reactos/dll/win32/glu32/libnurbs/interface/insurfeval.cc
Amine Khaldi c424146e2c Create a branch for cmake bringup.
svn path=/branches/cmake-bringup/; revision=48236
2010-07-24 18:52:44 +00:00

2066 lines
52 KiB
C++

/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 1.1 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
**
** http://oss.sgi.com/projects/FreeB
**
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
**
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
**
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
**
** $Date$ $Revision: 1.1 $
*/
/*
** $Header: /cygdrive/c/RCVS/CVS/ReactOS/reactos/lib/glu32/libnurbs/interface/insurfeval.cc,v 1.1 2004/02/02 16:39:08 navaraf Exp $
*/
#include "gluos.h"
#include <stdlib.h>
#include <stdio.h>
#include <GL/gl.h>
#include <math.h>
#include <assert.h>
#include "glsurfeval.h"
//extern int surfcount;
//#define CRACK_TEST
#define AVOID_ZERO_NORMAL
#ifdef AVOID_ZERO_NORMAL
#define myabs(x) ((x>0)? x: (-x))
#define MYZERO 0.000001
#define MYDELTA 0.001
#endif
//#define USE_LOD
#ifdef USE_LOD
//#define LOD_EVAL_COORD(u,v) inDoEvalCoord2EM(u,v)
#define LOD_EVAL_COORD(u,v) glEvalCoord2f(u,v)
static void LOD_interpolate(REAL A[2], REAL B[2], REAL C[2], int j, int k, int pow2_level,
REAL& u, REAL& v)
{
REAL a,a1,b,b1;
a = ((REAL) j) / ((REAL) pow2_level);
a1 = 1-a;
if(j != 0)
{
b = ((REAL) k) / ((REAL)j);
b1 = 1-b;
}
REAL x,y,z;
x = a1;
if(j==0)
{
y=0; z=0;
}
else{
y = b1*a;
z = b *a;
}
u = x*A[0] + y*B[0] + z*C[0];
v = x*A[1] + y*B[1] + z*C[1];
}
void OpenGLSurfaceEvaluator::LOD_triangle(REAL A[2], REAL B[2], REAL C[2],
int level)
{
int k,j;
int pow2_level;
/*compute 2^level*/
pow2_level = 1;
for(j=0; j<level; j++)
pow2_level *= 2;
for(j=0; j<=pow2_level-1; j++)
{
REAL u,v;
/* beginCallBack(GL_TRIANGLE_STRIP);*/
glBegin(GL_TRIANGLE_STRIP);
LOD_interpolate(A,B,C, j+1, j+1, pow2_level, u,v);
#ifdef USE_LOD
LOD_EVAL_COORD(u,v);
// glEvalCoord2f(u,v);
#else
inDoEvalCoord2EM(u,v);
#endif
for(k=0; k<=j; k++)
{
LOD_interpolate(A,B,C,j,j-k,pow2_level, u,v);
#ifdef USE_LOD
LOD_EVAL_COORD(u,v);
// glEvalCoord2f(u,v);
#else
inDoEvalCoord2EM(u,v);
#endif
LOD_interpolate(A,B,C,j+1,j-k,pow2_level, u,v);
#ifdef USE_LOD
LOD_EVAL_COORD(u,v);
// glEvalCoord2f(u,v);
#else
inDoEvalCoord2EM(u,v);
#endif
}
// endCallBack();
glEnd();
}
}
void OpenGLSurfaceEvaluator::LOD_eval(int num_vert, REAL* verts, int type,
int level
)
{
int i,k;
switch(type){
case GL_TRIANGLE_STRIP:
case GL_QUAD_STRIP:
for(i=2, k=4; i<=num_vert-2; i+=2, k+=4)
{
LOD_triangle(verts+k-4, verts+k-2, verts+k,
level
);
LOD_triangle(verts+k-2, verts+k+2, verts+k,
level
);
}
if(num_vert % 2 ==1)
{
LOD_triangle(verts+2*(num_vert-3), verts+2*(num_vert-2), verts+2*(num_vert-1),
level
);
}
break;
case GL_TRIANGLE_FAN:
for(i=1, k=2; i<=num_vert-2; i++, k+=2)
{
LOD_triangle(verts,verts+k, verts+k+2,
level
);
}
break;
default:
fprintf(stderr, "typy not supported in LOD_\n");
}
}
#endif //USE_LOD
//#define GENERIC_TEST
#ifdef GENERIC_TEST
extern float xmin, xmax, ymin, ymax, zmin, zmax; /*bounding box*/
extern int temp_signal;
static void gTessVertexSphere(float u, float v, float temp_normal[3], float temp_vertex[3])
{
float r=2.0;
float Ox = 0.5*(xmin+xmax);
float Oy = 0.5*(ymin+ymax);
float Oz = 0.5*(zmin+zmax);
float nx = cos(v) * sin(u);
float ny = sin(v) * sin(u);
float nz = cos(u);
float x= Ox+r * nx;
float y= Oy+r * ny;
float z= Oz+r * nz;
temp_normal[0] = nx;
temp_normal[1] = ny;
temp_normal[2] = nz;
temp_vertex[0] = x;
temp_vertex[1] = y;
temp_vertex[2] = z;
// glNormal3f(nx,ny,nz);
// glVertex3f(x,y,z);
}
static void gTessVertexCyl(float u, float v, float temp_normal[3], float temp_vertex[3])
{
float r=2.0;
float Ox = 0.5*(xmin+xmax);
float Oy = 0.5*(ymin+ymax);
float Oz = 0.5*(zmin+zmax);
float nx = cos(v);
float ny = sin(v);
float nz = 0;
float x= Ox+r * nx;
float y= Oy+r * ny;
float z= Oz - 2*u;
temp_normal[0] = nx;
temp_normal[1] = ny;
temp_normal[2] = nz;
temp_vertex[0] = x;
temp_vertex[1] = y;
temp_vertex[2] = z;
/*
glNormal3f(nx,ny,nz);
glVertex3f(x,y,z);
*/
}
#endif //GENERIC_TEST
void OpenGLSurfaceEvaluator::inBPMListEval(bezierPatchMesh* list)
{
bezierPatchMesh* temp;
for(temp = list; temp != NULL; temp = temp->next)
{
inBPMEval(temp);
}
}
void OpenGLSurfaceEvaluator::inBPMEval(bezierPatchMesh* bpm)
{
int i,j,k,l;
float u,v;
int ustride = bpm->bpatch->dimension * bpm->bpatch->vorder;
int vstride = bpm->bpatch->dimension;
inMap2f(
(bpm->bpatch->dimension == 3)? GL_MAP2_VERTEX_3 : GL_MAP2_VERTEX_4,
bpm->bpatch->umin,
bpm->bpatch->umax,
ustride,
bpm->bpatch->uorder,
bpm->bpatch->vmin,
bpm->bpatch->vmax,
vstride,
bpm->bpatch->vorder,
bpm->bpatch->ctlpoints);
bpm->vertex_array = (float*) malloc(sizeof(float)* (bpm->index_UVarray/2) * 3+1); /*in case the origional dimenion is 4, then we need 4 space to pass to evaluator.*/
assert(bpm->vertex_array);
bpm->normal_array = (float*) malloc(sizeof(float)* (bpm->index_UVarray/2) * 3);
assert(bpm->normal_array);
#ifdef CRACK_TEST
if( global_ev_u1 ==2 && global_ev_u2 == 3
&& global_ev_v1 ==2 && global_ev_v2 == 3)
{
REAL vertex[4];
REAL normal[4];
#ifdef DEBUG
printf("***number 1\n");
#endif
beginCallBack(GL_QUAD_STRIP, NULL);
inEvalCoord2f(3.0, 3.0);
inEvalCoord2f(2.0, 3.0);
inEvalCoord2f(3.0, 2.7);
inEvalCoord2f(2.0, 2.7);
inEvalCoord2f(3.0, 2.0);
inEvalCoord2f(2.0, 2.0);
endCallBack(NULL);
beginCallBack(GL_TRIANGLE_STRIP, NULL);
inEvalCoord2f(2.0, 3.0);
inEvalCoord2f(2.0, 2.0);
inEvalCoord2f(2.0, 2.7);
endCallBack(NULL);
}
/*
if( global_ev_u1 ==2 && global_ev_u2 == 3
&& global_ev_v1 ==1 && global_ev_v2 == 2)
{
#ifdef DEBUG
printf("***number 2\n");
#endif
beginCallBack(GL_QUAD_STRIP);
inEvalCoord2f(2.0, 2.0);
inEvalCoord2f(2.0, 1.0);
inEvalCoord2f(3.0, 2.0);
inEvalCoord2f(3.0, 1.0);
endCallBack();
}
*/
if( global_ev_u1 ==1 && global_ev_u2 == 2
&& global_ev_v1 ==2 && global_ev_v2 == 3)
{
#ifdef DEBUG
printf("***number 3\n");
#endif
beginCallBack(GL_QUAD_STRIP, NULL);
inEvalCoord2f(2.0, 3.0);
inEvalCoord2f(1.0, 3.0);
inEvalCoord2f(2.0, 2.3);
inEvalCoord2f(1.0, 2.3);
inEvalCoord2f(2.0, 2.0);
inEvalCoord2f(1.0, 2.0);
endCallBack(NULL);
beginCallBack(GL_TRIANGLE_STRIP, NULL);
inEvalCoord2f(2.0, 2.3);
inEvalCoord2f(2.0, 2.0);
inEvalCoord2f(2.0, 3.0);
endCallBack(NULL);
}
return;
#endif
k=0;
l=0;
for(i=0; i<bpm->index_length_array; i++)
{
beginCallBack(bpm->type_array[i], userData);
for(j=0; j<bpm->length_array[i]; j++)
{
u = bpm->UVarray[k];
v = bpm->UVarray[k+1];
inDoEvalCoord2NOGE(u,v,
bpm->vertex_array+l,
bpm->normal_array+l);
normalCallBack(bpm->normal_array+l, userData);
vertexCallBack(bpm->vertex_array+l, userData);
k += 2;
l += 3;
}
endCallBack(userData);
}
}
void OpenGLSurfaceEvaluator::inEvalPoint2(int i, int j)
{
REAL du, dv;
REAL point[4];
REAL normal[3];
REAL u,v;
du = (global_grid_u1 - global_grid_u0) / (REAL)global_grid_nu;
dv = (global_grid_v1 - global_grid_v0) / (REAL)global_grid_nv;
u = (i==global_grid_nu)? global_grid_u1:(global_grid_u0 + i*du);
v = (j == global_grid_nv)? global_grid_v1: (global_grid_v0 +j*dv);
inDoEvalCoord2(u,v,point,normal);
}
void OpenGLSurfaceEvaluator::inEvalCoord2f(REAL u, REAL v)
{
REAL point[4];
REAL normal[3];
inDoEvalCoord2(u,v,point, normal);
}
/*define a grid. store the values into the global variabls:
* global_grid_*
*These values will be used later by evaluating functions
*/
void OpenGLSurfaceEvaluator::inMapGrid2f(int nu, REAL u0, REAL u1,
int nv, REAL v0, REAL v1)
{
global_grid_u0 = u0;
global_grid_u1 = u1;
global_grid_nu = nu;
global_grid_v0 = v0;
global_grid_v1 = v1;
global_grid_nv = nv;
}
void OpenGLSurfaceEvaluator::inEvalMesh2(int lowU, int lowV, int highU, int highV)
{
REAL du, dv;
int i,j;
REAL point[4];
REAL normal[3];
if(global_grid_nu == 0 || global_grid_nv == 0)
return; /*no points need to be output*/
du = (global_grid_u1 - global_grid_u0) / (REAL)global_grid_nu;
dv = (global_grid_v1 - global_grid_v0) / (REAL)global_grid_nv;
if(global_grid_nu >= global_grid_nv){
for(i=lowU; i<highU; i++){
REAL u1 = (i==global_grid_nu)? global_grid_u1:(global_grid_u0 + i*du);
REAL u2 = ((i+1) == global_grid_nu)? global_grid_u1: (global_grid_u0+(i+1)*du);
bgnqstrip();
for(j=highV; j>=lowV; j--){
REAL v1 = (j == global_grid_nv)? global_grid_v1: (global_grid_v0 +j*dv);
inDoEvalCoord2(u1, v1, point, normal);
inDoEvalCoord2(u2, v1, point, normal);
}
endqstrip();
}
}
else{
for(i=lowV; i<highV; i++){
REAL v1 = (i==global_grid_nv)? global_grid_v1:(global_grid_v0 + i*dv);
REAL v2 = ((i+1) == global_grid_nv)? global_grid_v1: (global_grid_v0+(i+1)*dv);
bgnqstrip();
for(j=highU; j>=lowU; j--){
REAL u1 = (j == global_grid_nu)? global_grid_u1: (global_grid_u0 +j*du);
inDoEvalCoord2(u1, v2, point, normal);
inDoEvalCoord2(u1, v1, point, normal);
}
endqstrip();
}
}
}
void OpenGLSurfaceEvaluator::inMap2f(int k,
REAL ulower,
REAL uupper,
int ustride,
int uorder,
REAL vlower,
REAL vupper,
int vstride,
int vorder,
REAL *ctlPoints)
{
int i,j,x;
REAL *data = global_ev_ctlPoints;
if(k == GL_MAP2_VERTEX_3) k=3;
else if (k==GL_MAP2_VERTEX_4) k =4;
else {
printf("error in inMap2f, maptype=%i is wrong, k,map is not updated\n", k);
return;
}
global_ev_k = k;
global_ev_u1 = ulower;
global_ev_u2 = uupper;
global_ev_ustride = ustride;
global_ev_uorder = uorder;
global_ev_v1 = vlower;
global_ev_v2 = vupper;
global_ev_vstride = vstride;
global_ev_vorder = vorder;
/*copy the contrl points from ctlPoints to global_ev_ctlPoints*/
for (i=0; i<uorder; i++) {
for (j=0; j<vorder; j++) {
for (x=0; x<k; x++) {
data[x] = ctlPoints[x];
}
ctlPoints += vstride;
data += k;
}
ctlPoints += ustride - vstride * vorder;
}
}
/*
*given a point p with homegeneous coordiante (x,y,z,w),
*let pu(x,y,z,w) be its partial derivative vector with
*respect to u
*and pv(x,y,z,w) be its partial derivative vector with repect to v.
*This function returns the partial derivative vectors of the
*inhomegensous coordinates, i.e.,
* (x/w, y/w, z/w) with respect to u and v.
*/
void OpenGLSurfaceEvaluator::inComputeFirstPartials(REAL *p, REAL *pu, REAL *pv)
{
pu[0] = pu[0]*p[3] - pu[3]*p[0];
pu[1] = pu[1]*p[3] - pu[3]*p[1];
pu[2] = pu[2]*p[3] - pu[3]*p[2];
pv[0] = pv[0]*p[3] - pv[3]*p[0];
pv[1] = pv[1]*p[3] - pv[3]*p[1];
pv[2] = pv[2]*p[3] - pv[3]*p[2];
}
/*compute the cross product of pu and pv and normalize.
*the normal is returned in retNormal
* pu: dimension 3
* pv: dimension 3
* n: return normal, of dimension 3
*/
void OpenGLSurfaceEvaluator::inComputeNormal2(REAL *pu, REAL *pv, REAL *n)
{
REAL mag;
n[0] = pu[1]*pv[2] - pu[2]*pv[1];
n[1] = pu[2]*pv[0] - pu[0]*pv[2];
n[2] = pu[0]*pv[1] - pu[1]*pv[0];
mag = sqrt(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]);
if (mag > 0.0) {
n[0] /= mag;
n[1] /= mag;
n[2] /= mag;
}
}
/*Compute point and normal
*see the head of inDoDomain2WithDerivs
*for the meaning of the arguments
*/
void OpenGLSurfaceEvaluator::inDoEvalCoord2(REAL u, REAL v,
REAL *retPoint, REAL *retNormal)
{
REAL du[4];
REAL dv[4];
assert(global_ev_k>=3 && global_ev_k <= 4);
/*compute homegeneous point and partial derivatives*/
inDoDomain2WithDerivs(global_ev_k, u, v, global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, retPoint, du, dv);
#ifdef AVOID_ZERO_NORMAL
if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
{
REAL tempdu[4];
REAL tempdata[4];
REAL u1 = global_ev_u1;
REAL u2 = global_ev_u2;
if(u-MYDELTA*(u2-u1) < u1)
u = u+ MYDELTA*(u2-u1);
else
u = u-MYDELTA*(u2-u1);
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, tempdu, dv);
}
if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
{
REAL tempdv[4];
REAL tempdata[4];
REAL v1 = global_ev_v1;
REAL v2 = global_ev_v2;
if(v-MYDELTA*(v2-v1) < v1)
v = v+ MYDELTA*(v2-v1);
else
v = v-MYDELTA*(v2-v1);
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, du, tempdv);
}
#endif
/*compute normal*/
switch(global_ev_k){
case 3:
inComputeNormal2(du, dv, retNormal);
break;
case 4:
inComputeFirstPartials(retPoint, du, dv);
inComputeNormal2(du, dv, retNormal);
/*transform the homegeneous coordinate of retPoint into inhomogenous one*/
retPoint[0] /= retPoint[3];
retPoint[1] /= retPoint[3];
retPoint[2] /= retPoint[3];
break;
}
/*output this vertex*/
/* inMeshStreamInsert(global_ms, retPoint, retNormal);*/
glNormal3fv(retNormal);
glVertex3fv(retPoint);
#ifdef DEBUG
printf("vertex(%f,%f,%f)\n", retPoint[0],retPoint[1],retPoint[2]);
#endif
}
/*Compute point and normal
*see the head of inDoDomain2WithDerivs
*for the meaning of the arguments
*/
void OpenGLSurfaceEvaluator::inDoEvalCoord2NOGE_BU(REAL u, REAL v,
REAL *retPoint, REAL *retNormal)
{
REAL du[4];
REAL dv[4];
assert(global_ev_k>=3 && global_ev_k <= 4);
/*compute homegeneous point and partial derivatives*/
// inPreEvaluateBU(global_ev_k, global_ev_uorder, global_ev_vorder, (u-global_ev_u1)/(global_ev_u2-global_ev_u1), global_ev_ctlPoints);
inDoDomain2WithDerivsBU(global_ev_k, u, v, global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, retPoint, du, dv);
#ifdef AVOID_ZERO_NORMAL
if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
{
REAL tempdu[4];
REAL tempdata[4];
REAL u1 = global_ev_u1;
REAL u2 = global_ev_u2;
if(u-MYDELTA*(u2-u1) < u1)
u = u+ MYDELTA*(u2-u1);
else
u = u-MYDELTA*(u2-u1);
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, tempdu, dv);
}
if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
{
REAL tempdv[4];
REAL tempdata[4];
REAL v1 = global_ev_v1;
REAL v2 = global_ev_v2;
if(v-MYDELTA*(v2-v1) < v1)
v = v+ MYDELTA*(v2-v1);
else
v = v-MYDELTA*(v2-v1);
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, du, tempdv);
}
#endif
/*compute normal*/
switch(global_ev_k){
case 3:
inComputeNormal2(du, dv, retNormal);
break;
case 4:
inComputeFirstPartials(retPoint, du, dv);
inComputeNormal2(du, dv, retNormal);
/*transform the homegeneous coordinate of retPoint into inhomogenous one*/
retPoint[0] /= retPoint[3];
retPoint[1] /= retPoint[3];
retPoint[2] /= retPoint[3];
break;
}
}
/*Compute point and normal
*see the head of inDoDomain2WithDerivs
*for the meaning of the arguments
*/
void OpenGLSurfaceEvaluator::inDoEvalCoord2NOGE_BV(REAL u, REAL v,
REAL *retPoint, REAL *retNormal)
{
REAL du[4];
REAL dv[4];
assert(global_ev_k>=3 && global_ev_k <= 4);
/*compute homegeneous point and partial derivatives*/
// inPreEvaluateBV(global_ev_k, global_ev_uorder, global_ev_vorder, (v-global_ev_v1)/(global_ev_v2-global_ev_v1), global_ev_ctlPoints);
inDoDomain2WithDerivsBV(global_ev_k, u, v, global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, retPoint, du, dv);
#ifdef AVOID_ZERO_NORMAL
if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
{
REAL tempdu[4];
REAL tempdata[4];
REAL u1 = global_ev_u1;
REAL u2 = global_ev_u2;
if(u-MYDELTA*(u2-u1) < u1)
u = u+ MYDELTA*(u2-u1);
else
u = u-MYDELTA*(u2-u1);
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, tempdu, dv);
}
if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
{
REAL tempdv[4];
REAL tempdata[4];
REAL v1 = global_ev_v1;
REAL v2 = global_ev_v2;
if(v-MYDELTA*(v2-v1) < v1)
v = v+ MYDELTA*(v2-v1);
else
v = v-MYDELTA*(v2-v1);
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, du, tempdv);
}
#endif
/*compute normal*/
switch(global_ev_k){
case 3:
inComputeNormal2(du, dv, retNormal);
break;
case 4:
inComputeFirstPartials(retPoint, du, dv);
inComputeNormal2(du, dv, retNormal);
/*transform the homegeneous coordinate of retPoint into inhomogenous one*/
retPoint[0] /= retPoint[3];
retPoint[1] /= retPoint[3];
retPoint[2] /= retPoint[3];
break;
}
}
/*Compute point and normal
*see the head of inDoDomain2WithDerivs
*for the meaning of the arguments
*/
void OpenGLSurfaceEvaluator::inDoEvalCoord2NOGE(REAL u, REAL v,
REAL *retPoint, REAL *retNormal)
{
REAL du[4];
REAL dv[4];
assert(global_ev_k>=3 && global_ev_k <= 4);
/*compute homegeneous point and partial derivatives*/
inDoDomain2WithDerivs(global_ev_k, u, v, global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, retPoint, du, dv);
#ifdef AVOID_ZERO_NORMAL
if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
{
REAL tempdu[4];
REAL tempdata[4];
REAL u1 = global_ev_u1;
REAL u2 = global_ev_u2;
if(u-MYDELTA*(u2-u1) < u1)
u = u+ MYDELTA*(u2-u1);
else
u = u-MYDELTA*(u2-u1);
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, tempdu, dv);
}
if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
{
REAL tempdv[4];
REAL tempdata[4];
REAL v1 = global_ev_v1;
REAL v2 = global_ev_v2;
if(v-MYDELTA*(v2-v1) < v1)
v = v+ MYDELTA*(v2-v1);
else
v = v-MYDELTA*(v2-v1);
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, du, tempdv);
}
#endif
/*compute normal*/
switch(global_ev_k){
case 3:
inComputeNormal2(du, dv, retNormal);
break;
case 4:
inComputeFirstPartials(retPoint, du, dv);
inComputeNormal2(du, dv, retNormal);
/*transform the homegeneous coordinate of retPoint into inhomogenous one*/
retPoint[0] /= retPoint[3];
retPoint[1] /= retPoint[3];
retPoint[2] /= retPoint[3];
break;
}
// glNormal3fv(retNormal);
// glVertex3fv(retPoint);
}
void OpenGLSurfaceEvaluator::inPreEvaluateBV(int k, int uorder, int vorder, REAL vprime, REAL *baseData)
{
int j,row,col;
REAL p, pdv;
REAL *data;
if(global_vprime != vprime || global_vorder != vorder) {
inPreEvaluateWithDeriv(vorder, vprime, global_vcoeff, global_vcoeffDeriv);
global_vprime = vprime;
global_vorder = vorder;
}
for(j=0; j<k; j++){
data = baseData+j;
for(row=0; row<uorder; row++){
p = global_vcoeff[0] * (*data);
pdv = global_vcoeffDeriv[0] * (*data);
data += k;
for(col = 1; col < vorder; col++){
p += global_vcoeff[col] * (*data);
pdv += global_vcoeffDeriv[col] * (*data);
data += k;
}
global_BV[row][j] = p;
global_PBV[row][j] = pdv;
}
}
}
void OpenGLSurfaceEvaluator::inPreEvaluateBU(int k, int uorder, int vorder, REAL uprime, REAL *baseData)
{
int j,row,col;
REAL p, pdu;
REAL *data;
if(global_uprime != uprime || global_uorder != uorder) {
inPreEvaluateWithDeriv(uorder, uprime, global_ucoeff, global_ucoeffDeriv);
global_uprime = uprime;
global_uorder = uorder;
}
for(j=0; j<k; j++){
data = baseData+j;
for(col=0; col<vorder; col++){
data = baseData+j + k*col;
p = global_ucoeff[0] * (*data);
pdu = global_ucoeffDeriv[0] * (*data);
data += k*uorder;
for(row = 1; row < uorder; row++){
p += global_ucoeff[row] * (*data);
pdu += global_ucoeffDeriv[row] * (*data);
data += k * uorder;
}
global_BU[col][j] = p;
global_PBU[col][j] = pdu;
}
}
}
void OpenGLSurfaceEvaluator::inDoDomain2WithDerivsBU(int k, REAL u, REAL v,
REAL u1, REAL u2, int uorder,
REAL v1, REAL v2, int vorder,
REAL *baseData,
REAL *retPoint, REAL* retdu, REAL *retdv)
{
int j, col;
REAL vprime;
if((u2 == u1) || (v2 == v1))
return;
vprime = (v - v1) / (v2 - v1);
if(global_vprime != vprime || global_vorder != vorder) {
inPreEvaluateWithDeriv(vorder, vprime, global_vcoeff, global_vcoeffDeriv);
global_vprime = vprime;
global_vorder = vorder;
}
for(j=0; j<k; j++)
{
retPoint[j] = retdu[j] = retdv[j] = 0.0;
for (col = 0; col < vorder; col++) {
retPoint[j] += global_BU[col][j] * global_vcoeff[col];
retdu[j] += global_PBU[col][j] * global_vcoeff[col];
retdv[j] += global_BU[col][j] * global_vcoeffDeriv[col];
}
}
}
void OpenGLSurfaceEvaluator::inDoDomain2WithDerivsBV(int k, REAL u, REAL v,
REAL u1, REAL u2, int uorder,
REAL v1, REAL v2, int vorder,
REAL *baseData,
REAL *retPoint, REAL* retdu, REAL *retdv)
{
int j, row;
REAL uprime;
if((u2 == u1) || (v2 == v1))
return;
uprime = (u - u1) / (u2 - u1);
if(global_uprime != uprime || global_uorder != uorder) {
inPreEvaluateWithDeriv(uorder, uprime, global_ucoeff, global_ucoeffDeriv);
global_uprime = uprime;
global_uorder = uorder;
}
for(j=0; j<k; j++)
{
retPoint[j] = retdu[j] = retdv[j] = 0.0;
for (row = 0; row < uorder; row++) {
retPoint[j] += global_BV[row][j] * global_ucoeff[row];
retdu[j] += global_BV[row][j] * global_ucoeffDeriv[row];
retdv[j] += global_PBV[row][j] * global_ucoeff[row];
}
}
}
/*
*given a Bezier surface, and parameter (u,v), compute the point in the object space,
*and the normal
*k: the dimension of the object space: usually 2,3,or 4.
*u,v: the paramter pair.
*u1,u2,uorder: the Bezier polynomial of u coord is defined on [u1,u2] with order uorder.
*v1,v2,vorder: the Bezier polynomial of v coord is defined on [v1,v2] with order vorder.
*baseData: contrl points. arranged as: (u,v,k).
*retPoint: the computed point (one point) with dimension k.
*retdu: the computed partial derivative with respect to u.
*retdv: the computed partial derivative with respect to v.
*/
void OpenGLSurfaceEvaluator::inDoDomain2WithDerivs(int k, REAL u, REAL v,
REAL u1, REAL u2, int uorder,
REAL v1, REAL v2, int vorder,
REAL *baseData,
REAL *retPoint, REAL *retdu, REAL *retdv)
{
int j, row, col;
REAL uprime;
REAL vprime;
REAL p;
REAL pdv;
REAL *data;
if((u2 == u1) || (v2 == v1))
return;
uprime = (u - u1) / (u2 - u1);
vprime = (v - v1) / (v2 - v1);
/* Compute coefficients for values and derivs */
/* Use already cached values if possible */
if(global_uprime != uprime || global_uorder != uorder) {
inPreEvaluateWithDeriv(uorder, uprime, global_ucoeff, global_ucoeffDeriv);
global_uorder = uorder;
global_uprime = uprime;
}
if (global_vprime != vprime ||
global_vorder != vorder) {
inPreEvaluateWithDeriv(vorder, vprime, global_vcoeff, global_vcoeffDeriv);
global_vorder = vorder;
global_vprime = vprime;
}
for (j = 0; j < k; j++) {
data=baseData+j;
retPoint[j] = retdu[j] = retdv[j] = 0.0;
for (row = 0; row < uorder; row++) {
/*
** Minor optimization.
** The col == 0 part of the loop is extracted so we don't
** have to initialize p and pdv to 0.
*/
p = global_vcoeff[0] * (*data);
pdv = global_vcoeffDeriv[0] * (*data);
data += k;
for (col = 1; col < vorder; col++) {
/* Incrementally build up p, pdv value */
p += global_vcoeff[col] * (*data);
pdv += global_vcoeffDeriv[col] * (*data);
data += k;
}
/* Use p, pdv value to incrementally add up r, du, dv */
retPoint[j] += global_ucoeff[row] * p;
retdu[j] += global_ucoeffDeriv[row] * p;
retdv[j] += global_ucoeff[row] * pdv;
}
}
}
/*
*compute the Bezier polynomials C[n,j](v) for all j at v with
*return values stored in coeff[], where
* C[n,j](v) = (n,j) * v^j * (1-v)^(n-j),
* j=0,1,2,...,n.
*order : n+1
*vprime: v
*coeff : coeff[j]=C[n,j](v), this array store the returned values.
*The algorithm is a recursive scheme:
* C[0,0]=1;
* C[n,j](v) = (1-v)*C[n-1,j](v) + v*C[n-1,j-1](v), n>=1
*This code is copied from opengl/soft/so_eval.c:PreEvaluate
*/
void OpenGLSurfaceEvaluator::inPreEvaluate(int order, REAL vprime, REAL *coeff)
{
int i, j;
REAL oldval, temp;
REAL oneMinusvprime;
/*
* Minor optimization
* Compute orders 1 and 2 outright, and set coeff[0], coeff[1] to
* their i==1 loop values to avoid the initialization and the i==1 loop.
*/
if (order == 1) {
coeff[0] = 1.0;
return;
}
oneMinusvprime = 1-vprime;
coeff[0] = oneMinusvprime;
coeff[1] = vprime;
if (order == 2) return;
for (i = 2; i < order; i++) {
oldval = coeff[0] * vprime;
coeff[0] = oneMinusvprime * coeff[0];
for (j = 1; j < i; j++) {
temp = oldval;
oldval = coeff[j] * vprime;
coeff[j] = temp + oneMinusvprime * coeff[j];
}
coeff[j] = oldval;
}
}
/*
*compute the Bezier polynomials C[n,j](v) and derivatives for all j at v with
*return values stored in coeff[] and coeffDeriv[].
*see the head of function inPreEvaluate for the definition of C[n,j](v)
*and how to compute the values.
*The algorithm to compute the derivative is:
* dC[0,0](v) = 0.
* dC[n,j](v) = n*(dC[n-1,j-1](v) - dC[n-1,j](v)).
*
*This code is copied from opengl/soft/so_eval.c:PreEvaluateWidthDeriv
*/
void OpenGLSurfaceEvaluator::inPreEvaluateWithDeriv(int order, REAL vprime,
REAL *coeff, REAL *coeffDeriv)
{
int i, j;
REAL oldval, temp;
REAL oneMinusvprime;
oneMinusvprime = 1-vprime;
/*
* Minor optimization
* Compute orders 1 and 2 outright, and set coeff[0], coeff[1] to
* their i==1 loop values to avoid the initialization and the i==1 loop.
*/
if (order == 1) {
coeff[0] = 1.0;
coeffDeriv[0] = 0.0;
return;
} else if (order == 2) {
coeffDeriv[0] = -1.0;
coeffDeriv[1] = 1.0;
coeff[0] = oneMinusvprime;
coeff[1] = vprime;
return;
}
coeff[0] = oneMinusvprime;
coeff[1] = vprime;
for (i = 2; i < order - 1; i++) {
oldval = coeff[0] * vprime;
coeff[0] = oneMinusvprime * coeff[0];
for (j = 1; j < i; j++) {
temp = oldval;
oldval = coeff[j] * vprime;
coeff[j] = temp + oneMinusvprime * coeff[j];
}
coeff[j] = oldval;
}
coeffDeriv[0] = -coeff[0];
/*
** Minor optimization:
** Would make this a "for (j=1; j<order-1; j++)" loop, but it is always
** executed at least once, so this is more efficient.
*/
j=1;
do {
coeffDeriv[j] = coeff[j-1] - coeff[j];
j++;
} while (j < order - 1);
coeffDeriv[j] = coeff[j-1];
oldval = coeff[0] * vprime;
coeff[0] = oneMinusvprime * coeff[0];
for (j = 1; j < i; j++) {
temp = oldval;
oldval = coeff[j] * vprime;
coeff[j] = temp + oneMinusvprime * coeff[j];
}
coeff[j] = oldval;
}
void OpenGLSurfaceEvaluator::inEvalULine(int n_points, REAL v, REAL* u_vals,
int stride, REAL ret_points[][3], REAL ret_normals[][3])
{
int i,k;
REAL temp[4];
inPreEvaluateBV_intfac(v);
for(i=0,k=0; i<n_points; i++, k += stride)
{
inDoEvalCoord2NOGE_BV(u_vals[k],v,temp, ret_normals[i]);
ret_points[i][0] = temp[0];
ret_points[i][1] = temp[1];
ret_points[i][2] = temp[2];
}
}
void OpenGLSurfaceEvaluator::inEvalVLine(int n_points, REAL u, REAL* v_vals,
int stride, REAL ret_points[][3], REAL ret_normals[][3])
{
int i,k;
REAL temp[4];
inPreEvaluateBU_intfac(u);
for(i=0,k=0; i<n_points; i++, k += stride)
{
inDoEvalCoord2NOGE_BU(u, v_vals[k], temp, ret_normals[i]);
ret_points[i][0] = temp[0];
ret_points[i][1] = temp[1];
ret_points[i][2] = temp[2];
}
}
/*triangulate a strip bounded by two lines which are parallel to U-axis
*upperVerts: the verteces on the upper line
*lowerVertx: the verteces on the lower line
*n_upper >=1
*n_lower >=1
*/
void OpenGLSurfaceEvaluator::inEvalUStrip(int n_upper, REAL v_upper, REAL* upper_val, int n_lower, REAL v_lower, REAL* lower_val)
{
int i,j,k,l;
REAL leftMostV[2];
typedef REAL REAL3[3];
REAL3* upperXYZ = (REAL3*) malloc(sizeof(REAL3)*n_upper);
assert(upperXYZ);
REAL3* upperNormal = (REAL3*) malloc(sizeof(REAL3) * n_upper);
assert(upperNormal);
REAL3* lowerXYZ = (REAL3*) malloc(sizeof(REAL3)*n_lower);
assert(lowerXYZ);
REAL3* lowerNormal = (REAL3*) malloc(sizeof(REAL3) * n_lower);
assert(lowerNormal);
inEvalULine(n_upper, v_upper, upper_val, 1, upperXYZ, upperNormal);
inEvalULine(n_lower, v_lower, lower_val, 1, lowerXYZ, lowerNormal);
REAL* leftMostXYZ;
REAL* leftMostNormal;
/*
*the algorithm works by scanning from left to right.
*leftMostV: the left most of the remaining verteces (on both upper and lower).
* it could an element of upperVerts or lowerVerts.
*i: upperVerts[i] is the first vertex to the right of leftMostV on upper line *j: lowerVerts[j] is the first vertex to the right of leftMostV on lower line */
/*initialize i,j,and leftMostV
*/
if(upper_val[0] <= lower_val[0])
{
i=1;
j=0;
leftMostV[0] = upper_val[0];
leftMostV[1] = v_upper;
leftMostXYZ = upperXYZ[0];
leftMostNormal = upperNormal[0];
}
else
{
i=0;
j=1;
leftMostV[0] = lower_val[0];
leftMostV[1] = v_lower;
leftMostXYZ = lowerXYZ[0];
leftMostNormal = lowerNormal[0];
}
/*the main loop.
*the invariance is that:
*at the beginning of each loop, the meaning of i,j,and leftMostV are
*maintained
*/
while(1)
{
if(i >= n_upper) /*case1: no more in upper*/
{
if(j<n_lower-1) /*at least two vertices in lower*/
{
bgntfan();
glNormal3fv(leftMostNormal);
glVertex3fv(leftMostXYZ);
while(j<n_lower){
glNormal3fv(lowerNormal[j]);
glVertex3fv(lowerXYZ[j]);
j++;
}
endtfan();
}
break; /*exit the main loop*/
}
else if(j>= n_lower) /*case2: no more in lower*/
{
if(i<n_upper-1) /*at least two vertices in upper*/
{
bgntfan();
glNormal3fv(leftMostNormal);
glVertex3fv(leftMostXYZ);
for(k=n_upper-1; k>=i; k--) /*reverse order for two-side lighting*/
{
glNormal3fv(upperNormal[k]);
glVertex3fv(upperXYZ[k]);
}
endtfan();
}
break; /*exit the main loop*/
}
else /* case3: neither is empty, plus the leftMostV, there is at least one triangle to output*/
{
if(upper_val[i] <= lower_val[j])
{
bgntfan();
glNormal3fv(lowerNormal[j]);
glVertex3fv(lowerXYZ[j]);
/*find the last k>=i such that
*upperverts[k][0] <= lowerverts[j][0]
*/
k=i;
while(k<n_upper)
{
if(upper_val[k] > lower_val[j])
break;
k++;
}
k--;
for(l=k; l>=i; l--)/*the reverse is for two-side lighting*/
{
glNormal3fv(upperNormal[l]);
glVertex3fv(upperXYZ[l]);
}
glNormal3fv(leftMostNormal);
glVertex3fv(leftMostXYZ);
endtfan();
/*update i and leftMostV for next loop
*/
i = k+1;
leftMostV[0] = upper_val[k];
leftMostV[1] = v_upper;
leftMostNormal = upperNormal[k];
leftMostXYZ = upperXYZ[k];
}
else /*upperVerts[i][0] > lowerVerts[j][0]*/
{
bgntfan();
glNormal3fv(upperNormal[i]);
glVertex3fv(upperXYZ[i]);
glNormal3fv(leftMostNormal);
glVertex3fv(leftMostXYZ);
/*find the last k>=j such that
*lowerverts[k][0] < upperverts[i][0]
*/
k=j;
while(k< n_lower)
{
if(lower_val[k] >= upper_val[i])
break;
glNormal3fv(lowerNormal[k]);
glVertex3fv(lowerXYZ[k]);
k++;
}
endtfan();
/*update j and leftMostV for next loop
*/
j=k;
leftMostV[0] = lower_val[j-1];
leftMostV[1] = v_lower;
leftMostNormal = lowerNormal[j-1];
leftMostXYZ = lowerXYZ[j-1];
}
}
}
//clean up
free(upperXYZ);
free(lowerXYZ);
free(upperNormal);
free(lowerNormal);
}
/*triangulate a strip bounded by two lines which are parallel to V-axis
*leftVerts: the verteces on the left line
*rightVertx: the verteces on the right line
*n_left >=1
*n_right >=1
*/
void OpenGLSurfaceEvaluator::inEvalVStrip(int n_left, REAL u_left, REAL* left_val, int n_right, REAL u_right, REAL* right_val)
{
int i,j,k,l;
REAL botMostV[2];
typedef REAL REAL3[3];
REAL3* leftXYZ = (REAL3*) malloc(sizeof(REAL3)*n_left);
assert(leftXYZ);
REAL3* leftNormal = (REAL3*) malloc(sizeof(REAL3) * n_left);
assert(leftNormal);
REAL3* rightXYZ = (REAL3*) malloc(sizeof(REAL3)*n_right);
assert(rightXYZ);
REAL3* rightNormal = (REAL3*) malloc(sizeof(REAL3) * n_right);
assert(rightNormal);
inEvalVLine(n_left, u_left, left_val, 1, leftXYZ, leftNormal);
inEvalVLine(n_right, u_right, right_val, 1, rightXYZ, rightNormal);
REAL* botMostXYZ;
REAL* botMostNormal;
/*
*the algorithm works by scanning from bot to top.
*botMostV: the bot most of the remaining verteces (on both left and right).
* it could an element of leftVerts or rightVerts.
*i: leftVerts[i] is the first vertex to the top of botMostV on left line
*j: rightVerts[j] is the first vertex to the top of botMostV on rightline */
/*initialize i,j,and botMostV
*/
if(left_val[0] <= right_val[0])
{
i=1;
j=0;
botMostV[0] = u_left;
botMostV[1] = left_val[0];
botMostXYZ = leftXYZ[0];
botMostNormal = leftNormal[0];
}
else
{
i=0;
j=1;
botMostV[0] = u_right;
botMostV[1] = right_val[0];
botMostXYZ = rightXYZ[0];
botMostNormal = rightNormal[0];
}
/*the main loop.
*the invariance is that:
*at the beginning of each loop, the meaning of i,j,and botMostV are
*maintained
*/
while(1)
{
if(i >= n_left) /*case1: no more in left*/
{
if(j<n_right-1) /*at least two vertices in right*/
{
bgntfan();
glNormal3fv(botMostNormal);
glVertex3fv(botMostXYZ);
while(j<n_right){
glNormal3fv(rightNormal[j]);
glVertex3fv(rightXYZ[j]);
j++;
}
endtfan();
}
break; /*exit the main loop*/
}
else if(j>= n_right) /*case2: no more in right*/
{
if(i<n_left-1) /*at least two vertices in left*/
{
bgntfan();
glNormal3fv(botMostNormal);
glVertex3fv(botMostXYZ);
for(k=n_left-1; k>=i; k--) /*reverse order for two-side lighting*/
{
glNormal3fv(leftNormal[k]);
glVertex3fv(leftXYZ[k]);
}
endtfan();
}
break; /*exit the main loop*/
}
else /* case3: neither is empty, plus the botMostV, there is at least one triangle to output*/
{
if(left_val[i] <= right_val[j])
{
bgntfan();
glNormal3fv(rightNormal[j]);
glVertex3fv(rightXYZ[j]);
/*find the last k>=i such that
*leftverts[k][0] <= rightverts[j][0]
*/
k=i;
while(k<n_left)
{
if(left_val[k] > right_val[j])
break;
k++;
}
k--;
for(l=k; l>=i; l--)/*the reverse is for two-side lighting*/
{
glNormal3fv(leftNormal[l]);
glVertex3fv(leftXYZ[l]);
}
glNormal3fv(botMostNormal);
glVertex3fv(botMostXYZ);
endtfan();
/*update i and botMostV for next loop
*/
i = k+1;
botMostV[0] = u_left;
botMostV[1] = left_val[k];
botMostNormal = leftNormal[k];
botMostXYZ = leftXYZ[k];
}
else /*left_val[i] > right_val[j])*/
{
bgntfan();
glNormal3fv(leftNormal[i]);
glVertex3fv(leftXYZ[i]);
glNormal3fv(botMostNormal);
glVertex3fv(botMostXYZ);
/*find the last k>=j such that
*rightverts[k][0] < leftverts[i][0]
*/
k=j;
while(k< n_right)
{
if(right_val[k] >= left_val[i])
break;
glNormal3fv(rightNormal[k]);
glVertex3fv(rightXYZ[k]);
k++;
}
endtfan();
/*update j and botMostV for next loop
*/
j=k;
botMostV[0] = u_right;
botMostV[1] = right_val[j-1];
botMostNormal = rightNormal[j-1];
botMostXYZ = rightXYZ[j-1];
}
}
}
//clean up
free(leftXYZ);
free(rightXYZ);
free(leftNormal);
free(rightNormal);
}
/*-----------------------begin evalMachine-------------------*/
void OpenGLSurfaceEvaluator::inMap2fEM(int which, int k,
REAL ulower,
REAL uupper,
int ustride,
int uorder,
REAL vlower,
REAL vupper,
int vstride,
int vorder,
REAL *ctlPoints)
{
int i,j,x;
surfEvalMachine *temp_em;
switch(which){
case 0: //vertex
vertex_flag = 1;
temp_em = &em_vertex;
break;
case 1: //normal
normal_flag = 1;
temp_em = &em_normal;
break;
case 2: //color
color_flag = 1;
temp_em = &em_color;
break;
default:
texcoord_flag = 1;
temp_em = &em_texcoord;
break;
}
REAL *data = temp_em->ctlPoints;
temp_em->uprime = -1;//initilized
temp_em->vprime = -1;
temp_em->k = k;
temp_em->u1 = ulower;
temp_em->u2 = uupper;
temp_em->ustride = ustride;
temp_em->uorder = uorder;
temp_em->v1 = vlower;
temp_em->v2 = vupper;
temp_em->vstride = vstride;
temp_em->vorder = vorder;
/*copy the contrl points from ctlPoints to global_ev_ctlPoints*/
for (i=0; i<uorder; i++) {
for (j=0; j<vorder; j++) {
for (x=0; x<k; x++) {
data[x] = ctlPoints[x];
}
ctlPoints += vstride;
data += k;
}
ctlPoints += ustride - vstride * vorder;
}
}
void OpenGLSurfaceEvaluator::inDoDomain2WithDerivsEM(surfEvalMachine *em, REAL u, REAL v,
REAL *retPoint, REAL *retdu, REAL *retdv)
{
int j, row, col;
REAL the_uprime;
REAL the_vprime;
REAL p;
REAL pdv;
REAL *data;
if((em->u2 == em->u1) || (em->v2 == em->v1))
return;
the_uprime = (u - em->u1) / (em->u2 - em->u1);
the_vprime = (v - em->v1) / (em->v2 - em->v1);
/* Compute coefficients for values and derivs */
/* Use already cached values if possible */
if(em->uprime != the_uprime) {
inPreEvaluateWithDeriv(em->uorder, the_uprime, em->ucoeff, em->ucoeffDeriv);
em->uprime = the_uprime;
}
if (em->vprime != the_vprime) {
inPreEvaluateWithDeriv(em->vorder, the_vprime, em->vcoeff, em->vcoeffDeriv);
em->vprime = the_vprime;
}
for (j = 0; j < em->k; j++) {
data=em->ctlPoints+j;
retPoint[j] = retdu[j] = retdv[j] = 0.0;
for (row = 0; row < em->uorder; row++) {
/*
** Minor optimization.
** The col == 0 part of the loop is extracted so we don't
** have to initialize p and pdv to 0.
*/
p = em->vcoeff[0] * (*data);
pdv = em->vcoeffDeriv[0] * (*data);
data += em->k;
for (col = 1; col < em->vorder; col++) {
/* Incrementally build up p, pdv value */
p += em->vcoeff[col] * (*data);
pdv += em->vcoeffDeriv[col] * (*data);
data += em->k;
}
/* Use p, pdv value to incrementally add up r, du, dv */
retPoint[j] += em->ucoeff[row] * p;
retdu[j] += em->ucoeffDeriv[row] * p;
retdv[j] += em->ucoeff[row] * pdv;
}
}
}
void OpenGLSurfaceEvaluator::inDoDomain2EM(surfEvalMachine *em, REAL u, REAL v,
REAL *retPoint)
{
int j, row, col;
REAL the_uprime;
REAL the_vprime;
REAL p;
REAL *data;
if((em->u2 == em->u1) || (em->v2 == em->v1))
return;
the_uprime = (u - em->u1) / (em->u2 - em->u1);
the_vprime = (v - em->v1) / (em->v2 - em->v1);
/* Compute coefficients for values and derivs */
/* Use already cached values if possible */
if(em->uprime != the_uprime) {
inPreEvaluate(em->uorder, the_uprime, em->ucoeff);
em->uprime = the_uprime;
}
if (em->vprime != the_vprime) {
inPreEvaluate(em->vorder, the_vprime, em->vcoeff);
em->vprime = the_vprime;
}
for (j = 0; j < em->k; j++) {
data=em->ctlPoints+j;
retPoint[j] = 0.0;
for (row = 0; row < em->uorder; row++) {
/*
** Minor optimization.
** The col == 0 part of the loop is extracted so we don't
** have to initialize p and pdv to 0.
*/
p = em->vcoeff[0] * (*data);
data += em->k;
for (col = 1; col < em->vorder; col++) {
/* Incrementally build up p, pdv value */
p += em->vcoeff[col] * (*data);
data += em->k;
}
/* Use p, pdv value to incrementally add up r, du, dv */
retPoint[j] += em->ucoeff[row] * p;
}
}
}
void OpenGLSurfaceEvaluator::inDoEvalCoord2EM(REAL u, REAL v)
{
REAL temp_vertex[5];
REAL temp_normal[3];
REAL temp_color[4];
REAL temp_texcoord[4];
if(texcoord_flag)
{
inDoDomain2EM(&em_texcoord, u,v, temp_texcoord);
texcoordCallBack(temp_texcoord, userData);
}
if(color_flag)
{
inDoDomain2EM(&em_color, u,v, temp_color);
colorCallBack(temp_color, userData);
}
if(normal_flag) //there is a normla map
{
inDoDomain2EM(&em_normal, u,v, temp_normal);
normalCallBack(temp_normal, userData);
if(vertex_flag)
{
inDoDomain2EM(&em_vertex, u,v,temp_vertex);
if(em_vertex.k == 4)
{
temp_vertex[0] /= temp_vertex[3];
temp_vertex[1] /= temp_vertex[3];
temp_vertex[2] /= temp_vertex[3];
}
temp_vertex[3]=u;
temp_vertex[4]=v;
vertexCallBack(temp_vertex, userData);
}
}
else if(auto_normal_flag) //no normal map but there is a normal callbackfunctin
{
REAL du[4];
REAL dv[4];
/*compute homegeneous point and partial derivatives*/
inDoDomain2WithDerivsEM(&em_vertex, u,v,temp_vertex,du,dv);
if(em_vertex.k ==4)
inComputeFirstPartials(temp_vertex, du, dv);
#ifdef AVOID_ZERO_NORMAL
if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
{
REAL tempdu[4];
REAL tempdata[4];
REAL u1 = em_vertex.u1;
REAL u2 = em_vertex.u2;
if(u-MYDELTA*(u2-u1) < u1)
u = u+ MYDELTA*(u2-u1);
else
u = u-MYDELTA*(u2-u1);
inDoDomain2WithDerivsEM(&em_vertex,u,v, tempdata, tempdu, dv);
if(em_vertex.k ==4)
inComputeFirstPartials(temp_vertex, du, dv);
}
else if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
{
REAL tempdv[4];
REAL tempdata[4];
REAL v1 = em_vertex.v1;
REAL v2 = em_vertex.v2;
if(v-MYDELTA*(v2-v1) < v1)
v = v+ MYDELTA*(v2-v1);
else
v = v-MYDELTA*(v2-v1);
inDoDomain2WithDerivsEM(&em_vertex,u,v, tempdata, du, tempdv);
if(em_vertex.k ==4)
inComputeFirstPartials(temp_vertex, du, dv);
}
#endif
/*compute normal*/
switch(em_vertex.k){
case 3:
inComputeNormal2(du, dv, temp_normal);
break;
case 4:
// inComputeFirstPartials(temp_vertex, du, dv);
inComputeNormal2(du, dv, temp_normal);
/*transform the homegeneous coordinate of retPoint into inhomogenous one*/
temp_vertex[0] /= temp_vertex[3];
temp_vertex[1] /= temp_vertex[3];
temp_vertex[2] /= temp_vertex[3];
break;
}
normalCallBack(temp_normal, userData);
temp_vertex[3] = u;
temp_vertex[4] = v;
vertexCallBack(temp_vertex, userData);
}/*end if auto_normal*/
else //no normal map, and no normal callback function
{
if(vertex_flag)
{
inDoDomain2EM(&em_vertex, u,v,temp_vertex);
if(em_vertex.k == 4)
{
temp_vertex[0] /= temp_vertex[3];
temp_vertex[1] /= temp_vertex[3];
temp_vertex[2] /= temp_vertex[3];
}
temp_vertex[3] = u;
temp_vertex[4] = v;
vertexCallBack(temp_vertex, userData);
}
}
}
void OpenGLSurfaceEvaluator::inBPMEvalEM(bezierPatchMesh* bpm)
{
int i,j,k;
float u,v;
int ustride;
int vstride;
#ifdef USE_LOD
if(bpm->bpatch != NULL)
{
bezierPatch* p=bpm->bpatch;
ustride = p->dimension * p->vorder;
vstride = p->dimension;
glMap2f( (p->dimension == 3)? GL_MAP2_VERTEX_3 : GL_MAP2_VERTEX_4,
p->umin,
p->umax,
ustride,
p->uorder,
p->vmin,
p->vmax,
vstride,
p->vorder,
p->ctlpoints);
/*
inMap2fEM(0, p->dimension,
p->umin,
p->umax,
ustride,
p->uorder,
p->vmin,
p->vmax,
vstride,
p->vorder,
p->ctlpoints);
*/
}
#else
if(bpm->bpatch != NULL){
bezierPatch* p = bpm->bpatch;
ustride = p->dimension * p->vorder;
vstride = p->dimension;
inMap2fEM(0, p->dimension,
p->umin,
p->umax,
ustride,
p->uorder,
p->vmin,
p->vmax,
vstride,
p->vorder,
p->ctlpoints);
}
if(bpm->bpatch_normal != NULL){
bezierPatch* p = bpm->bpatch_normal;
ustride = p->dimension * p->vorder;
vstride = p->dimension;
inMap2fEM(1, p->dimension,
p->umin,
p->umax,
ustride,
p->uorder,
p->vmin,
p->vmax,
vstride,
p->vorder,
p->ctlpoints);
}
if(bpm->bpatch_color != NULL){
bezierPatch* p = bpm->bpatch_color;
ustride = p->dimension * p->vorder;
vstride = p->dimension;
inMap2fEM(2, p->dimension,
p->umin,
p->umax,
ustride,
p->uorder,
p->vmin,
p->vmax,
vstride,
p->vorder,
p->ctlpoints);
}
if(bpm->bpatch_texcoord != NULL){
bezierPatch* p = bpm->bpatch_texcoord;
ustride = p->dimension * p->vorder;
vstride = p->dimension;
inMap2fEM(3, p->dimension,
p->umin,
p->umax,
ustride,
p->uorder,
p->vmin,
p->vmax,
vstride,
p->vorder,
p->ctlpoints);
}
#endif
k=0;
for(i=0; i<bpm->index_length_array; i++)
{
#ifdef USE_LOD
if(bpm->type_array[i] == GL_POLYGON) //a mesh
{
GLfloat *temp = bpm->UVarray+k;
GLfloat u0 = temp[0];
GLfloat v0 = temp[1];
GLfloat u1 = temp[2];
GLfloat v1 = temp[3];
GLint nu = (GLint) ( temp[4]);
GLint nv = (GLint) ( temp[5]);
GLint umin = (GLint) ( temp[6]);
GLint vmin = (GLint) ( temp[7]);
GLint umax = (GLint) ( temp[8]);
GLint vmax = (GLint) ( temp[9]);
glMapGrid2f(LOD_eval_level*nu, u0, u1, LOD_eval_level*nv, v0, v1);
glEvalMesh2(GL_FILL, LOD_eval_level*umin, LOD_eval_level*umax, LOD_eval_level*vmin, LOD_eval_level*vmax);
}
else
{
LOD_eval(bpm->length_array[i], bpm->UVarray+k, bpm->type_array[i],
0
);
}
k+= 2*bpm->length_array[i];
#else //undef USE_LOD
#ifdef CRACK_TEST
if( bpm->bpatch->umin == 2 && bpm->bpatch->umax == 3
&& bpm->bpatch->vmin ==2 && bpm->bpatch->vmax == 3)
{
REAL vertex[4];
REAL normal[4];
#ifdef DEBUG
printf("***number ****1\n");
#endif
beginCallBack(GL_QUAD_STRIP, NULL);
inDoEvalCoord2EM(3.0, 3.0);
inDoEvalCoord2EM(2.0, 3.0);
inDoEvalCoord2EM(3.0, 2.7);
inDoEvalCoord2EM(2.0, 2.7);
inDoEvalCoord2EM(3.0, 2.0);
inDoEvalCoord2EM(2.0, 2.0);
endCallBack(NULL);
beginCallBack(GL_TRIANGLE_STRIP, NULL);
inDoEvalCoord2EM(2.0, 3.0);
inDoEvalCoord2EM(2.0, 2.0);
inDoEvalCoord2EM(2.0, 2.7);
endCallBack(NULL);
}
if( bpm->bpatch->umin == 1 && bpm->bpatch->umax == 2
&& bpm->bpatch->vmin ==2 && bpm->bpatch->vmax == 3)
{
#ifdef DEBUG
printf("***number 3\n");
#endif
beginCallBack(GL_QUAD_STRIP, NULL);
inDoEvalCoord2EM(2.0, 3.0);
inDoEvalCoord2EM(1.0, 3.0);
inDoEvalCoord2EM(2.0, 2.3);
inDoEvalCoord2EM(1.0, 2.3);
inDoEvalCoord2EM(2.0, 2.0);
inDoEvalCoord2EM(1.0, 2.0);
endCallBack(NULL);
beginCallBack(GL_TRIANGLE_STRIP, NULL);
inDoEvalCoord2EM(2.0, 2.3);
inDoEvalCoord2EM(2.0, 2.0);
inDoEvalCoord2EM(2.0, 3.0);
endCallBack(NULL);
}
return;
#endif //CRACK_TEST
beginCallBack(bpm->type_array[i], userData);
for(j=0; j<bpm->length_array[i]; j++)
{
u = bpm->UVarray[k];
v = bpm->UVarray[k+1];
#ifdef USE_LOD
LOD_EVAL_COORD(u,v);
// glEvalCoord2f(u,v);
#else
#ifdef GENERIC_TEST
float temp_normal[3];
float temp_vertex[3];
if(temp_signal == 0)
{
gTessVertexSphere(u,v, temp_normal, temp_vertex);
//printf("normal=(%f,%f,%f)\n", temp_normal[0], temp_normal[1], temp_normal[2])//printf("veretx=(%f,%f,%f)\n", temp_vertex[0], temp_vertex[1], temp_vertex[2]);
normalCallBack(temp_normal, userData);
vertexCallBack(temp_vertex, userData);
}
else if(temp_signal == 1)
{
gTessVertexCyl(u,v, temp_normal, temp_vertex);
//printf("normal=(%f,%f,%f)\n", temp_normal[0], temp_normal[1], temp_normal[2])//printf("veretx=(%f,%f,%f)\n", temp_vertex[0], temp_vertex[1], temp_vertex[2]);
normalCallBack(temp_normal, userData);
vertexCallBack(temp_vertex, userData);
}
else
#endif //GENERIC_TEST
inDoEvalCoord2EM(u,v);
#endif //USE_LOD
k += 2;
}
endCallBack(userData);
#endif //USE_LOD
}
}
void OpenGLSurfaceEvaluator::inBPMListEvalEM(bezierPatchMesh* list)
{
bezierPatchMesh* temp;
for(temp = list; temp != NULL; temp = temp->next)
{
inBPMEvalEM(temp);
}
}