mirror of
https://github.com/reactos/reactos.git
synced 2024-12-29 10:35:28 +00:00
5f2bebf7a5
With this commit, we now use a forked version of MESA which only supports OpenGL 1.1, like the windows implementation does. It exposes : - The same pixel formats - The same set of extensions - Nothing more All of this without taking 10% of your build time. If you need a more modern option, look at the MESA package from Rapps, which is (and must be) maintained outside of this code tree. CORE-7499
258 lines
8 KiB
C
258 lines
8 KiB
C
/* $Id: xform.c,v 1.10 1997/10/30 06:00:06 brianp Exp $ */
|
|
|
|
/*
|
|
* Mesa 3-D graphics library
|
|
* Version: 2.5
|
|
* Copyright (C) 1995-1997 Brian Paul
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the Free
|
|
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
|
|
/*
|
|
* $Log: xform.c,v $
|
|
* Revision 1.10 1997/10/30 06:00:06 brianp
|
|
* added Intel X86 assembly optimzations (Josh Vanderhoof)
|
|
*
|
|
* Revision 1.9 1997/07/24 01:25:54 brianp
|
|
* changed precompiled header symbol from PCH to PC_HEADER
|
|
*
|
|
* Revision 1.8 1997/05/28 03:27:03 brianp
|
|
* added precompiled header (PCH) support
|
|
*
|
|
* Revision 1.7 1997/05/01 01:40:51 brianp
|
|
* replaced sqrt() with GL_SQRT()
|
|
*
|
|
* Revision 1.6 1997/04/02 03:15:02 brianp
|
|
* removed gl_xform_texcoords_4fv()
|
|
*
|
|
* Revision 1.5 1997/01/03 23:54:17 brianp
|
|
* changed length threshold in gl_xform_normals_3fv() to 1E-30 per Jeroen
|
|
*
|
|
* Revision 1.4 1996/11/09 01:50:49 brianp
|
|
* relaxed the minimum normal threshold in gl_xform_normals_3fv()
|
|
*
|
|
* Revision 1.3 1996/11/08 02:20:39 brianp
|
|
* added gl_xform_texcoords_4fv()
|
|
*
|
|
* Revision 1.2 1996/11/05 01:38:50 brianp
|
|
* fixed some comments
|
|
*
|
|
* Revision 1.1 1996/09/13 01:38:16 brianp
|
|
* Initial revision
|
|
*
|
|
*/
|
|
|
|
|
|
/*
|
|
* Matrix/vertex/vector transformation stuff
|
|
*
|
|
*
|
|
* NOTES:
|
|
* 1. 4x4 transformation matrices are stored in memory in column major order.
|
|
* 2. Points/vertices are to be thought of as column vectors.
|
|
* 3. Transformation of a point p by a matrix M is: p' = M * p
|
|
*
|
|
*/
|
|
|
|
|
|
#ifdef PC_HEADER
|
|
#include "all.h"
|
|
#else
|
|
#include <math.h>
|
|
#include "mmath.h"
|
|
#include "types.h"
|
|
#include "xform.h"
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
* Apply a transformation matrix to an array of [X Y Z W] coordinates:
|
|
* for i in 0 to n-1 do q[i] = m * p[i]
|
|
* where p[i] and q[i] are 4-element column vectors and m is a 16-element
|
|
* transformation matrix.
|
|
*/
|
|
void gl_xform_points_4fv( GLuint n, GLfloat q[][4], const GLfloat m[16],
|
|
GLfloat p[][4] )
|
|
{
|
|
/* This function has been carefully crafted to maximize register usage
|
|
* and use loop unrolling with IRIX 5.3's cc. Hopefully other compilers
|
|
* will like this code too.
|
|
*/
|
|
{
|
|
GLuint i;
|
|
GLfloat m0 = m[0], m4 = m[4], m8 = m[8], m12 = m[12];
|
|
GLfloat m1 = m[1], m5 = m[5], m9 = m[9], m13 = m[13];
|
|
if (m12==0.0F && m13==0.0F) {
|
|
/* common case */
|
|
for (i=0;i<n;i++) {
|
|
GLfloat p0 = p[i][0], p1 = p[i][1], p2 = p[i][2];
|
|
q[i][0] = m0 * p0 + m4 * p1 + m8 * p2;
|
|
q[i][1] = m1 * p0 + m5 * p1 + m9 * p2;
|
|
}
|
|
}
|
|
else {
|
|
/* general case */
|
|
for (i=0;i<n;i++) {
|
|
GLfloat p0 = p[i][0], p1 = p[i][1], p2 = p[i][2], p3 = p[i][3];
|
|
q[i][0] = m0 * p0 + m4 * p1 + m8 * p2 + m12 * p3;
|
|
q[i][1] = m1 * p0 + m5 * p1 + m9 * p2 + m13 * p3;
|
|
}
|
|
}
|
|
}
|
|
{
|
|
GLuint i;
|
|
GLfloat m2 = m[2], m6 = m[6], m10 = m[10], m14 = m[14];
|
|
GLfloat m3 = m[3], m7 = m[7], m11 = m[11], m15 = m[15];
|
|
if (m3==0.0F && m7==0.0F && m11==0.0F && m15==1.0F) {
|
|
/* common case */
|
|
for (i=0;i<n;i++) {
|
|
GLfloat p0 = p[i][0], p1 = p[i][1], p2 = p[i][2], p3 = p[i][3];
|
|
q[i][2] = m2 * p0 + m6 * p1 + m10 * p2 + m14 * p3;
|
|
q[i][3] = p3;
|
|
}
|
|
}
|
|
else {
|
|
/* general case */
|
|
for (i=0;i<n;i++) {
|
|
GLfloat p0 = p[i][0], p1 = p[i][1], p2 = p[i][2], p3 = p[i][3];
|
|
q[i][2] = m2 * p0 + m6 * p1 + m10 * p2 + m14 * p3;
|
|
q[i][3] = m3 * p0 + m7 * p1 + m11 * p2 + m15 * p3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Apply a transformation matrix to an array of [X Y Z] coordinates:
|
|
* for i in 0 to n-1 do q[i] = m * p[i]
|
|
*/
|
|
void gl_xform_points_3fv( GLuint n, GLfloat q[][4], const GLfloat m[16],
|
|
GLfloat p[][3] )
|
|
{
|
|
/* This function has been carefully crafted to maximize register usage
|
|
* and use loop unrolling with IRIX 5.3's cc. Hopefully other compilers
|
|
* will like this code too.
|
|
*/
|
|
{
|
|
GLuint i;
|
|
GLfloat m0 = m[0], m4 = m[4], m8 = m[8], m12 = m[12];
|
|
GLfloat m1 = m[1], m5 = m[5], m9 = m[9], m13 = m[13];
|
|
for (i=0;i<n;i++) {
|
|
GLfloat p0 = p[i][0], p1 = p[i][1], p2 = p[i][2];
|
|
q[i][0] = m0 * p0 + m4 * p1 + m8 * p2 + m12;
|
|
q[i][1] = m1 * p0 + m5 * p1 + m9 * p2 + m13;
|
|
}
|
|
}
|
|
{
|
|
GLuint i;
|
|
GLfloat m2 = m[2], m6 = m[6], m10 = m[10], m14 = m[14];
|
|
GLfloat m3 = m[3], m7 = m[7], m11 = m[11], m15 = m[15];
|
|
if (m3==0.0F && m7==0.0F && m11==0.0F && m15==1.0F) {
|
|
/* common case */
|
|
for (i=0;i<n;i++) {
|
|
GLfloat p0 = p[i][0], p1 = p[i][1], p2 = p[i][2];
|
|
q[i][2] = m2 * p0 + m6 * p1 + m10 * p2 + m14;
|
|
q[i][3] = 1.0F;
|
|
}
|
|
}
|
|
else {
|
|
/* general case */
|
|
for (i=0;i<n;i++) {
|
|
GLfloat p0 = p[i][0], p1 = p[i][1], p2 = p[i][2];
|
|
q[i][2] = m2 * p0 + m6 * p1 + m10 * p2 + m14;
|
|
q[i][3] = m3 * p0 + m7 * p1 + m11 * p2 + m15;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#ifndef USE_ASM
|
|
/*
|
|
* Apply a transformation matrix to an array of normal vectors:
|
|
* for i in 0 to n-1 do v[i] = u[i] * m
|
|
* where u[i] and v[i] are 3-element row vectors and m is a 16-element
|
|
* transformation matrix.
|
|
* If the normalize flag is true the normals will be scaled to length 1.
|
|
*/
|
|
void gl_xform_normals_3fv( GLuint n, GLfloat v[][3], const GLfloat m[16],
|
|
GLfloat u[][3], GLboolean normalize )
|
|
{
|
|
if (normalize) {
|
|
/* Transform normals and scale to unit length */
|
|
GLuint i;
|
|
GLfloat m0 = m[0], m4 = m[4], m8 = m[8];
|
|
GLfloat m1 = m[1], m5 = m[5], m9 = m[9];
|
|
GLfloat m2 = m[2], m6 = m[6], m10 = m[10];
|
|
for (i=0;i<n;i++) {
|
|
GLdouble tx, ty, tz;
|
|
{
|
|
GLfloat ux = u[i][0], uy = u[i][1], uz = u[i][2];
|
|
tx = ux * m0 + uy * m1 + uz * m2;
|
|
ty = ux * m4 + uy * m5 + uz * m6;
|
|
tz = ux * m8 + uy * m9 + uz * m10;
|
|
}
|
|
{
|
|
GLdouble len, scale;
|
|
len = GL_SQRT( tx*tx + ty*ty + tz*tz );
|
|
scale = (len>1E-30) ? (1.0 / len) : 1.0;
|
|
v[i][0] = tx * scale;
|
|
v[i][1] = ty * scale;
|
|
v[i][2] = tz * scale;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* Just transform normals, don't scale */
|
|
GLuint i;
|
|
GLfloat m0 = m[0], m4 = m[4], m8 = m[8];
|
|
GLfloat m1 = m[1], m5 = m[5], m9 = m[9];
|
|
GLfloat m2 = m[2], m6 = m[6], m10 = m[10];
|
|
for (i=0;i<n;i++) {
|
|
GLfloat ux = u[i][0], uy = u[i][1], uz = u[i][2];
|
|
v[i][0] = ux * m0 + uy * m1 + uz * m2;
|
|
v[i][1] = ux * m4 + uy * m5 + uz * m6;
|
|
v[i][2] = ux * m8 + uy * m9 + uz * m10;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This
|
|
* function is used for transforming clipping plane equations and spotlight
|
|
* directions.
|
|
* Mathematically, u = v * m.
|
|
* Input: v - input vector
|
|
* m - transformation matrix
|
|
* Output: u - transformed vector
|
|
*/
|
|
void gl_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
|
|
{
|
|
GLfloat v0=v[0], v1=v[1], v2=v[2], v3=v[3];
|
|
#define M(row,col) m[col*4+row]
|
|
u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
|
|
u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
|
|
u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
|
|
u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
|
|
#undef M
|
|
}
|
|
|