
{
PCHAR pend;
ULONG BreakPointNr;
if (Argc < 2)
{
KdbpPrint("%s: argument required\n", Argv[0]);
return TRUE;
}
pend = Argv[1];
BreakPointNr = strtoul(Argv[1], &pend, 0);
if (pend == Argv[1] || *pend != '\0')
{
KdbpPrint("%s: integer argument required\n", Argv[0]);
return TRUE;
}
if (Argv[0][1] == 'e') /* enable */
{
KdbpEnableBreakPoint(BreakPointNr, NULL);
}
else if (Argv [0][1] == 'd') /* disable */
{
KdbpDisableBreakPoint(BreakPointNr, NULL);
}
else /* clear */
{
ASSERT(Argv[0][1] == 'c');
KdbpDeleteBreakPoint(BreakPointNr, NULL);
}
return TRUE;
}
/*!\brief Sets a software or hardware (memory) breakpoint at the given address.
*/
static BOOLEAN
KdbpCmdBreakPoint(ULONG Argc, PCHAR Argv[])
{
ULONGLONG Result = 0;
ULONG_PTR Address;
KDB_BREAKPOINT_TYPE Type;
UCHAR Size = 0;
KDB_ACCESS_TYPE AccessType = 0;
ULONG AddressArgIndex, i;
LONG ConditionArgIndex;
BOOLEAN Global = TRUE;
if (Argv[0][2] == 'x') /* software breakpoint */
{
if (Argc < 2)
{
KdbpPrint("bpx: Address argument required.\n");
return TRUE;
}
AddressArgIndex = 1;
Type = KdbBreakPointSoftware;
}
else /* memory breakpoint */
{
ASSERT(Argv[0][2] == 'm');
if (Argc < 2)
{
KdbpPrint("bpm: Access type argument required (one of r, w, rw, x)\n");
return TRUE;
}
if (_stricmp(Argv[1], "x") == 0)
AccessType = KdbAccessExec;
else if (_stricmp(Argv[1], "r") == 0)
AccessType = KdbAccessRead;
else if (_stricmp(Argv[1], "w") == 0)
AccessType = KdbAccessWrite;
else if (_stricmp(Argv[1], "rw") == 0)
AccessType = KdbAccessReadWrite;
else
{
KdbpPrint("bpm: Unknown access type '%s'\n", Argv[1]);
return TRUE;
}
if (Argc < 3)
{
KdbpPrint("bpm: %s argument required.\n", AccessType == KdbAccessExec ? "Address" : "Memory size");
return TRUE;
}
AddressArgIndex = 3;
if (_stricmp(Argv[2], "byte") == 0)
Size = 1;
else if (_stricmp(Argv[2], "word") == 0)
Size = 2;
else if (_stricmp(Argv[2], "dword") == 0)
Size = 4;
else if (AccessType == KdbAccessExec)
{
Size = 1;
AddressArgIndex--;
}
else
{
KdbpPrint("bpm: Unknown memory size '%s'\n", Argv[2]);
return TRUE;
}
if (Argc <= AddressArgIndex)
{
KdbpPrint("bpm: Address argument required.\n");
return TRUE;
}
Type = KdbBreakPointHardware;
}
/* Put the arguments back together */
ConditionArgIndex = -1;
for (i = AddressArgIndex; i < (Argc-1); i++)
{
if (strcmp(Argv[i+1], "IF") == 0) /* IF found */
{
ConditionArgIndex = i + 2;
if ((ULONG)ConditionArgIndex >= Argc)
{
KdbpPrint("%s: IF requires condition expression.\n", Argv[0]);
return TRUE;
}
for (i = ConditionArgIndex; i < (Argc-1); i++)
Argv[i][strlen(Argv[i])] = ' ';
break;
}
Argv[i][strlen(Argv[i])] = ' ';
}
/* Evaluate the address expression */
if (!KdbpEvaluateExpression(Argv[AddressArgIndex],
sizeof("kdb:> ")-1 + (Argv[AddressArgIndex]-Argv[0]),
&Result))
{
return TRUE;
}
if (Result > (ULONGLONG)(~((ULONG_PTR)0)))
KdbpPrint("%s: Warning: Address %I64x is beeing truncated\n", Argv[0],Result);
Address = (ULONG_PTR)Result;
KdbpInsertBreakPoint(Address, Type, Size, AccessType,
(ConditionArgIndex < 0) ? NULL : Argv[ConditionArgIndex],
Global, NULL);
return TRUE;
}
/*!\brief Lists threads or switches to another thread context.
*/
static BOOLEAN
KdbpCmdThread(
ULONG Argc,
PCHAR Argv[])
{
PLIST_ENTRY Entry;
PETHREAD Thread = NULL;
PEPROCESS Process = NULL;
BOOLEAN ReferencedThread = FALSE, ReferencedProcess = FALSE;
PULONG Esp;
PULONG Ebp;
ULONG Eip;
ULONG ul = 0;
PCHAR State, pend, str1, str2;
static const PCHAR ThreadStateToString[DeferredReady+1] =
{
"Initialized", "Ready", "Running",
"Standby", "Terminated", "Waiting",
"Transition", "DeferredReady"
};
ASSERT(KdbCurrentProcess);
if (Argc >= 2 && _stricmp(Argv[1], "list") == 0)
{
Process = KdbCurrentProcess;
if (Argc >= 3)
{
ul = strtoul(Argv[2], &pend, 0);
if (Argv[2] == pend)
{
KdbpPrint("thread: '%s' is not a valid process id!\n", Argv[2]);
return TRUE;
}
if (!NT_SUCCESS(PsLookupProcessByProcessId((PVOID)ul, &Process)))
{
KdbpPrint("thread: Invalid process id!\n");
return TRUE;
}
/* Remember our reference */
ReferencedProcess = TRUE;
}
Entry = Process->ThreadListHead.Flink;
if (Entry == &Process->ThreadListHead)
{
if (Argc >= 3)
KdbpPrint("No threads in process 0x%08x!\n", ul);
else
KdbpPrint("No threads in current process!\n");
if (ReferencedProcess)
ObDereferenceObject(Process);
return TRUE;
}
KdbpPrint(" TID State Prior. Affinity EBP EIP\n");
do
{
Thread = CONTAINING_RECORD(Entry, ETHREAD, ThreadListEntry);
if (Thread == KdbCurrentThread)
{
str1 = "\x1b[1m*";
str2 = "\x1b[0m";
}
else
{
str1 = " ";
str2 = "";
}
if (!Thread->Tcb.InitialStack)
{
/* Thread has no kernel stack (probably terminated) */
Esp = Ebp = NULL;
Eip = 0;
}
else if (Thread->Tcb.TrapFrame)
{
if (Thread->Tcb.TrapFrame->PreviousPreviousMode == KernelMode)
Esp = (PULONG)Thread->Tcb.TrapFrame->TempEsp;
else
Esp = (PULONG)Thread->Tcb.TrapFrame->HardwareEsp;
Ebp = (PULONG)Thread->Tcb.TrapFrame->Ebp;
Eip = Thread->Tcb.TrapFrame->Eip;
}
else
{
Esp = (PULONG)Thread->Tcb.KernelStack;
Ebp = (PULONG)Esp[4];
Eip = 0;
if (Ebp) /* FIXME: Should we attach to the process to read Ebp[1]? */
KdbpSafeReadMemory(&Eip, Ebp + 1, sizeof (Eip));
}
if (Thread->Tcb.State < (DeferredReady + 1))
State = ThreadStateToString[Thread->Tcb.State];
else
State = "Unknown";
KdbpPrint(" %s0x%08x %-11s %3d 0x%08x 0x%08x 0x%08x%s\n",
str1,
Thread->Cid.UniqueThread,
State,
Thread->Tcb.Priority,
Thread->Tcb.Affinity,
Ebp,
Eip,
str2);
Entry = Entry->Flink;
}
while (Entry != &Process->ThreadListHead);
/* Release our reference, if any */
if (ReferencedProcess)
ObDereferenceObject(Process);
}
else if (Argc >= 2 && _stricmp(Argv[1], "attach") == 0)
{
if (Argc < 3)
{
KdbpPrint("thread attach: thread id argument required!\n");
return TRUE;
}
ul = strtoul(Argv[2], &pend, 0);
if (Argv[2] == pend)
{
KdbpPrint("thread attach: '%s' is not a valid thread id!\n", Argv[2]);
return TRUE;
}
if (!KdbpAttachToThread((PVOID)ul))
{
return TRUE;
}
KdbpPrint("Attached to thread 0x%08x.\n", ul);
}
else
{
Thread = KdbCurrentThread;
if (Argc >= 2)
{
ul = strtoul(Argv[1], &pend, 0);
if (Argv[1] == pend)
{
KdbpPrint("thread: '%s' is not a valid thread id!\n", Argv[1]);
return TRUE;
}
if (!NT_SUCCESS(PsLookupThreadByThreadId((PVOID)ul, &Thread)))
{
KdbpPrint("thread: Invalid thread id!\n");
return TRUE;
}
/* Remember our reference */
ReferencedThread = TRUE;
}
if (Thread->Tcb.State < (DeferredReady + 1))
State = ThreadStateToString[Thread->Tcb.State];
else
State = "Unknown";
KdbpPrint("%s"
" TID: 0x%08x\n"
" State: %s (0x%x)\n"
" Priority: %d\n"
" Affinity: 0x%08x\n"
" Initial Stack: 0x%08x\n"
" Stack Limit: 0x%08x\n"
" Stack Base: 0x%08x\n"
" Kernel Stack: 0x%08x\n"
" Trap Frame: 0x%08x\n"
" NPX State: %s (0x%x)\n",
(Argc < 2) ? "Current Thread:\n" : "",
Thread->Cid.UniqueThread,
State, Thread->Tcb.State,
Thread->Tcb.Priority,
Thread->Tcb.Affinity,
Thread->Tcb.InitialStack,
Thread->Tcb.StackLimit,
Thread->Tcb.StackBase,
Thread->Tcb.KernelStack,
Thread->Tcb.TrapFrame,
NPX_STATE_TO_STRING(Thread->Tcb.NpxState), Thread->Tcb.NpxState);
/* Release our reference if we had one */
if (ReferencedThread)
ObDereferenceObject(Thread);
}
return TRUE;
}
/*!\brief Lists processes or switches to another process context.
*/
static BOOLEAN
KdbpCmdProc(
ULONG Argc,
PCHAR Argv[])
{
PLIST_ENTRY Entry;
PEPROCESS Process;
BOOLEAN ReferencedProcess = FALSE;
PCHAR State, pend, str1, str2;
ULONG ul;
extern LIST_ENTRY PsActiveProcessHead;
if (Argc >= 2 && _stricmp(Argv[1], "list") == 0)
{
Entry = PsActiveProcessHead.Flink;
if (!Entry || Entry == &PsActiveProcessHead)
{
KdbpPrint("No processes in the system!\n");
return TRUE;
}
KdbpPrint(" PID State Filename\n");
do
{
Process = CONTAINING_RECORD(Entry, EPROCESS, ActiveProcessLinks);
if (Process == KdbCurrentProcess)
{
str1 = "\x1b[1m*";
str2 = "\x1b[0m";
}
else
{
str1 = " ";
str2 = "";
}
State = ((Process->Pcb.State == ProcessInMemory) ? "In Memory" :
((Process->Pcb.State == ProcessOutOfMemory) ? "Out of Memory" : "In Transition"));
KdbpPrint(" %s0x%08x %-10s %s%s\n",
str1,
Process->UniqueProcessId,
State,
Process->ImageFileName,
str2);
Entry = Entry->Flink;
}
while(Entry != &PsActiveProcessHead);
}
else if (Argc >= 2 && _stricmp(Argv[1], "attach") == 0)
{
if (Argc < 3)
{
KdbpPrint("process attach: process id argument required!\n");
return TRUE;
}
ul = strtoul(Argv[2], &pend, 0);
if (Argv[2] == pend)
{
KdbpPrint("process attach: '%s' is not a valid process id!\n", Argv[2]);
return TRUE;
}
if (!KdbpAttachToProcess((PVOID)ul))
{
return TRUE;
}
KdbpPrint("Attached to process 0x%08x, thread 0x%08x.\n", (ULONG)ul,
(ULONG)KdbCurrentThread->Cid.UniqueThread);
}
else
{
Process = KdbCurrentProcess;
if (Argc >= 2)
{
ul = strtoul(Argv[1], &pend, 0);
if (Argv[1] == pend)
{
KdbpPrint("proc: '%s' is not a valid process id!\n", Argv[1]);
return TRUE;
}
if (!NT_SUCCESS(PsLookupProcessByProcessId((PVOID)ul, &Process)))
{
KdbpPrint("proc: Invalid process id!\n");
return TRUE;
}
/* Remember our reference */
ReferencedProcess = TRUE;
}
State = ((Process->Pcb.State == ProcessInMemory) ? "In Memory" :
((Process->Pcb.State == ProcessOutOfMemory) ? "Out of Memory" : "In Transition"));
KdbpPrint("%s"
" PID: 0x%08x\n"
" State: %s (0x%x)\n"
" Image Filename: %s\n",
(Argc < 2) ? "Current process:\n" : "",
Process->UniqueProcessId,
State, Process->Pcb.State,
Process->ImageFileName);
/* Release our reference, if any */
if (ReferencedProcess)
ObDereferenceObject(Process);
}
return TRUE;
}
/*!\brief Lists loaded modules or the one containing the specified address.
*/
static BOOLEAN
KdbpCmdMod(
ULONG Argc,
PCHAR Argv[])
{
ULONGLONG Result = 0;
ULONG_PTR Address;
PLDR_DATA_TABLE_ENTRY LdrEntry;
BOOLEAN DisplayOnlyOneModule = FALSE;
INT i = 0;
if (Argc >= 2)
{
/* Put the arguments back together */
Argc--;
while (--Argc >= 1)
Argv[Argc][strlen(Argv[Argc])] = ' ';
/* Evaluate the expression */
if (!KdbpEvaluateExpression(Argv[1], sizeof("kdb:> ")-1 + (Argv[1]-Argv[0]), &Result))
{
return TRUE;
}
if (Result > (ULONGLONG)(~((ULONG_PTR)0)))
KdbpPrint("%s: Warning: Address %I64x is beeing truncated\n", Argv[0],Result);
Address = (ULONG_PTR)Result;
if (!KdbpSymFindModule((PVOID)Address, NULL, -1, &LdrEntry))
{
KdbpPrint("No module containing address 0x%p found!\n", Address);
return TRUE;
}
DisplayOnlyOneModule = TRUE;
}
else
{
if (!KdbpSymFindModule(NULL, NULL, 0, &LdrEntry))
{
ULONG_PTR ntoskrnlBase = ((ULONG_PTR)KdbpCmdMod) & 0xfff00000;
KdbpPrint(" Base Size Name\n");
KdbpPrint(" %08x %08x %s\n", ntoskrnlBase, 0, "ntoskrnl.exe");
return TRUE;
}
i = 1;
}
KdbpPrint(" Base Size Name\n");
for (;;)
{
KdbpPrint(" %08x %08x %wZ\n", LdrEntry->DllBase, LdrEntry->SizeOfImage, &LdrEntry->BaseDllName);
if(DisplayOnlyOneModule || !KdbpSymFindModule(NULL, NULL, i++, &LdrEntry))
break;
}
return TRUE;
}
/*!\brief Displays GDT, LDT or IDTd.
*/
static BOOLEAN
KdbpCmdGdtLdtIdt(
ULONG Argc,
PCHAR Argv[])
{
KDESCRIPTOR Reg;
ULONG SegDesc[2];
ULONG SegBase;
ULONG SegLimit;
PCHAR SegType;
USHORT SegSel;
UCHAR Type, Dpl;
INT i;
ULONG ul;
if (Argv[0][0] == 'i')
{
/* Read IDTR */
__sidt(&Reg.Limit);
if (Reg.Limit < 7)
{
KdbpPrint("Interrupt descriptor table is empty.\n");
return TRUE;
}
KdbpPrint("IDT Base: 0x%08x Limit: 0x%04x\n", Reg.Base, Reg.Limit);
KdbpPrint(" Idx Type Seg. Sel. Offset DPL\n");
for (i = 0; (i + sizeof(SegDesc) - 1) <= Reg.Limit; i += 8)
{
if (!NT_SUCCESS(KdbpSafeReadMemory(SegDesc, (PVOID)(Reg.Base + i), sizeof(SegDesc))))
{
KdbpPrint("Couldn't access memory at 0x%08x!\n", Reg.Base + i);
return TRUE;
}
Dpl = ((SegDesc[1] >> 13) & 3);
if ((SegDesc[1] & 0x1f00) == 0x0500) /* Task gate */
SegType = "TASKGATE";
else if ((SegDesc[1] & 0x1fe0) == 0x0e00) /* 32 bit Interrupt gate */
SegType = "INTGATE32";
else if ((SegDesc[1] & 0x1fe0) == 0x0600) /* 16 bit Interrupt gate */
SegType = "INTGATE16";
else if ((SegDesc[1] & 0x1fe0) == 0x0f00) /* 32 bit Trap gate */
SegType = "TRAPGATE32";
else if ((SegDesc[1] & 0x1fe0) == 0x0700) /* 16 bit Trap gate */
SegType = "TRAPGATE16";
else
SegType = "UNKNOWN";
if ((SegDesc[1] & (1 << 15)) == 0) /* not present */
{
KdbpPrint(" %03d %-10s [NP] [NP] %02d\n",
i / 8, SegType, Dpl);
}
else if ((SegDesc[1] & 0x1f00) == 0x0500) /* Task gate */
{
SegSel = SegDesc[0] >> 16;
KdbpPrint(" %03d %-10s 0x%04x %02d\n",
i / 8, SegType, SegSel, Dpl);
}
else
{
SegSel = SegDesc[0] >> 16;
SegBase = (SegDesc[1] & 0xffff0000) | (SegDesc[0] & 0x0000ffff);
KdbpPrint(" %03d %-10s 0x%04x 0x%08x %02d\n",
i / 8, SegType, SegSel, SegBase, Dpl);
}
}
}
else
{
ul = 0;
if (Argv[0][0] == 'g')
{
/* Read GDTR */
Ke386GetGlobalDescriptorTable(&Reg.Limit);
i = 8;
}
else
{
ASSERT(Argv[0][0] == 'l');
/* Read LDTR */
Reg.Limit = Ke386GetLocalDescriptorTable();
Reg.Base = 0;
i = 0;
ul = 1 << 2;
}
if (Reg.Limit < 7)
{
KdbpPrint("%s descriptor table is empty.\n",
Argv[0][0] == 'g' ? "Global" : "Local");
return TRUE;
}
KdbpPrint("%cDT Base: 0x%08x Limit: 0x%04x\n",
Argv[0][0] == 'g' ? 'G' : 'L', Reg.Base, Reg.Limit);
KdbpPrint(" Idx Sel. Type Base Limit DPL Attribs\n");
for (; (i + sizeof(SegDesc) - 1) <= Reg.Limit; i += 8)
{
if (!NT_SUCCESS(KdbpSafeReadMemory(SegDesc, (PVOID)(Reg.Base + i), sizeof(SegDesc))))
{
KdbpPrint("Couldn't access memory at 0x%08x!\n", Reg.Base + i);
return TRUE;
}
Dpl = ((SegDesc[1] >> 13) & 3);
Type = ((SegDesc[1] >> 8) & 0xf);
SegBase = SegDesc[0] >> 16;
SegBase |= (SegDesc[1] & 0xff) << 16;
SegBase |= SegDesc[1] & 0xff000000;
SegLimit = SegDesc[0] & 0x0000ffff;
SegLimit |= (SegDesc[1] >> 16) & 0xf;
if ((SegDesc[1] & (1 << 23)) != 0)
{
SegLimit *= 4096;
SegLimit += 4095;
}
else
{
SegLimit++;
}
if ((SegDesc[1] & (1 << 12)) == 0) /* System segment */
{
switch (Type)
{
case 1: SegType = "TSS16(Avl)"; break;
case 2: SegType = "LDT"; break;
case 3: SegType = "TSS16(Busy)"; break;
case 4: SegType = "CALLGATE16"; break;
case 5: SegType = "TASKGATE"; break;
case 6: SegType = "INTGATE16"; break;
case 7: SegType = "TRAPGATE16"; break;
case 9: SegType = "TSS32(Avl)"; break;
case 11: SegType = "TSS32(Busy)"; break;
case 12: SegType = "CALLGATE32"; break;
case 14: SegType = "INTGATE32"; break;
case 15: SegType = "INTGATE32"; break;
default: SegType = "UNKNOWN"; break;
}
if (!(Type >= 1 && Type <= 3) &&
Type != 9 && Type != 11)
{
SegBase = 0;
SegLimit = 0;
}
}
else if ((SegDesc[1] & (1 << 11)) == 0) /* Data segment */
{
if ((SegDesc[1] & (1 << 22)) != 0)
SegType = "DATA32";
else
SegType = "DATA16";
}
else /* Code segment */
{
if ((SegDesc[1] & (1 << 22)) != 0)
SegType = "CODE32";
else
SegType = "CODE16";
}
if ((SegDesc[1] & (1 << 15)) == 0) /* not present */
{
KdbpPrint(" %03d 0x%04x %-11s [NP] [NP] %02d NP\n",
i / 8, i | Dpl | ul, SegType, Dpl);
}
else
{
KdbpPrint(" %03d 0x%04x %-11s 0x%08x 0x%08x %02d ",
i / 8, i | Dpl | ul, SegType, SegBase, SegLimit, Dpl);
if ((SegDesc[1] & (1 << 12)) == 0) /* System segment */
{
/* FIXME: Display system segment */
}
else if ((SegDesc[1] & (1 << 11)) == 0) /* Data segment */
{
if ((SegDesc[1] & (1 << 10)) != 0) /* Expand-down */
KdbpPrint(" E");
KdbpPrint((SegDesc[1] & (1 << 9)) ? " R/W" : " R");
if ((SegDesc[1] & (1 << 8)) != 0)
KdbpPrint(" A");
}
else /* Code segment */
{
if ((SegDesc[1] & (1 << 10)) != 0) /* Conforming */
KdbpPrint(" C");
KdbpPrint((SegDesc[1] & (1 << 9)) ? " R/X" : " X");
if ((SegDesc[1] & (1 << 8)) != 0)
KdbpPrint(" A");
}
if ((SegDesc[1] & (1 << 20)) != 0)
KdbpPrint(" AVL");
KdbpPrint("\n");
}
}
}
return TRUE;
}
/*!\brief Displays the KPCR
*/
static BOOLEAN
KdbpCmdPcr(
ULONG Argc,
PCHAR Argv[])
{
PKIPCR Pcr = (PKIPCR)KeGetPcr();
KdbpPrint("Current PCR is at 0x%08x.\n", (INT)Pcr);
KdbpPrint(" Tib.ExceptionList: 0x%08x\n"
" Tib.StackBase: 0x%08x\n"
" Tib.StackLimit: 0x%08x\n"
" Tib.SubSystemTib: 0x%08x\n"
" Tib.FiberData/Version: 0x%08x\n"
" Tib.ArbitraryUserPointer: 0x%08x\n"
" Tib.Self: 0x%08x\n"
" SelfPcr: 0x%08x\n"
" PCRCB: 0x%08x\n"
" Irql: 0x%02x\n"
" IRR: 0x%08x\n"
" IrrActive: 0x%08x\n"
" IDR: 0x%08x\n"
" KdVersionBlock: 0x%08x\n"
" IDT: 0x%08x\n"
" GDT: 0x%08x\n"
" TSS: 0x%08x\n"
" MajorVersion: 0x%04x\n"
" MinorVersion: 0x%04x\n"
" SetMember: 0x%08x\n"
" StallScaleFactor: 0x%08x\n"
" Number: 0x%02x\n"
" L2CacheAssociativity: 0x%02x\n"
" VdmAlert: 0x%08x\n"
" L2CacheSize: 0x%08x\n"
" InterruptMode: 0x%08x\n",
Pcr->NtTib.ExceptionList, Pcr->NtTib.StackBase, Pcr->NtTib.StackLimit,
Pcr->NtTib.SubSystemTib, Pcr->NtTib.FiberData, Pcr->NtTib.ArbitraryUserPointer,
Pcr->NtTib.Self, Pcr->SelfPcr, Pcr->Prcb, Pcr->Irql, Pcr->IRR, Pcr->IrrActive,
Pcr->IDR, Pcr->KdVersionBlock, Pcr->IDT, Pcr->GDT, Pcr->TSS,
Pcr->MajorVersion, Pcr->MinorVersion, Pcr->SetMember, Pcr->StallScaleFactor,
Pcr->Number, Pcr->SecondLevelCacheAssociativity,
Pcr->VdmAlert, Pcr->SecondLevelCacheSize, Pcr->InterruptMode);
return TRUE;
}
/*!\brief Displays the TSS
*/
static BOOLEAN
KdbpCmdTss(
ULONG Argc,
PCHAR Argv[])
{
KTSS *Tss = KeGetPcr()->TSS;
KdbpPrint("Current TSS is at 0x%08x.\n", (INT)Tss);
KdbpPrint(" Eip: 0x%08x\n"
" Es: 0x%04x\n"
" Cs: 0x%04x\n"
" Ss: 0x%04x\n"
" Ds: 0x%04x\n"
" Fs: 0x%04x\n"
" Gs: 0x%04x\n"
" IoMapBase: 0x%04x\n",
Tss->Eip, Tss->Es, Tss->Cs, Tss->Ds, Tss->Fs, Tss->Gs, Tss->IoMapBase);
return TRUE;
}
/*!\brief Bugchecks the system.
*/
static BOOLEAN
KdbpCmdBugCheck(
ULONG Argc,
PCHAR Argv[])
{
/* Set the flag and quit looping */
KdbpBugCheckRequested = TRUE;
return FALSE;
}
static BOOLEAN
KdbpCmdReboot(
ULONG Argc,
PCHAR Argv[])
{
/* Reboot immediately (we do not return) */
HalReturnToFirmware(HalRebootRoutine);
return FALSE;
}
VOID
KdbpPager(
IN PCHAR Buffer,
IN ULONG BufLength);
/*!\brief Display debug messages on screen, with paging.
*
* Keys for per-page view: Home, End, PageUp, Arrow Up, PageDown,
* all others are as PageDown.
*/
static BOOLEAN
KdbpCmdDmesg(
ULONG Argc,
PCHAR Argv[])
{
ULONG beg, end;
KdbpIsInDmesgMode = TRUE; /* Toggle logging flag */
if (!KdpDmesgBuffer)
{
KdbpPrint("Dmesg: error, buffer is not allocated! /DEBUGPORT=SCREEN kernel param required for dmesg.\n");
return TRUE;
}
KdbpPrint("*** Dmesg *** TotalWritten=%lu, BufferSize=%lu, CurrentPosition=%lu\n",
KdbDmesgTotalWritten, KdpDmesgBufferSize, KdpDmesgCurrentPosition);
// Pass data to the pager:
end = KdpDmesgCurrentPosition;
beg = (end + KdpDmesgFreeBytes) % KdpDmesgBufferSize;
// no roll-overs, and overwritten=lost bytes
if (KdbDmesgTotalWritten <= KdpDmesgBufferSize)
{
// show buffer (KdpDmesgBuffer + beg, num)
KdbpPager(KdpDmesgBuffer, KdpDmesgCurrentPosition);
}
else
{
// show 2 buffers: (KdpDmesgBuffer + beg, KdpDmesgBufferSize - beg)
// and: (KdpDmesgBuffer, end)
KdbpPager(KdpDmesgBuffer + beg, KdpDmesgBufferSize - beg);
KdbpPrint("*** Dmesg: buffer rollup ***\n");
KdbpPager(KdpDmesgBuffer, end);
}
KdbpPrint("*** Dmesg: end of output ***\n");
KdbpIsInDmesgMode = FALSE; /* Toggle logging flag */
return TRUE;
}
/*!\brief Sets or displays a config variables value.
*/
static BOOLEAN
KdbpCmdSet(
ULONG Argc,
PCHAR Argv[])
{
LONG l;
BOOLEAN First;
PCHAR pend = 0;
KDB_ENTER_CONDITION ConditionFirst = KdbDoNotEnter;
KDB_ENTER_CONDITION ConditionLast = KdbDoNotEnter;
static const PCHAR ExceptionNames[21] =
{
"ZERODEVIDE", "DEBUGTRAP", "NMI", "INT3", "OVERFLOW", "BOUND", "INVALIDOP",
"NOMATHCOP", "DOUBLEFAULT", "RESERVED(9)", "INVALIDTSS", "SEGMENTNOTPRESENT",
"STACKFAULT", "GPF", "PAGEFAULT", "RESERVED(15)", "MATHFAULT", "ALIGNMENTCHECK",
"MACHINECHECK", "SIMDFAULT", "OTHERS"
};
if (Argc == 1)
{
KdbpPrint("Available settings:\n");
KdbpPrint(" syntax [intel|at&t]\n");
KdbpPrint(" condition [exception|*] [first|last] [never|always|kmode|umode]\n");
KdbpPrint(" break_on_module_load [true|false]\n");
}
else if (strcmp(Argv[1], "syntax") == 0)
{
if (Argc == 2)
{
KdbpPrint("syntax = %s\n", KdbUseIntelSyntax ? "intel" : "at&t");
}
else if (Argc >= 3)
{
if (_stricmp(Argv[2], "intel") == 0)
KdbUseIntelSyntax = TRUE;
else if (_stricmp(Argv[2], "at&t") == 0)
KdbUseIntelSyntax = FALSE;
else
KdbpPrint("Unknown syntax '%s'.\n", Argv[2]);
}
}
else if (strcmp(Argv[1], "condition") == 0)
{
if (Argc == 2)
{
KdbpPrint("Conditions: (First) (Last)\n");
for (l = 0; l < RTL_NUMBER_OF(ExceptionNames) - 1; l++)
{
if (!ExceptionNames[l])
continue;
if (!KdbpGetEnterCondition(l, TRUE, &ConditionFirst))
ASSERT(0);
if (!KdbpGetEnterCondition(l, FALSE, &ConditionLast))
ASSERT(0);
KdbpPrint(" #%02d %-20s %-8s %-8s\n", l, ExceptionNames[l],
KDB_ENTER_CONDITION_TO_STRING(ConditionFirst),
KDB_ENTER_CONDITION_TO_STRING(ConditionLast));
}
ASSERT(l == (RTL_NUMBER_OF(ExceptionNames) - 1));
KdbpPrint(" %-20s %-8s %-8s\n", ExceptionNames[l],
KDB_ENTER_CONDITION_TO_STRING(ConditionFirst),
KDB_ENTER_CONDITION_TO_STRING(ConditionLast));
}
else
{
if (Argc >= 5 && strcmp(Argv[2], "*") == 0) /* Allow * only when setting condition */
{
l = -1;
}
else
{
l = strtoul(Argv[2], &pend, 0);
if (Argv[2] == pend)
{
for (l = 0; l < RTL_NUMBER_OF(ExceptionNames); l++)
{
if (!ExceptionNames[l])
continue;
if (_stricmp(ExceptionNames[l], Argv[2]) == 0)
break;
}
}
if (l >= RTL_NUMBER_OF(ExceptionNames))
{
KdbpPrint("Unknown exception '%s'.\n", Argv[2]);
return TRUE;
}
}
if (Argc > 4)
{
if (_stricmp(Argv[3], "first") == 0)
First = TRUE;
else if (_stricmp(Argv[3], "last") == 0)
First = FALSE;
else
{
KdbpPrint("set condition: second argument must be 'first' or 'last'\n");
return TRUE;
}
if (_stricmp(Argv[4], "never") == 0)
ConditionFirst = KdbDoNotEnter;
else if (_stricmp(Argv[4], "always") == 0)
ConditionFirst = KdbEnterAlways;
else if (_stricmp(Argv[4], "umode") == 0)
ConditionFirst = KdbEnterFromUmode;
else if (_stricmp(Argv[4], "kmode") == 0)
ConditionFirst = KdbEnterFromKmode;
else
{
KdbpPrint("set condition: third argument must be 'never', 'always', 'umode' or 'kmode'\n");
return TRUE;
}
if (!KdbpSetEnterCondition(l, First, ConditionFirst))
{
if (l >= 0)
KdbpPrint("Couldn't change condition for exception #%02d\n", l);
else
KdbpPrint("Couldn't change condition for all exceptions\n", l);
}
}
else /* Argc >= 3 */
{
if (!KdbpGetEnterCondition(l, TRUE, &ConditionFirst))
ASSERT(0);
if (!KdbpGetEnterCondition(l, FALSE, &ConditionLast))
ASSERT(0);
if (l < (RTL_NUMBER_OF(ExceptionNames) - 1))
{
KdbpPrint("Condition for exception #%02d (%s): FirstChance %s LastChance %s\n",
l, ExceptionNames[l],
KDB_ENTER_CONDITION_TO_STRING(ConditionFirst),
KDB_ENTER_CONDITION_TO_STRING(ConditionLast));
}
else
{
KdbpPrint("Condition for all other exceptions: FirstChance %s LastChance %s\n",
KDB_ENTER_CONDITION_TO_STRING(ConditionFirst),
KDB_ENTER_CONDITION_TO_STRING(ConditionLast));
}
}
}
}
else if (strcmp(Argv[1], "break_on_module_load") == 0)
{
if (Argc == 2)
KdbpPrint("break_on_module_load = %s\n", KdbBreakOnModuleLoad ? "enabled" : "disabled");
else if (Argc >= 3)
{
if (_stricmp(Argv[2], "enable") == 0 || _stricmp(Argv[2], "enabled") == 0 || _stricmp(Argv[2], "true") == 0)
KdbBreakOnModuleLoad = TRUE;
else if (_stricmp(Argv[2], "disable") == 0 || _stricmp(Argv[2], "disabled") == 0 || _stricmp(Argv[2], "false") == 0)
KdbBreakOnModuleLoad = FALSE;
else
KdbpPrint("Unknown setting '%s'.\n", Argv[2]);
}
}
else
{
KdbpPrint("Unknown setting '%s'.\n", Argv[1]);
}
return TRUE;
}
/*!\brief Displays help screen.
*/
static BOOLEAN
KdbpCmdHelp(
ULONG Argc,
PCHAR Argv[])
{
ULONG i;
KdbpPrint("Kernel debugger commands:\n");
for (i = 0; i < RTL_NUMBER_OF(KdbDebuggerCommands); i++)
{
if (!KdbDebuggerCommands[i].Syntax) /* Command group */
{
if (i > 0)
KdbpPrint("\n");
KdbpPrint("\x1b[7m* %s:\x1b[0m\n", KdbDebuggerCommands[i].Help);
continue;
}
KdbpPrint(" %-20s - %s\n",
KdbDebuggerCommands[i].Syntax,
KdbDebuggerCommands[i].Help);
}
return TRUE;
}
/*!\brief Prints the given string with printf-like formatting.
*
* \param Format Format of the string/arguments.
* \param ... Variable number of arguments matching the format specified in \a Format.
*
* \note Doesn't correctly handle \\t and terminal escape sequences when calculating the
* number of lines required to print a single line from the Buffer in the terminal.
* Prints maximum 4096 chars, because of its buffer size.
*/
VOID
KdbpPrint(
IN PCHAR Format,
IN ... OPTIONAL)
{
static CHAR Buffer[4096];
static BOOLEAN TerminalInitialized = FALSE;
static BOOLEAN TerminalConnected = FALSE;
static BOOLEAN TerminalReportsSize = TRUE;
CHAR c = '\0';
PCHAR p, p2;
ULONG Length;
ULONG i, j;
LONG RowsPrintedByTerminal;
ULONG ScanCode;
va_list ap;
/* Check if the user has aborted output of the current command */
if (KdbOutputAborted)
return;
/* Initialize the terminal */
if (!TerminalInitialized)
{
DbgPrint("\x1b[7h"); /* Enable linewrap */
/* Query terminal type */
/*DbgPrint("\x1b[Z");*/
DbgPrint("\x05");
TerminalInitialized = TRUE;
Length = 0;
KeStallExecutionProcessor(100000);
for (;;)
{
c = KdbpTryGetCharSerial(5000);
if (c == -1)
break;
Buffer[Length++] = c;
if (Length >= (sizeof (Buffer) - 1))
break;
}
Buffer[Length] = '\0';
if (Length > 0)
TerminalConnected = TRUE;
}
/* Get number of rows and columns in terminal */
if ((KdbNumberOfRowsTerminal < 0) || (KdbNumberOfColsTerminal < 0) ||
(KdbNumberOfRowsPrinted) == 0) /* Refresh terminal size each time when number of rows printed is 0 */
{
if ((KdbDebugState & KD_DEBUG_KDSERIAL) && TerminalConnected && TerminalReportsSize)
{
/* Try to query number of rows from terminal. A reply looks like "\x1b[8;24;80t" */
TerminalReportsSize = FALSE;
KeStallExecutionProcessor(100000);
DbgPrint("\x1b[18t");
c = KdbpTryGetCharSerial(5000);
if (c == KEY_ESC)
{
c = KdbpTryGetCharSerial(5000);
if (c == '[')
{
Length = 0;
for (;;)
{
c = KdbpTryGetCharSerial(5000);
if (c == -1)
break;
Buffer[Length++] = c;
if (isalpha(c) || Length >= (sizeof (Buffer) - 1))
break;
}
Buffer[Length] = '\0';
if (Buffer[0] == '8' && Buffer[1] == ';')
{
for (i = 2; (i < Length) && (Buffer[i] != ';'); i++);
if (Buffer[i] == ';')
{
Buffer[i++] = '\0';
/* Number of rows is now at Buffer + 2 and number of cols at Buffer + i */
KdbNumberOfRowsTerminal = strtoul(Buffer + 2, NULL, 0);
KdbNumberOfColsTerminal = strtoul(Buffer + i, NULL, 0);
TerminalReportsSize = TRUE;
}
}
}
/* Clear further characters */
while ((c = KdbpTryGetCharSerial(5000)) != -1);
}
}
if (KdbNumberOfRowsTerminal <= 0)
{
/* Set number of rows to the default. */
KdbNumberOfRowsTerminal = 23; //24; //Mna.: 23 for SCREEN debugport
}
else if (KdbNumberOfColsTerminal <= 0)
{
/* Set number of cols to the default. */
KdbNumberOfColsTerminal = 75; //80; //Mna.: 75 for SCREEN debugport
}
}
/* Get the string */
va_start(ap, Format);
Length = _vsnprintf(Buffer, sizeof (Buffer) - 1, Format, ap);
Buffer[Length] = '\0';
va_end(ap);
p = Buffer;
while (p[0] != '\0')
{
i = strcspn(p, "\n");
/* Calculate the number of lines which will be printed in the terminal
* when outputting the current line
*/
if (i > 0)
RowsPrintedByTerminal = (i + KdbNumberOfColsPrinted - 1) / KdbNumberOfColsTerminal;
else
RowsPrintedByTerminal = 0;
if (p[i] == '\n')
RowsPrintedByTerminal++;
/*DbgPrint("!%d!%d!%d!%d!", KdbNumberOfRowsPrinted, KdbNumberOfColsPrinted, i, RowsPrintedByTerminal);*/
/* Display a prompt if we printed one screen full of text */
if (KdbNumberOfRowsTerminal > 0 &&
(LONG)(KdbNumberOfRowsPrinted + RowsPrintedByTerminal) >= KdbNumberOfRowsTerminal)
{
KdbRepeatLastCommand = FALSE;
if (KdbNumberOfColsPrinted > 0)
DbgPrint("\n");
DbgPrint("--- Press q to abort, any other key to continue ---");
RowsPrintedByTerminal++; /* added by Mna. */
if (KdbDebugState & KD_DEBUG_KDSERIAL)
c = KdbpGetCharSerial();
else
c = KdbpGetCharKeyboard(&ScanCode);
if (c == '\r')
{
/* Try to read '\n' which might follow '\r' - if \n is not received here
* it will be interpreted as "return" when the next command should be read.
*/
if (KdbDebugState & KD_DEBUG_KDSERIAL)
c = KdbpTryGetCharSerial(5);
else
c = KdbpTryGetCharKeyboard(&ScanCode, 5);
}
DbgPrint("\n");
if (c == 'q')
{
KdbOutputAborted = TRUE;
return;
}
KdbNumberOfRowsPrinted = 0;
KdbNumberOfColsPrinted = 0;
}
/* Insert a NUL after the line and print only the current line. */
if (p[i] == '\n' && p[i + 1] != '\0')
{
c = p[i + 1];
p[i + 1] = '\0';
}
else
{
c = '\0';
}
/* Remove escape sequences from the line if there's no terminal connected */
if (!TerminalConnected)
{
while ((p2 = strrchr(p, '\x1b'))) /* Look for escape character */
{
if (p2[1] == '[')
{
j = 2;
while (!isalpha(p2[j++]));
strcpy(p2, p2 + j);
}
else
{
strcpy(p2, p2 + 1);
}
}
}
DbgPrint("%s", p);
if (c != '\0')
p[i + 1] = c;
/* Set p to the start of the next line and
* remember the number of rows/cols printed
*/
p += i;
if (p[0] == '\n')
{
p++;
KdbNumberOfColsPrinted = 0;
}
else
{
ASSERT(p[0] == '\0');
KdbNumberOfColsPrinted += i;
}
KdbNumberOfRowsPrinted += RowsPrintedByTerminal;
}
}
/** memrchr(), explicitly defined, since was absent in MinGW of RosBE. */
/*
* Reverse memchr()
* Find the last occurrence of 'c' in the buffer 's' of size 'n'.
*/
void *
memrchr(const void *s, int c, size_t n)
{
const unsigned char *cp;
if (n != 0)
{
cp = (unsigned char *)s + n;
do
{
if (*(--cp) == (unsigned char)c)
return (void *)cp;
} while (--n != 0);
}
return NULL;
}
/*!\brief Calculate pointer position for N lines upper of current position.
*
* \param Buffer Characters buffer to operate on.
* \param BufLength Buffer size.
*
* \note Calculate pointer position for N lines upper of current displaying
* position within the given buffer.
*
* Used by KdbpPager().
* Now N lines count is hardcoded to KdbNumberOfRowsTerminal.
*/
PCHAR
CountOnePageUp(PCHAR Buffer, ULONG BufLength, PCHAR pCurPos)
{
PCHAR p;
// p0 is initial guess of Page Start
ULONG p0len = KdbNumberOfRowsTerminal * KdbNumberOfColsTerminal;
PCHAR p0 = pCurPos - p0len;
PCHAR prev_p = p0, p1;
ULONG j;
if (pCurPos < Buffer)
pCurPos = Buffer;
ASSERT(pCurPos <= Buffer + BufLength);
p = memrchr(p0, '\n', p0len);
if (NULL == p)
p = p0;
for (j = KdbNumberOfRowsTerminal; j--; )
{
int linesCnt;
p1 = memrchr(p0, '\n', p-p0);
prev_p = p;
p = p1;
if (NULL == p)
{
p = prev_p;
if (NULL == p)
p = p0;
break;
}
linesCnt = (KdbNumberOfColsTerminal+prev_p-p-2) / KdbNumberOfColsTerminal;
if (linesCnt > 1)
j -= linesCnt-1;
}
ASSERT(p != 0);
++p;
return p;
}
/*!\brief Prints the given string with, page by page.
*
* \param Buffer Characters buffer to print.
* \param BufferLen Buffer size.
*
* \note Doesn't correctly handle \\t and terminal escape sequences when calculating the
* number of lines required to print a single line from the Buffer in the terminal.
* Maximum length of buffer is limited only by memory size.
*
* Note: BufLength should be greater then (KdbNumberOfRowsTerminal * KdbNumberOfColsTerminal).
*
*/
VOID
KdbpPager(
IN PCHAR Buffer,
IN ULONG BufLength)
{
static CHAR InBuffer[4096];
static BOOLEAN TerminalInitialized = FALSE;
static BOOLEAN TerminalConnected = FALSE;
static BOOLEAN TerminalReportsSize = TRUE;
CHAR c = '\0';
PCHAR p, p2;
ULONG Length;
ULONG i, j;
LONG RowsPrintedByTerminal;
ULONG ScanCode;
if( BufLength == 0)
return;
/* Check if the user has aborted output of the current command */
if (KdbOutputAborted)
return;
/* Initialize the terminal */
if (!TerminalInitialized)
{
DbgPrint("\x1b[7h"); /* Enable linewrap */
/* Query terminal type */
/*DbgPrint("\x1b[Z");*/
DbgPrint("\x05");
TerminalInitialized = TRUE;
Length = 0;
KeStallExecutionProcessor(100000);
for (;;)
{
c = KdbpTryGetCharSerial(5000);
if (c == -1)
break;
InBuffer[Length++] = c;
if (Length >= (sizeof (InBuffer) - 1))
break;
}
InBuffer[Length] = '\0';
if (Length > 0)
TerminalConnected = TRUE;
}
/* Get number of rows and columns in terminal */
if ((KdbNumberOfRowsTerminal < 0) || (KdbNumberOfColsTerminal < 0) ||
(KdbNumberOfRowsPrinted) == 0) /* Refresh terminal size each time when number of rows printed is 0 */
{
if ((KdbDebugState & KD_DEBUG_KDSERIAL) && TerminalConnected && TerminalReportsSize)
{
/* Try to query number of rows from terminal. A reply looks like "\x1b[8;24;80t" */
TerminalReportsSize = FALSE;
KeStallExecutionProcessor(100000);
DbgPrint("\x1b[18t");
c = KdbpTryGetCharSerial(5000);
if (c == KEY_ESC)
{
c = KdbpTryGetCharSerial(5000);
if (c == '[')
{
Length = 0;
for (;;)
{
c = KdbpTryGetCharSerial(5000);
if (c == -1)
break;
InBuffer[Length++] = c;
if (isalpha(c) || Length >= (sizeof (InBuffer) - 1))
break;
}
InBuffer[Length] = '\0';
if (InBuffer[0] == '8' && InBuffer[1] == ';')
{
for (i = 2; (i < Length) && (InBuffer[i] != ';'); i++);
if (Buffer[i] == ';')
{
Buffer[i++] = '\0';
/* Number of rows is now at Buffer + 2 and number of cols at Buffer + i */
KdbNumberOfRowsTerminal = strtoul(InBuffer + 2, NULL, 0);
KdbNumberOfColsTerminal = strtoul(InBuffer + i, NULL, 0);
TerminalReportsSize = TRUE;
}
}
}
/* Clear further characters */
while ((c = KdbpTryGetCharSerial(5000)) != -1);
}
}
if (KdbNumberOfRowsTerminal <= 0)
{
/* Set number of rows to the default. */
KdbNumberOfRowsTerminal = 24;
}
else if (KdbNumberOfColsTerminal <= 0)
{
/* Set number of cols to the default. */
KdbNumberOfColsTerminal = 80;
}
}
/* Get the string */
p = Buffer;
while (p[0] != '\0')
{
if ( p > Buffer+BufLength)
{
DbgPrint("Dmesg: error, p > Buffer+BufLength,d=%d", p - (Buffer+BufLength));
return;
}
i = strcspn(p, "\n");
// Are we out of buffer?
if (p + i > Buffer + BufLength)
// Leaving pager function:
break;
/* Calculate the number of lines which will be printed in the terminal
* when outputting the current line
*/
if (i > 0)
RowsPrintedByTerminal = (i + KdbNumberOfColsPrinted - 1) / KdbNumberOfColsTerminal;
else
RowsPrintedByTerminal = 0;
if (p[i] == '\n')
RowsPrintedByTerminal++;
/*DbgPrint("!%d!%d!%d!%d!", KdbNumberOfRowsPrinted, KdbNumberOfColsPrinted, i, RowsPrintedByTerminal);*/
/* Display a prompt if we printed one screen full of text */
if (KdbNumberOfRowsTerminal > 0 &&
(LONG)(KdbNumberOfRowsPrinted + RowsPrintedByTerminal) >= KdbNumberOfRowsTerminal)
{
KdbRepeatLastCommand = FALSE;
if (KdbNumberOfColsPrinted > 0)
DbgPrint("\n");
DbgPrint("--- Press q to abort, e/End,h/Home,u/PgUp, other key/PgDn ---");
RowsPrintedByTerminal++;
if (KdbDebugState & KD_DEBUG_KDSERIAL)
c = KdbpGetCharSerial();
else
c = KdbpGetCharKeyboard(&ScanCode);
if (c == '\r')
{
/* Try to read '\n' which might follow '\r' - if \n is not received here
* it will be interpreted as "return" when the next command should be read.
*/
if (KdbDebugState & KD_DEBUG_KDSERIAL)
c = KdbpTryGetCharSerial(5);
else
c = KdbpTryGetCharKeyboard(&ScanCode, 5);
}
//DbgPrint("\n"); //Consize version: don't show pressed key
DbgPrint(" '%c'/scan=%04x\n", c, ScanCode); // Shows pressed key
if (c == 'q')
{
KdbOutputAborted = TRUE;
return;
}
if ( ScanCode == KEYSC_END || c=='e')
{
PCHAR pBufEnd = Buffer + BufLength;
p = CountOnePageUp(Buffer, BufLength, pBufEnd);
i = strcspn(p, "\n");
}
else if (ScanCode == KEYSC_PAGEUP || c=='u')
{
p = CountOnePageUp(Buffer, BufLength, p);
i = strcspn(p, "\n");
}
else if (ScanCode == KEYSC_HOME || c=='h')
{
p = Buffer;
i = strcspn(p, "\n");
}
else if (ScanCode == KEYSC_ARROWUP)
{
p = CountOnePageUp(Buffer, BufLength, p);
i = strcspn(p, "\n");
}
KdbNumberOfRowsPrinted = 0;
KdbNumberOfColsPrinted = 0;
}
/* Insert a NUL after the line and print only the current line. */
if (p[i] == '\n' && p[i + 1] != '\0')
{
c = p[i + 1];
p[i + 1] = '\0';
}
else
{
c = '\0';
}
/* Remove escape sequences from the line if there's no terminal connected */
if (!TerminalConnected)
{
while ((p2 = strrchr(p, '\x1b'))) /* Look for escape character */
{
if (p2[1] == '[')
{
j = 2;
while (!isalpha(p2[j++]));
strcpy(p2, p2 + j);
}
else
{
strcpy(p2, p2 + 1);
}
}
}
// The main printing of the current line:
DbgPrint(p);
// restore not null char with saved:
if (c != '\0')
p[i + 1] = c;
/* Set p to the start of the next line and
* remember the number of rows/cols printed
*/
p += i;
if (p[0] == '\n')
{
p++;
KdbNumberOfColsPrinted = 0;
}
else
{
ASSERT(p[0] == '\0');
KdbNumberOfColsPrinted += i;
}
KdbNumberOfRowsPrinted += RowsPrintedByTerminal;
}
}
/*!\brief Appends a command to the command history
*
* \param Command Pointer to the command to append to the history.
*/
static VOID
KdbpCommandHistoryAppend(
IN PCHAR Command)
{
ULONG Length1 = strlen(Command) + 1;
ULONG Length2 = 0;
INT i;
PCHAR Buffer;
ASSERT(Length1 <= RTL_NUMBER_OF(KdbCommandHistoryBuffer));
if (Length1 <= 1 ||
(KdbCommandHistory[KdbCommandHistoryIndex] &&
strcmp(KdbCommandHistory[KdbCommandHistoryIndex], Command) == 0))
{
return;
}
/* Calculate Length1 and Length2 */
Buffer = KdbCommandHistoryBuffer + KdbCommandHistoryBufferIndex;
KdbCommandHistoryBufferIndex += Length1;
if (KdbCommandHistoryBufferIndex >= (LONG)RTL_NUMBER_OF(KdbCommandHistoryBuffer))
{
KdbCommandHistoryBufferIndex -= RTL_NUMBER_OF(KdbCommandHistoryBuffer);
Length2 = KdbCommandHistoryBufferIndex;
Length1 -= Length2;
}
/* Remove previous commands until there is enough space to append the new command */
for (i = KdbCommandHistoryIndex; KdbCommandHistory[i];)
{
if ((Length2 > 0 &&
(KdbCommandHistory[i] >= Buffer ||
KdbCommandHistory[i] < (KdbCommandHistoryBuffer + KdbCommandHistoryBufferIndex))) ||
(Length2 <= 0 &&
(KdbCommandHistory[i] >= Buffer &&
KdbCommandHistory[i] < (KdbCommandHistoryBuffer + KdbCommandHistoryBufferIndex))))
{
KdbCommandHistory[i] = NULL;
}
i--;
if (i < 0)
i = RTL_NUMBER_OF(KdbCommandHistory) - 1;
if (i == KdbCommandHistoryIndex)
break;
}
/* Make sure the new command history entry is free */
KdbCommandHistoryIndex++;
KdbCommandHistoryIndex %= RTL_NUMBER_OF(KdbCommandHistory);
if (KdbCommandHistory[KdbCommandHistoryIndex])
{
KdbCommandHistory[KdbCommandHistoryIndex] = NULL;
}
/* Append command */
KdbCommandHistory[KdbCommandHistoryIndex] = Buffer;
ASSERT((KdbCommandHistory[KdbCommandHistoryIndex] + Length1) <= KdbCommandHistoryBuffer + RTL_NUMBER_OF(KdbCommandHistoryBuffer));
memcpy(KdbCommandHistory[KdbCommandHistoryIndex], Command, Length1);
if (Length2 > 0)
{
memcpy(KdbCommandHistoryBuffer, Command + Length1, Length2);
}
}
/*!\brief Reads a line of user-input.
*
* \param Buffer Buffer to store the input into. Trailing newlines are removed.
* \param Size Size of \a Buffer.
*
* \note Accepts only \n newlines, \r is ignored.
*/
static VOID
KdbpReadCommand(
OUT PCHAR Buffer,
IN ULONG Size)
{
CHAR Key;
PCHAR Orig = Buffer;
ULONG ScanCode = 0;
BOOLEAN EchoOn;
static CHAR LastCommand[1024];
static CHAR NextKey = '\0';
INT CmdHistIndex = -1;
INT i;
EchoOn = !((KdbDebugState & KD_DEBUG_KDNOECHO) != 0);
for (;;)
{
if (KdbDebugState & KD_DEBUG_KDSERIAL)
{
Key = (NextKey == '\0') ? KdbpGetCharSerial() : NextKey;
NextKey = '\0';
ScanCode = 0;
if (Key == KEY_ESC) /* ESC */
{
Key = KdbpGetCharSerial();
if (Key == '[')
{
Key = KdbpGetCharSerial();
switch (Key)
{
case 'A':
ScanCode = KEY_SCAN_UP;
break;
case 'B':
ScanCode = KEY_SCAN_DOWN;
break;
case 'C':
break;
case 'D':
break;
}
}
}
}
else
{
ScanCode = 0;
Key = (NextKey == '\0') ? KdbpGetCharKeyboard(&ScanCode) : NextKey;
NextKey = '\0';
}
if ((ULONG)(Buffer - Orig) >= (Size - 1))
{
/* Buffer is full, accept only newlines */
if (Key != '\n')
continue;
}
if (Key == '\r')
{
/* Read the next char - this is to throw away a \n which most clients should
* send after \r.
*/
KeStallExecutionProcessor(100000);
if (KdbDebugState & KD_DEBUG_KDSERIAL)
NextKey = KdbpTryGetCharSerial(5);
else
NextKey = KdbpTryGetCharKeyboard(&ScanCode, 5);
if (NextKey == '\n' || NextKey == -1) /* \n or no response at all */
NextKey = '\0';
KdbpPrint("\n");
/*
* Repeat the last command if the user presses enter. Reduces the
* risk of RSI when single-stepping.
*/
if (Buffer != Orig)
{
KdbRepeatLastCommand = TRUE;
*Buffer = '\0';
RtlStringCbCopyA(LastCommand, sizeof(LastCommand), Orig);
}
else if (KdbRepeatLastCommand)
RtlStringCbCopyA(Buffer, Size, LastCommand);
else
*Buffer = '\0';
return;
}
else if (Key == KEY_BS || Key == KEY_DEL)
{
if (Buffer > Orig)
{
Buffer--;
*Buffer = 0;
if (EchoOn)
KdbpPrint("%c %c", KEY_BS, KEY_BS);
else
KdbpPrint(" %c", KEY_BS);
}
}
else if (ScanCode == KEY_SCAN_UP)
{
BOOLEAN Print = TRUE;
if (CmdHistIndex < 0)
{
CmdHistIndex = KdbCommandHistoryIndex;
}
else
{
i = CmdHistIndex - 1;
if (i < 0)
CmdHistIndex = RTL_NUMBER_OF(KdbCommandHistory) - 1;
if (KdbCommandHistory[i] && i != KdbCommandHistoryIndex)
CmdHistIndex = i;
else
Print = FALSE;
}
if (Print && KdbCommandHistory[CmdHistIndex])
{
while (Buffer > Orig)
{
Buffer--;
*Buffer = 0;
if (EchoOn)
KdbpPrint("%c %c", KEY_BS, KEY_BS);
else
KdbpPrint(" %c", KEY_BS);
}
i = min(strlen(KdbCommandHistory[CmdHistIndex]), Size - 1);
memcpy(Orig, KdbCommandHistory[CmdHistIndex], i);
Orig[i] = '\0';
Buffer = Orig + i;
KdbpPrint("%s", Orig);
}
}
else if (ScanCode == KEY_SCAN_DOWN)
{
if (CmdHistIndex > 0 && CmdHistIndex != KdbCommandHistoryIndex)
{
i = CmdHistIndex + 1;
if (i >= (INT)RTL_NUMBER_OF(KdbCommandHistory))
i = 0;
if (KdbCommandHistory[i])
{
CmdHistIndex = i;
while (Buffer > Orig)
{
Buffer--;
*Buffer = 0;
if (EchoOn)
KdbpPrint("%c %c", KEY_BS, KEY_BS);
else
KdbpPrint(" %c", KEY_BS);
}
i = min(strlen(KdbCommandHistory[CmdHistIndex]), Size - 1);
memcpy(Orig, KdbCommandHistory[CmdHistIndex], i);
Orig[i] = '\0';
Buffer = Orig + i;
KdbpPrint("%s", Orig);
}
}
}
else
{
if (EchoOn)
KdbpPrint("%c", Key);
*Buffer = Key;
Buffer++;
}
}
}
BOOLEAN
NTAPI
KdbRegisterCliCallback(
PVOID Callback,
BOOLEAN Deregister)
{
ULONG i;
/* Loop all entries */
for (i = 0; i < _countof(KdbCliCallbacks); i++)
{
/* Check if deregistering was requested */
if (Deregister)
{
/* Check if this entry is the one that was registered */
if (KdbCliCallbacks[i] == Callback)
{
/* Delete it and report success */
KdbCliCallbacks[i] = NULL;
return TRUE;
}
}
else
{
/* Check if this entry is free */
if (KdbCliCallbacks[i] == NULL)
{
/* Set it and and report success */
KdbCliCallbacks[i] = Callback;
return TRUE;
}
}
}
/* Unsuccessful */
return FALSE;
}
/*! \brief Invokes registered CLI callbacks until one of them handled the
* Command.
*
* \param Command - Command line to parse and execute if possible.
* \param Argc - Number of arguments in Argv
* \param Argv - Array of strings, each of them containing one argument.
*
* \return TRUE, if the command was handled, FALSE if it was not handled.
*/
static
BOOLEAN
KdbpInvokeCliCallbacks(
IN PCHAR Command,
IN ULONG Argc,
IN PCH Argv[])
{
ULONG i;
/* Loop all entries */
for (i = 0; i < _countof(KdbCliCallbacks); i++)
{
/* Check if this entry is registered */
if (KdbCliCallbacks[i])
{
/* Invoke the callback and check if it handled the command */
if (KdbCliCallbacks[i](Command, Argc, Argv))
{
return TRUE;
}
}
}
/* None of the callbacks handled the command */
return FALSE;
}
/*!\brief Parses command line and executes command if found
*
* \param Command Command line to parse and execute if possible.
*
* \retval TRUE Don't continue execution.
* \retval FALSE Continue execution (leave KDB)
*/
static BOOLEAN
KdbpDoCommand(
IN PCHAR Command)
{
ULONG i;
PCHAR p;
ULONG Argc;
// FIXME: for what do we need a 1024 characters command line and 256 tokens?
static PCH Argv[256];
static CHAR OrigCommand[1024];
RtlStringCbCopyA(OrigCommand, sizeof(OrigCommand), Command);
Argc = 0;
p = Command;
for (;;)
{
while (*p == '\t' || *p == ' ')
p++;
if (*p == '\0')
break;
i = strcspn(p, "\t ");
Argv[Argc++] = p;
p += i;
if (*p == '\0')
break;
*p = '\0';
p++;
}
if (Argc < 1)
return TRUE;
for (i = 0; i < RTL_NUMBER_OF(KdbDebuggerCommands); i++)
{
if (!KdbDebuggerCommands[i].Name)
continue;
if (strcmp(KdbDebuggerCommands[i].Name, Argv[0]) == 0)
{
return KdbDebuggerCommands[i].Fn(Argc, Argv);
}
}
/* Now invoke the registered callbacks */
if (KdbpInvokeCliCallbacks(Command, Argc, Argv))
{
return TRUE;
}
KdbpPrint("Command '%s' is unknown.\n", OrigCommand);
return TRUE;
}
/*!\brief KDB Main Loop.
*
* \param EnteredOnSingleStep TRUE if KDB was entered on single step.
*/
VOID
KdbpCliMainLoop(
IN BOOLEAN EnteredOnSingleStep)
{
static CHAR Command[1024];
BOOLEAN Continue;
if (EnteredOnSingleStep)
{
if (!KdbSymPrintAddress((PVOID)KdbCurrentTrapFrame->Tf.Eip, &KdbCurrentTrapFrame->Tf))
{
KdbpPrint("<%x>", KdbCurrentTrapFrame->Tf.Eip);
}
KdbpPrint(": ");
if (KdbpDisassemble(KdbCurrentTrapFrame->Tf.Eip, KdbUseIntelSyntax) < 0)
{
KdbpPrint("<INVALID>");
}
KdbpPrint("\n");
}
/* Flush the input buffer */
if (KdbDebugState & KD_DEBUG_KDSERIAL)
{
while (KdbpTryGetCharSerial(1) != -1);
}
else
{
ULONG ScanCode;
while (KdbpTryGetCharKeyboard(&ScanCode, 1) != -1);
}
/* Main loop */
do
{
/* Reset the number of rows/cols printed */
KdbNumberOfRowsPrinted = KdbNumberOfColsPrinted = 0;
/* Print the prompt */
KdbpPrint("kdb:> ");
/* Read a command and remember it */
KdbpReadCommand(Command, sizeof (Command));
KdbpCommandHistoryAppend(Command);
/* Reset the number of rows/cols printed and output aborted state */
KdbNumberOfRowsPrinted = KdbNumberOfColsPrinted = 0;
KdbOutputAborted = FALSE;
/* Call the command */
Continue = KdbpDoCommand(Command);
KdbOutputAborted = FALSE;
}
while (Continue);
}
/*!\brief Called when a module is loaded.
*
* \param Name Filename of the module which was loaded.
*/
VOID
KdbpCliModuleLoaded(
IN PUNICODE_STRING Name)
{
if (!KdbBreakOnModuleLoad)
return;
KdbpPrint("Module %wZ loaded.\n", Name);
DbgBreakPointWithStatus(DBG_STATUS_CONTROL_C);
}
/*!\brief This function is called by KdbEnterDebuggerException...
*
* Used to interpret the init file in a context with a trapframe setup
* (KdbpCliInit call KdbEnter which will call KdbEnterDebuggerException which will
* call this function if KdbInitFileBuffer is not NULL.
*/
VOID
KdbpCliInterpretInitFile(VOID)
{
PCHAR p1, p2;
INT i;
CHAR c;
/* Execute the commands in the init file */
DPRINT("KDB: Executing KDBinit file...\n");
p1 = KdbInitFileBuffer;
while (p1[0] != '\0')
{
i = strcspn(p1, "\r\n");
if (i > 0)
{
c = p1[i];
p1[i] = '\0';
/* Look for "break" command and comments */
p2 = p1;
while (isspace(p2[0]))
p2++;
if (strncmp(p2, "break", sizeof("break")-1) == 0 &&
(p2[sizeof("break")-1] == '\0' || isspace(p2[sizeof("break")-1])))
{
/* break into the debugger */
KdbpCliMainLoop(FALSE);
}
else if (p2[0] != '#' && p2[0] != '\0') /* Ignore empty lines and comments */
{
KdbpDoCommand(p1);
}
p1[i] = c;
}
p1 += i;
while (p1[0] == '\r' || p1[0] == '\n')
p1++;
}
DPRINT("KDB: KDBinit executed\n");
}
/*!\brief Called when KDB is initialized
*
* Reads the KDBinit file from the SystemRoot\System32\drivers\etc directory and executes it.
*/
VOID
KdbpCliInit(VOID)
{
NTSTATUS Status;
OBJECT_ATTRIBUTES ObjectAttributes;
UNICODE_STRING FileName;
IO_STATUS_BLOCK Iosb;
FILE_STANDARD_INFORMATION FileStdInfo;
HANDLE hFile = NULL;
INT FileSize;
PCHAR FileBuffer;
ULONG OldEflags;
/* Initialize the object attributes */
RtlInitUnicodeString(&FileName, L"\\SystemRoot\\System32\\drivers\\etc\\KDBinit");
InitializeObjectAttributes(&ObjectAttributes, &FileName, 0, NULL, NULL);
/* Open the file */
Status = ZwOpenFile(&hFile, FILE_READ_DATA | SYNCHRONIZE,
&ObjectAttributes, &Iosb, 0,
FILE_NON_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT |
FILE_NO_INTERMEDIATE_BUFFERING);
if (!NT_SUCCESS(Status))
{
DPRINT("Could not open \\SystemRoot\\System32\\drivers\\etc\\KDBinit (Status 0x%x)", Status);
return;
}
/* Get the size of the file */
Status = ZwQueryInformationFile(hFile, &Iosb, &FileStdInfo, sizeof (FileStdInfo),
FileStandardInformation);
if (!NT_SUCCESS(Status))
{
ZwClose(hFile);
DPRINT("Could not query size of \\SystemRoot\\System32\\drivers\\etc\\KDBinit (Status 0x%x)", Status);
return;
}
FileSize = FileStdInfo.EndOfFile.u.LowPart;
/* Allocate memory for the file */
FileBuffer = ExAllocatePool(PagedPool, FileSize + 1); /* add 1 byte for terminating '\0' */
if (!FileBuffer)
{
ZwClose(hFile);
DPRINT("Could not allocate %d bytes for KDBinit file\n", FileSize);
return;
}
/* Load file into memory */
Status = ZwReadFile(hFile, NULL, NULL, NULL, &Iosb, FileBuffer, FileSize, NULL, NULL);
ZwClose(hFile);
if (!NT_SUCCESS(Status) && Status != STATUS_END_OF_FILE)
{
ExFreePool(FileBuffer);
DPRINT("Could not read KDBinit file into memory (Status 0x%lx)\n", Status);
return;
}
FileSize = min(FileSize, (INT)Iosb.Information);
FileBuffer[FileSize] = '\0';
/* Enter critical section */
OldEflags = __readeflags();
_disable();
/* Interpret the init file... */
KdbInitFileBuffer = FileBuffer;
KdbEnter();
KdbInitFileBuffer = NULL;
/* Leave critical section */
__writeeflags(OldEflags);
ExFreePool(FileBuffer);
}
VOID
NTAPI
KdpSerialDebugPrint(
LPSTR Message,
ULONG Length
);
STRING KdpPromptString = RTL_CONSTANT_STRING("kdb:> ");
extern KSPIN_LOCK KdpSerialSpinLock;
USHORT
NTAPI
KdpPrompt(
_In_reads_bytes_(InStringLength) PCHAR UnsafeInString,
_In_ USHORT InStringLength,
_Out_writes_bytes_(OutStringLength) PCHAR UnsafeOutString,
_In_ USHORT OutStringLength,
_In_ KPROCESSOR_MODE PreviousMode,
_In_ PKTRAP_FRAME TrapFrame,
_In_ PKEXCEPTION_FRAME ExceptionFrame)
{
USHORT i;
CHAR Response;
ULONG DummyScanCode;
KIRQL OldIrql;
PCHAR InString;
PCHAR OutString;
CHAR InStringBuffer[512];
CHAR OutStringBuffer[512];
/* Normalize the lengths */
InStringLength = min(InStringLength,
sizeof(InStringBuffer));
OutStringLength = min(OutStringLength,
sizeof(OutStringBuffer));
/* Check if we need to verify the string */
if (PreviousMode != KernelMode)
{
/* Handle user-mode buffers safely */
_SEH2_TRY
{
/* Probe the prompt */
ProbeForRead(UnsafeInString,
InStringLength,
1);
/* Capture prompt */
InString = InStringBuffer;
RtlCopyMemory(InString,
UnsafeInString,
InStringLength);
/* Probe and make room for response */
ProbeForWrite(UnsafeOutString,
OutStringLength,
1);
OutString = OutStringBuffer;
}
_SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
{
/* Bad string pointer, bail out */
_SEH2_YIELD(return 0);
}
_SEH2_END;
}
else
{
InString = UnsafeInString;
OutString = UnsafeOutString;
}
/* Acquire the printing spinlock without waiting at raised IRQL */
while (TRUE)
{
/* Wait when the spinlock becomes available */
while (!KeTestSpinLock(&KdpSerialSpinLock));
/* Spinlock was free, raise IRQL */
KeRaiseIrql(HIGH_LEVEL, &OldIrql);
/* Try to get the spinlock */
if (KeTryToAcquireSpinLockAtDpcLevel(&KdpSerialSpinLock))
break;
/* Someone else got the spinlock, lower IRQL back */
KeLowerIrql(OldIrql);
}
/* Loop the string to send */
for (i = 0; i < InStringLength; i++)
{
/* Print it to serial */
KdPortPutByteEx(&SerialPortInfo, *(PCHAR)(InString + i));
}
/* Print a new line for log neatness */
KdPortPutByteEx(&SerialPortInfo, '\r');
KdPortPutByteEx(&SerialPortInfo, '\n');
/* Print the kdb prompt */
for (i = 0; i < KdpPromptString.Length; i++)
{
/* Print it to serial */
KdPortPutByteEx(&SerialPortInfo,
*(KdpPromptString.Buffer + i));
}
if (!(KdbDebugState & KD_DEBUG_KDSERIAL))
KbdDisableMouse();
/* Loop the whole string */
for (i = 0; i < OutStringLength; i++)
{
/* Check if this is serial debugging mode */
if (KdbDebugState & KD_DEBUG_KDSERIAL)
{
/* Get the character from serial */
do
{
Response = KdbpTryGetCharSerial(MAXULONG);
} while (Response == -1);
}
else
{
/* Get the response from the keyboard */
do
{
Response = KdbpTryGetCharKeyboard(&DummyScanCode, MAXULONG);
} while (Response == -1);
}
/* Check for return */
if (Response == '\r')
{
/*
* We might need to discard the next '\n'.
* Wait a bit to make sure we receive it.
*/
KeStallExecutionProcessor(100000);
/* Check the mode */
if (KdbDebugState & KD_DEBUG_KDSERIAL)
{
/* Read and discard the next character, if any */
KdbpTryGetCharSerial(5);
}
else
{
/* Read and discard the next character, if any */
KdbpTryGetCharKeyboard(&DummyScanCode, 5);
}
/*
* Null terminate the output string -- documentation states that
* DbgPrompt does not null terminate, but it does
*/
*(PCHAR)(OutString + i) = 0;
break;
}
/* Write it back and print it to the log */
*(PCHAR)(OutString + i) = Response;
KdPortPutByteEx(&SerialPortInfo, Response);
}
if (!(KdbDebugState & KD_DEBUG_KDSERIAL))
KbdEnableMouse();
/* Print a new line */
KdPortPutByteEx(&SerialPortInfo, '\r');
KdPortPutByteEx(&SerialPortInfo, '\n');
/* Release spinlock */
KiReleaseSpinLock(&KdpSerialSpinLock);
/* Lower IRQL back */
KeLowerIrql(OldIrql);
/* Copy back response if required */
if (PreviousMode != KernelMode)
{
_SEH2_TRY
{
/* Safely copy back response to user mode */
RtlCopyMemory(UnsafeOutString,
OutString,
i);
}
_SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
{
/* String became invalid after we exited, fail */
_SEH2_YIELD(return 0);
}
_SEH2_END;
}
/* Return the length */
return i;
}