mirror of
https://github.com/reactos/reactos.git
synced 2025-04-19 20:19:26 +00:00
195 lines
6 KiB
C
195 lines
6 KiB
C
|
|
/*******************************************************************************
|
|
MIT License
|
|
-----------
|
|
|
|
Copyright (c) 2002-2019 Advanced Micro Devices, Inc.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this Software and associated documentaon files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
*******************************************************************************/
|
|
|
|
#include "libm.h"
|
|
#include "libm_util.h"
|
|
|
|
#define USE_REMAINDER_PIBY2F_INLINE
|
|
#define USE_VALF_WITH_FLAGS
|
|
#define USE_NANF_WITH_FLAGS
|
|
#define USE_HANDLE_ERRORF
|
|
#include "libm_inlines.h"
|
|
#undef USE_VALF_WITH_FLAGS
|
|
#undef USE_NANF_WITH_FLAGS
|
|
#undef USE_REMAINDER_PIBY2F_INLINE
|
|
#undef USE_HANDLE_ERRORF
|
|
|
|
#include "libm_errno.h"
|
|
|
|
#ifdef _MSC_VER
|
|
// Disable "C4163: not available as intrinsic function" warning that older
|
|
// compilers may issue here.
|
|
#pragma warning(disable:4163)
|
|
#pragma function(tanf)
|
|
#endif
|
|
|
|
/* tan(x) approximation valid on the interval [-pi/4,pi/4].
|
|
If recip is true return -1/tan(x) instead. */
|
|
static inline double tanf_piby4(double x, int recip)
|
|
{
|
|
double r, t;
|
|
|
|
/* Core Remez [1,2] approximation to tan(x) on the
|
|
interval [0,pi/4]. */
|
|
r = x*x;
|
|
t = x + x*r*
|
|
(0.385296071263995406715129e0 -
|
|
0.172032480471481694693109e-1 * r) /
|
|
(0.115588821434688393452299e+1 +
|
|
(-0.51396505478854532132342e0 +
|
|
0.1844239256901656082986661e-1 * r) * r);
|
|
|
|
if (recip)
|
|
return -1.0 / t;
|
|
else
|
|
return t;
|
|
}
|
|
|
|
|
|
float tanf(float x)
|
|
{
|
|
double r, dx;
|
|
int region, xneg;
|
|
|
|
unsigned long long ux, ax;
|
|
|
|
dx = x;
|
|
|
|
GET_BITS_DP64(dx, ux);
|
|
ax = (ux & ~SIGNBIT_DP64);
|
|
|
|
if (ax <= 0x3fe921fb54442d18) /* abs(x) <= pi/4 */
|
|
{
|
|
if (ax < 0x3f80000000000000) /* abs(x) < 2.0^(-7) */
|
|
{
|
|
if (ax < 0x3f20000000000000) /* abs(x) < 2.0^(-13) */
|
|
{
|
|
if (ax == 0x0000000000000000)
|
|
return x;
|
|
else
|
|
return valf_with_flags(x, AMD_F_INEXACT);
|
|
}
|
|
else
|
|
return (float)(dx + dx*dx*dx*0.333333333333333333);
|
|
}
|
|
else
|
|
return (float)tanf_piby4(x, 0);
|
|
}
|
|
else if ((ux & EXPBITS_DP64) == EXPBITS_DP64)
|
|
{
|
|
/* x is either NaN or infinity */
|
|
if (ux & MANTBITS_DP64)
|
|
{
|
|
/* x is NaN */
|
|
unsigned int ufx;
|
|
GET_BITS_SP32(x, ufx);
|
|
return _handle_errorf("tanf", OP_TAN, ufx|0x00400000, _DOMAIN, 0,
|
|
EDOM, x, 0.0F, 1);
|
|
}
|
|
else
|
|
{
|
|
/* x is infinity. Return a NaN */
|
|
return _handle_errorf("tanf", OP_TAN, INDEFBITPATT_SP32, _DOMAIN, AMD_F_INVALID,
|
|
EDOM, x, 0.0F, 1);
|
|
}
|
|
}
|
|
|
|
xneg = (int)(ux >> 63);
|
|
|
|
if (xneg)
|
|
dx = -dx;
|
|
|
|
if (dx < 5.0e5)
|
|
{
|
|
/* For these size arguments we can just carefully subtract the
|
|
appropriate multiple of pi/2, using extra precision where
|
|
dx is close to an exact multiple of pi/2 */
|
|
static const double
|
|
twobypi = 6.36619772367581382433e-01, /* 0x3fe45f306dc9c883 */
|
|
piby2_1 = 1.57079632673412561417e+00, /* 0x3ff921fb54400000 */
|
|
piby2_1tail = 6.07710050650619224932e-11, /* 0x3dd0b4611a626331 */
|
|
piby2_2 = 6.07710050630396597660e-11, /* 0x3dd0b4611a600000 */
|
|
piby2_2tail = 2.02226624879595063154e-21, /* 0x3ba3198a2e037073 */
|
|
piby2_3 = 2.02226624871116645580e-21, /* 0x3ba3198a2e000000 */
|
|
piby2_3tail = 8.47842766036889956997e-32; /* 0x397b839a252049c1 */
|
|
double t, rhead, rtail;
|
|
int npi2;
|
|
unsigned long long uy, xexp, expdiff;
|
|
xexp = ax >> EXPSHIFTBITS_DP64;
|
|
/* How many pi/2 is dx a multiple of? */
|
|
if (ax <= 0x400f6a7a2955385e) /* 5pi/4 */
|
|
{
|
|
if (ax <= 0x4002d97c7f3321d2) /* 3pi/4 */
|
|
npi2 = 1;
|
|
else
|
|
npi2 = 2;
|
|
}
|
|
else if (ax <= 0x401c463abeccb2bb) /* 9pi/4 */
|
|
{
|
|
if (ax <= 0x4015fdbbe9bba775) /* 7pi/4 */
|
|
npi2 = 3;
|
|
else
|
|
npi2 = 4;
|
|
}
|
|
else
|
|
npi2 = (int)(dx * twobypi + 0.5);
|
|
/* Subtract the multiple from dx to get an extra-precision remainder */
|
|
rhead = dx - npi2 * piby2_1;
|
|
rtail = npi2 * piby2_1tail;
|
|
GET_BITS_DP64(rhead, uy);
|
|
expdiff = xexp - ((uy & EXPBITS_DP64) >> EXPSHIFTBITS_DP64);
|
|
if (expdiff > 15)
|
|
{
|
|
/* The remainder is pretty small compared with dx, which
|
|
implies that dx is a near multiple of pi/2
|
|
(dx matches the multiple to at least 15 bits) */
|
|
t = rhead;
|
|
rtail = npi2 * piby2_2;
|
|
rhead = t - rtail;
|
|
rtail = npi2 * piby2_2tail - ((t - rhead) - rtail);
|
|
if (expdiff > 48)
|
|
{
|
|
/* dx matches a pi/2 multiple to at least 48 bits */
|
|
t = rhead;
|
|
rtail = npi2 * piby2_3;
|
|
rhead = t - rtail;
|
|
rtail = npi2 * piby2_3tail - ((t - rhead) - rtail);
|
|
}
|
|
}
|
|
r = rhead - rtail;
|
|
region = npi2 & 3;
|
|
}
|
|
else
|
|
{
|
|
/* Reduce x into range [-pi/4,pi/4] */
|
|
__remainder_piby2f_inline(ax, &r, ®ion);
|
|
}
|
|
|
|
if (xneg)
|
|
return (float)-tanf_piby4(r, region & 1);
|
|
else
|
|
return (float)tanf_piby4(r, region & 1);
|
|
}
|