mirror of
https://github.com/reactos/reactos.git
synced 2024-11-10 00:34:39 +00:00
c424146e2c
svn path=/branches/cmake-bringup/; revision=48236
2066 lines
52 KiB
C++
2066 lines
52 KiB
C++
/*
|
|
** License Applicability. Except to the extent portions of this file are
|
|
** made subject to an alternative license as permitted in the SGI Free
|
|
** Software License B, Version 1.1 (the "License"), the contents of this
|
|
** file are subject only to the provisions of the License. You may not use
|
|
** this file except in compliance with the License. You may obtain a copy
|
|
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
|
|
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
|
|
**
|
|
** http://oss.sgi.com/projects/FreeB
|
|
**
|
|
** Note that, as provided in the License, the Software is distributed on an
|
|
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
|
|
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
|
|
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
|
|
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
|
|
**
|
|
** Original Code. The Original Code is: OpenGL Sample Implementation,
|
|
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
|
|
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
|
|
** Copyright in any portions created by third parties is as indicated
|
|
** elsewhere herein. All Rights Reserved.
|
|
**
|
|
** Additional Notice Provisions: The application programming interfaces
|
|
** established by SGI in conjunction with the Original Code are The
|
|
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
|
|
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
|
|
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
|
|
** Window System(R) (Version 1.3), released October 19, 1998. This software
|
|
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
|
|
** published by SGI, but has not been independently verified as being
|
|
** compliant with the OpenGL(R) version 1.2.1 Specification.
|
|
**
|
|
** $Date$ $Revision: 1.1 $
|
|
*/
|
|
/*
|
|
** $Header: /cygdrive/c/RCVS/CVS/ReactOS/reactos/lib/glu32/libnurbs/interface/insurfeval.cc,v 1.1 2004/02/02 16:39:08 navaraf Exp $
|
|
*/
|
|
|
|
#include "gluos.h"
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <GL/gl.h>
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
|
|
#include "glsurfeval.h"
|
|
|
|
//extern int surfcount;
|
|
|
|
//#define CRACK_TEST
|
|
|
|
#define AVOID_ZERO_NORMAL
|
|
|
|
#ifdef AVOID_ZERO_NORMAL
|
|
#define myabs(x) ((x>0)? x: (-x))
|
|
#define MYZERO 0.000001
|
|
#define MYDELTA 0.001
|
|
#endif
|
|
|
|
//#define USE_LOD
|
|
#ifdef USE_LOD
|
|
//#define LOD_EVAL_COORD(u,v) inDoEvalCoord2EM(u,v)
|
|
#define LOD_EVAL_COORD(u,v) glEvalCoord2f(u,v)
|
|
|
|
static void LOD_interpolate(REAL A[2], REAL B[2], REAL C[2], int j, int k, int pow2_level,
|
|
REAL& u, REAL& v)
|
|
{
|
|
REAL a,a1,b,b1;
|
|
|
|
a = ((REAL) j) / ((REAL) pow2_level);
|
|
a1 = 1-a;
|
|
|
|
if(j != 0)
|
|
{
|
|
b = ((REAL) k) / ((REAL)j);
|
|
b1 = 1-b;
|
|
}
|
|
REAL x,y,z;
|
|
x = a1;
|
|
if(j==0)
|
|
{
|
|
y=0; z=0;
|
|
}
|
|
else{
|
|
y = b1*a;
|
|
z = b *a;
|
|
}
|
|
|
|
u = x*A[0] + y*B[0] + z*C[0];
|
|
v = x*A[1] + y*B[1] + z*C[1];
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::LOD_triangle(REAL A[2], REAL B[2], REAL C[2],
|
|
int level)
|
|
{
|
|
int k,j;
|
|
int pow2_level;
|
|
/*compute 2^level*/
|
|
pow2_level = 1;
|
|
|
|
for(j=0; j<level; j++)
|
|
pow2_level *= 2;
|
|
for(j=0; j<=pow2_level-1; j++)
|
|
{
|
|
REAL u,v;
|
|
|
|
/* beginCallBack(GL_TRIANGLE_STRIP);*/
|
|
glBegin(GL_TRIANGLE_STRIP);
|
|
LOD_interpolate(A,B,C, j+1, j+1, pow2_level, u,v);
|
|
#ifdef USE_LOD
|
|
LOD_EVAL_COORD(u,v);
|
|
// glEvalCoord2f(u,v);
|
|
#else
|
|
inDoEvalCoord2EM(u,v);
|
|
#endif
|
|
|
|
for(k=0; k<=j; k++)
|
|
{
|
|
LOD_interpolate(A,B,C,j,j-k,pow2_level, u,v);
|
|
#ifdef USE_LOD
|
|
LOD_EVAL_COORD(u,v);
|
|
// glEvalCoord2f(u,v);
|
|
#else
|
|
inDoEvalCoord2EM(u,v);
|
|
#endif
|
|
|
|
LOD_interpolate(A,B,C,j+1,j-k,pow2_level, u,v);
|
|
|
|
#ifdef USE_LOD
|
|
LOD_EVAL_COORD(u,v);
|
|
// glEvalCoord2f(u,v);
|
|
#else
|
|
inDoEvalCoord2EM(u,v);
|
|
#endif
|
|
}
|
|
// endCallBack();
|
|
glEnd();
|
|
}
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::LOD_eval(int num_vert, REAL* verts, int type,
|
|
int level
|
|
)
|
|
{
|
|
int i,k;
|
|
switch(type){
|
|
case GL_TRIANGLE_STRIP:
|
|
case GL_QUAD_STRIP:
|
|
for(i=2, k=4; i<=num_vert-2; i+=2, k+=4)
|
|
{
|
|
LOD_triangle(verts+k-4, verts+k-2, verts+k,
|
|
level
|
|
);
|
|
LOD_triangle(verts+k-2, verts+k+2, verts+k,
|
|
level
|
|
);
|
|
}
|
|
if(num_vert % 2 ==1)
|
|
{
|
|
LOD_triangle(verts+2*(num_vert-3), verts+2*(num_vert-2), verts+2*(num_vert-1),
|
|
level
|
|
);
|
|
}
|
|
break;
|
|
case GL_TRIANGLE_FAN:
|
|
for(i=1, k=2; i<=num_vert-2; i++, k+=2)
|
|
{
|
|
LOD_triangle(verts,verts+k, verts+k+2,
|
|
level
|
|
);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "typy not supported in LOD_\n");
|
|
}
|
|
}
|
|
|
|
|
|
#endif //USE_LOD
|
|
|
|
//#define GENERIC_TEST
|
|
#ifdef GENERIC_TEST
|
|
extern float xmin, xmax, ymin, ymax, zmin, zmax; /*bounding box*/
|
|
extern int temp_signal;
|
|
|
|
static void gTessVertexSphere(float u, float v, float temp_normal[3], float temp_vertex[3])
|
|
{
|
|
float r=2.0;
|
|
float Ox = 0.5*(xmin+xmax);
|
|
float Oy = 0.5*(ymin+ymax);
|
|
float Oz = 0.5*(zmin+zmax);
|
|
float nx = cos(v) * sin(u);
|
|
float ny = sin(v) * sin(u);
|
|
float nz = cos(u);
|
|
float x= Ox+r * nx;
|
|
float y= Oy+r * ny;
|
|
float z= Oz+r * nz;
|
|
|
|
temp_normal[0] = nx;
|
|
temp_normal[1] = ny;
|
|
temp_normal[2] = nz;
|
|
temp_vertex[0] = x;
|
|
temp_vertex[1] = y;
|
|
temp_vertex[2] = z;
|
|
|
|
// glNormal3f(nx,ny,nz);
|
|
// glVertex3f(x,y,z);
|
|
}
|
|
|
|
static void gTessVertexCyl(float u, float v, float temp_normal[3], float temp_vertex[3])
|
|
{
|
|
float r=2.0;
|
|
float Ox = 0.5*(xmin+xmax);
|
|
float Oy = 0.5*(ymin+ymax);
|
|
float Oz = 0.5*(zmin+zmax);
|
|
float nx = cos(v);
|
|
float ny = sin(v);
|
|
float nz = 0;
|
|
float x= Ox+r * nx;
|
|
float y= Oy+r * ny;
|
|
float z= Oz - 2*u;
|
|
|
|
temp_normal[0] = nx;
|
|
temp_normal[1] = ny;
|
|
temp_normal[2] = nz;
|
|
temp_vertex[0] = x;
|
|
temp_vertex[1] = y;
|
|
temp_vertex[2] = z;
|
|
|
|
/*
|
|
glNormal3f(nx,ny,nz);
|
|
glVertex3f(x,y,z);
|
|
*/
|
|
}
|
|
|
|
#endif //GENERIC_TEST
|
|
|
|
void OpenGLSurfaceEvaluator::inBPMListEval(bezierPatchMesh* list)
|
|
{
|
|
bezierPatchMesh* temp;
|
|
for(temp = list; temp != NULL; temp = temp->next)
|
|
{
|
|
inBPMEval(temp);
|
|
}
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inBPMEval(bezierPatchMesh* bpm)
|
|
{
|
|
int i,j,k,l;
|
|
float u,v;
|
|
|
|
int ustride = bpm->bpatch->dimension * bpm->bpatch->vorder;
|
|
int vstride = bpm->bpatch->dimension;
|
|
inMap2f(
|
|
(bpm->bpatch->dimension == 3)? GL_MAP2_VERTEX_3 : GL_MAP2_VERTEX_4,
|
|
bpm->bpatch->umin,
|
|
bpm->bpatch->umax,
|
|
ustride,
|
|
bpm->bpatch->uorder,
|
|
bpm->bpatch->vmin,
|
|
bpm->bpatch->vmax,
|
|
vstride,
|
|
bpm->bpatch->vorder,
|
|
bpm->bpatch->ctlpoints);
|
|
|
|
bpm->vertex_array = (float*) malloc(sizeof(float)* (bpm->index_UVarray/2) * 3+1); /*in case the origional dimenion is 4, then we need 4 space to pass to evaluator.*/
|
|
assert(bpm->vertex_array);
|
|
bpm->normal_array = (float*) malloc(sizeof(float)* (bpm->index_UVarray/2) * 3);
|
|
assert(bpm->normal_array);
|
|
#ifdef CRACK_TEST
|
|
if( global_ev_u1 ==2 && global_ev_u2 == 3
|
|
&& global_ev_v1 ==2 && global_ev_v2 == 3)
|
|
{
|
|
REAL vertex[4];
|
|
REAL normal[4];
|
|
#ifdef DEBUG
|
|
printf("***number 1\n");
|
|
#endif
|
|
|
|
beginCallBack(GL_QUAD_STRIP, NULL);
|
|
inEvalCoord2f(3.0, 3.0);
|
|
inEvalCoord2f(2.0, 3.0);
|
|
inEvalCoord2f(3.0, 2.7);
|
|
inEvalCoord2f(2.0, 2.7);
|
|
inEvalCoord2f(3.0, 2.0);
|
|
inEvalCoord2f(2.0, 2.0);
|
|
endCallBack(NULL);
|
|
|
|
|
|
beginCallBack(GL_TRIANGLE_STRIP, NULL);
|
|
inEvalCoord2f(2.0, 3.0);
|
|
inEvalCoord2f(2.0, 2.0);
|
|
inEvalCoord2f(2.0, 2.7);
|
|
endCallBack(NULL);
|
|
|
|
}
|
|
|
|
/*
|
|
if( global_ev_u1 ==2 && global_ev_u2 == 3
|
|
&& global_ev_v1 ==1 && global_ev_v2 == 2)
|
|
{
|
|
#ifdef DEBUG
|
|
printf("***number 2\n");
|
|
#endif
|
|
beginCallBack(GL_QUAD_STRIP);
|
|
inEvalCoord2f(2.0, 2.0);
|
|
inEvalCoord2f(2.0, 1.0);
|
|
inEvalCoord2f(3.0, 2.0);
|
|
inEvalCoord2f(3.0, 1.0);
|
|
endCallBack();
|
|
}
|
|
*/
|
|
if( global_ev_u1 ==1 && global_ev_u2 == 2
|
|
&& global_ev_v1 ==2 && global_ev_v2 == 3)
|
|
{
|
|
#ifdef DEBUG
|
|
printf("***number 3\n");
|
|
#endif
|
|
beginCallBack(GL_QUAD_STRIP, NULL);
|
|
inEvalCoord2f(2.0, 3.0);
|
|
inEvalCoord2f(1.0, 3.0);
|
|
inEvalCoord2f(2.0, 2.3);
|
|
inEvalCoord2f(1.0, 2.3);
|
|
inEvalCoord2f(2.0, 2.0);
|
|
inEvalCoord2f(1.0, 2.0);
|
|
endCallBack(NULL);
|
|
|
|
beginCallBack(GL_TRIANGLE_STRIP, NULL);
|
|
inEvalCoord2f(2.0, 2.3);
|
|
inEvalCoord2f(2.0, 2.0);
|
|
inEvalCoord2f(2.0, 3.0);
|
|
endCallBack(NULL);
|
|
|
|
}
|
|
return;
|
|
#endif
|
|
|
|
k=0;
|
|
l=0;
|
|
|
|
for(i=0; i<bpm->index_length_array; i++)
|
|
{
|
|
beginCallBack(bpm->type_array[i], userData);
|
|
for(j=0; j<bpm->length_array[i]; j++)
|
|
{
|
|
u = bpm->UVarray[k];
|
|
v = bpm->UVarray[k+1];
|
|
inDoEvalCoord2NOGE(u,v,
|
|
bpm->vertex_array+l,
|
|
bpm->normal_array+l);
|
|
|
|
normalCallBack(bpm->normal_array+l, userData);
|
|
vertexCallBack(bpm->vertex_array+l, userData);
|
|
|
|
k += 2;
|
|
l += 3;
|
|
}
|
|
endCallBack(userData);
|
|
}
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inEvalPoint2(int i, int j)
|
|
{
|
|
REAL du, dv;
|
|
REAL point[4];
|
|
REAL normal[3];
|
|
REAL u,v;
|
|
du = (global_grid_u1 - global_grid_u0) / (REAL)global_grid_nu;
|
|
dv = (global_grid_v1 - global_grid_v0) / (REAL)global_grid_nv;
|
|
u = (i==global_grid_nu)? global_grid_u1:(global_grid_u0 + i*du);
|
|
v = (j == global_grid_nv)? global_grid_v1: (global_grid_v0 +j*dv);
|
|
inDoEvalCoord2(u,v,point,normal);
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inEvalCoord2f(REAL u, REAL v)
|
|
{
|
|
|
|
REAL point[4];
|
|
REAL normal[3];
|
|
inDoEvalCoord2(u,v,point, normal);
|
|
}
|
|
|
|
|
|
|
|
/*define a grid. store the values into the global variabls:
|
|
* global_grid_*
|
|
*These values will be used later by evaluating functions
|
|
*/
|
|
void OpenGLSurfaceEvaluator::inMapGrid2f(int nu, REAL u0, REAL u1,
|
|
int nv, REAL v0, REAL v1)
|
|
{
|
|
global_grid_u0 = u0;
|
|
global_grid_u1 = u1;
|
|
global_grid_nu = nu;
|
|
global_grid_v0 = v0;
|
|
global_grid_v1 = v1;
|
|
global_grid_nv = nv;
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inEvalMesh2(int lowU, int lowV, int highU, int highV)
|
|
{
|
|
REAL du, dv;
|
|
int i,j;
|
|
REAL point[4];
|
|
REAL normal[3];
|
|
if(global_grid_nu == 0 || global_grid_nv == 0)
|
|
return; /*no points need to be output*/
|
|
du = (global_grid_u1 - global_grid_u0) / (REAL)global_grid_nu;
|
|
dv = (global_grid_v1 - global_grid_v0) / (REAL)global_grid_nv;
|
|
|
|
if(global_grid_nu >= global_grid_nv){
|
|
for(i=lowU; i<highU; i++){
|
|
REAL u1 = (i==global_grid_nu)? global_grid_u1:(global_grid_u0 + i*du);
|
|
REAL u2 = ((i+1) == global_grid_nu)? global_grid_u1: (global_grid_u0+(i+1)*du);
|
|
|
|
bgnqstrip();
|
|
for(j=highV; j>=lowV; j--){
|
|
REAL v1 = (j == global_grid_nv)? global_grid_v1: (global_grid_v0 +j*dv);
|
|
|
|
inDoEvalCoord2(u1, v1, point, normal);
|
|
inDoEvalCoord2(u2, v1, point, normal);
|
|
}
|
|
endqstrip();
|
|
}
|
|
}
|
|
|
|
else{
|
|
for(i=lowV; i<highV; i++){
|
|
REAL v1 = (i==global_grid_nv)? global_grid_v1:(global_grid_v0 + i*dv);
|
|
REAL v2 = ((i+1) == global_grid_nv)? global_grid_v1: (global_grid_v0+(i+1)*dv);
|
|
|
|
bgnqstrip();
|
|
for(j=highU; j>=lowU; j--){
|
|
REAL u1 = (j == global_grid_nu)? global_grid_u1: (global_grid_u0 +j*du);
|
|
inDoEvalCoord2(u1, v2, point, normal);
|
|
inDoEvalCoord2(u1, v1, point, normal);
|
|
}
|
|
endqstrip();
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inMap2f(int k,
|
|
REAL ulower,
|
|
REAL uupper,
|
|
int ustride,
|
|
int uorder,
|
|
REAL vlower,
|
|
REAL vupper,
|
|
int vstride,
|
|
int vorder,
|
|
REAL *ctlPoints)
|
|
{
|
|
int i,j,x;
|
|
REAL *data = global_ev_ctlPoints;
|
|
|
|
|
|
|
|
if(k == GL_MAP2_VERTEX_3) k=3;
|
|
else if (k==GL_MAP2_VERTEX_4) k =4;
|
|
else {
|
|
printf("error in inMap2f, maptype=%i is wrong, k,map is not updated\n", k);
|
|
return;
|
|
}
|
|
|
|
global_ev_k = k;
|
|
global_ev_u1 = ulower;
|
|
global_ev_u2 = uupper;
|
|
global_ev_ustride = ustride;
|
|
global_ev_uorder = uorder;
|
|
global_ev_v1 = vlower;
|
|
global_ev_v2 = vupper;
|
|
global_ev_vstride = vstride;
|
|
global_ev_vorder = vorder;
|
|
|
|
/*copy the contrl points from ctlPoints to global_ev_ctlPoints*/
|
|
for (i=0; i<uorder; i++) {
|
|
for (j=0; j<vorder; j++) {
|
|
for (x=0; x<k; x++) {
|
|
data[x] = ctlPoints[x];
|
|
}
|
|
ctlPoints += vstride;
|
|
data += k;
|
|
}
|
|
ctlPoints += ustride - vstride * vorder;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
*given a point p with homegeneous coordiante (x,y,z,w),
|
|
*let pu(x,y,z,w) be its partial derivative vector with
|
|
*respect to u
|
|
*and pv(x,y,z,w) be its partial derivative vector with repect to v.
|
|
*This function returns the partial derivative vectors of the
|
|
*inhomegensous coordinates, i.e.,
|
|
* (x/w, y/w, z/w) with respect to u and v.
|
|
*/
|
|
void OpenGLSurfaceEvaluator::inComputeFirstPartials(REAL *p, REAL *pu, REAL *pv)
|
|
{
|
|
pu[0] = pu[0]*p[3] - pu[3]*p[0];
|
|
pu[1] = pu[1]*p[3] - pu[3]*p[1];
|
|
pu[2] = pu[2]*p[3] - pu[3]*p[2];
|
|
|
|
pv[0] = pv[0]*p[3] - pv[3]*p[0];
|
|
pv[1] = pv[1]*p[3] - pv[3]*p[1];
|
|
pv[2] = pv[2]*p[3] - pv[3]*p[2];
|
|
}
|
|
|
|
/*compute the cross product of pu and pv and normalize.
|
|
*the normal is returned in retNormal
|
|
* pu: dimension 3
|
|
* pv: dimension 3
|
|
* n: return normal, of dimension 3
|
|
*/
|
|
void OpenGLSurfaceEvaluator::inComputeNormal2(REAL *pu, REAL *pv, REAL *n)
|
|
{
|
|
REAL mag;
|
|
|
|
n[0] = pu[1]*pv[2] - pu[2]*pv[1];
|
|
n[1] = pu[2]*pv[0] - pu[0]*pv[2];
|
|
n[2] = pu[0]*pv[1] - pu[1]*pv[0];
|
|
|
|
mag = sqrt(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]);
|
|
|
|
if (mag > 0.0) {
|
|
n[0] /= mag;
|
|
n[1] /= mag;
|
|
n[2] /= mag;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*Compute point and normal
|
|
*see the head of inDoDomain2WithDerivs
|
|
*for the meaning of the arguments
|
|
*/
|
|
void OpenGLSurfaceEvaluator::inDoEvalCoord2(REAL u, REAL v,
|
|
REAL *retPoint, REAL *retNormal)
|
|
{
|
|
|
|
REAL du[4];
|
|
REAL dv[4];
|
|
|
|
|
|
assert(global_ev_k>=3 && global_ev_k <= 4);
|
|
/*compute homegeneous point and partial derivatives*/
|
|
inDoDomain2WithDerivs(global_ev_k, u, v, global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, retPoint, du, dv);
|
|
|
|
#ifdef AVOID_ZERO_NORMAL
|
|
|
|
if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
|
|
{
|
|
|
|
REAL tempdu[4];
|
|
REAL tempdata[4];
|
|
REAL u1 = global_ev_u1;
|
|
REAL u2 = global_ev_u2;
|
|
if(u-MYDELTA*(u2-u1) < u1)
|
|
u = u+ MYDELTA*(u2-u1);
|
|
else
|
|
u = u-MYDELTA*(u2-u1);
|
|
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, tempdu, dv);
|
|
}
|
|
if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
|
|
{
|
|
REAL tempdv[4];
|
|
REAL tempdata[4];
|
|
REAL v1 = global_ev_v1;
|
|
REAL v2 = global_ev_v2;
|
|
if(v-MYDELTA*(v2-v1) < v1)
|
|
v = v+ MYDELTA*(v2-v1);
|
|
else
|
|
v = v-MYDELTA*(v2-v1);
|
|
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, du, tempdv);
|
|
}
|
|
#endif
|
|
|
|
|
|
/*compute normal*/
|
|
switch(global_ev_k){
|
|
case 3:
|
|
inComputeNormal2(du, dv, retNormal);
|
|
|
|
break;
|
|
case 4:
|
|
inComputeFirstPartials(retPoint, du, dv);
|
|
inComputeNormal2(du, dv, retNormal);
|
|
/*transform the homegeneous coordinate of retPoint into inhomogenous one*/
|
|
retPoint[0] /= retPoint[3];
|
|
retPoint[1] /= retPoint[3];
|
|
retPoint[2] /= retPoint[3];
|
|
break;
|
|
}
|
|
/*output this vertex*/
|
|
/* inMeshStreamInsert(global_ms, retPoint, retNormal);*/
|
|
|
|
|
|
|
|
glNormal3fv(retNormal);
|
|
glVertex3fv(retPoint);
|
|
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
printf("vertex(%f,%f,%f)\n", retPoint[0],retPoint[1],retPoint[2]);
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
/*Compute point and normal
|
|
*see the head of inDoDomain2WithDerivs
|
|
*for the meaning of the arguments
|
|
*/
|
|
void OpenGLSurfaceEvaluator::inDoEvalCoord2NOGE_BU(REAL u, REAL v,
|
|
REAL *retPoint, REAL *retNormal)
|
|
{
|
|
|
|
REAL du[4];
|
|
REAL dv[4];
|
|
|
|
|
|
assert(global_ev_k>=3 && global_ev_k <= 4);
|
|
/*compute homegeneous point and partial derivatives*/
|
|
// inPreEvaluateBU(global_ev_k, global_ev_uorder, global_ev_vorder, (u-global_ev_u1)/(global_ev_u2-global_ev_u1), global_ev_ctlPoints);
|
|
inDoDomain2WithDerivsBU(global_ev_k, u, v, global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, retPoint, du, dv);
|
|
|
|
|
|
#ifdef AVOID_ZERO_NORMAL
|
|
|
|
if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
|
|
{
|
|
|
|
REAL tempdu[4];
|
|
REAL tempdata[4];
|
|
REAL u1 = global_ev_u1;
|
|
REAL u2 = global_ev_u2;
|
|
if(u-MYDELTA*(u2-u1) < u1)
|
|
u = u+ MYDELTA*(u2-u1);
|
|
else
|
|
u = u-MYDELTA*(u2-u1);
|
|
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, tempdu, dv);
|
|
}
|
|
if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
|
|
{
|
|
REAL tempdv[4];
|
|
REAL tempdata[4];
|
|
REAL v1 = global_ev_v1;
|
|
REAL v2 = global_ev_v2;
|
|
if(v-MYDELTA*(v2-v1) < v1)
|
|
v = v+ MYDELTA*(v2-v1);
|
|
else
|
|
v = v-MYDELTA*(v2-v1);
|
|
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, du, tempdv);
|
|
}
|
|
#endif
|
|
|
|
/*compute normal*/
|
|
switch(global_ev_k){
|
|
case 3:
|
|
inComputeNormal2(du, dv, retNormal);
|
|
break;
|
|
case 4:
|
|
inComputeFirstPartials(retPoint, du, dv);
|
|
inComputeNormal2(du, dv, retNormal);
|
|
/*transform the homegeneous coordinate of retPoint into inhomogenous one*/
|
|
retPoint[0] /= retPoint[3];
|
|
retPoint[1] /= retPoint[3];
|
|
retPoint[2] /= retPoint[3];
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*Compute point and normal
|
|
*see the head of inDoDomain2WithDerivs
|
|
*for the meaning of the arguments
|
|
*/
|
|
void OpenGLSurfaceEvaluator::inDoEvalCoord2NOGE_BV(REAL u, REAL v,
|
|
REAL *retPoint, REAL *retNormal)
|
|
{
|
|
|
|
REAL du[4];
|
|
REAL dv[4];
|
|
|
|
|
|
assert(global_ev_k>=3 && global_ev_k <= 4);
|
|
/*compute homegeneous point and partial derivatives*/
|
|
// inPreEvaluateBV(global_ev_k, global_ev_uorder, global_ev_vorder, (v-global_ev_v1)/(global_ev_v2-global_ev_v1), global_ev_ctlPoints);
|
|
|
|
inDoDomain2WithDerivsBV(global_ev_k, u, v, global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, retPoint, du, dv);
|
|
|
|
|
|
#ifdef AVOID_ZERO_NORMAL
|
|
|
|
if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
|
|
{
|
|
|
|
REAL tempdu[4];
|
|
REAL tempdata[4];
|
|
REAL u1 = global_ev_u1;
|
|
REAL u2 = global_ev_u2;
|
|
if(u-MYDELTA*(u2-u1) < u1)
|
|
u = u+ MYDELTA*(u2-u1);
|
|
else
|
|
u = u-MYDELTA*(u2-u1);
|
|
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, tempdu, dv);
|
|
}
|
|
if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
|
|
{
|
|
REAL tempdv[4];
|
|
REAL tempdata[4];
|
|
REAL v1 = global_ev_v1;
|
|
REAL v2 = global_ev_v2;
|
|
if(v-MYDELTA*(v2-v1) < v1)
|
|
v = v+ MYDELTA*(v2-v1);
|
|
else
|
|
v = v-MYDELTA*(v2-v1);
|
|
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, du, tempdv);
|
|
}
|
|
#endif
|
|
|
|
/*compute normal*/
|
|
switch(global_ev_k){
|
|
case 3:
|
|
inComputeNormal2(du, dv, retNormal);
|
|
break;
|
|
case 4:
|
|
inComputeFirstPartials(retPoint, du, dv);
|
|
inComputeNormal2(du, dv, retNormal);
|
|
/*transform the homegeneous coordinate of retPoint into inhomogenous one*/
|
|
retPoint[0] /= retPoint[3];
|
|
retPoint[1] /= retPoint[3];
|
|
retPoint[2] /= retPoint[3];
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*Compute point and normal
|
|
*see the head of inDoDomain2WithDerivs
|
|
*for the meaning of the arguments
|
|
*/
|
|
void OpenGLSurfaceEvaluator::inDoEvalCoord2NOGE(REAL u, REAL v,
|
|
REAL *retPoint, REAL *retNormal)
|
|
{
|
|
|
|
REAL du[4];
|
|
REAL dv[4];
|
|
|
|
|
|
assert(global_ev_k>=3 && global_ev_k <= 4);
|
|
/*compute homegeneous point and partial derivatives*/
|
|
inDoDomain2WithDerivs(global_ev_k, u, v, global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, retPoint, du, dv);
|
|
|
|
|
|
#ifdef AVOID_ZERO_NORMAL
|
|
|
|
if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
|
|
{
|
|
|
|
REAL tempdu[4];
|
|
REAL tempdata[4];
|
|
REAL u1 = global_ev_u1;
|
|
REAL u2 = global_ev_u2;
|
|
if(u-MYDELTA*(u2-u1) < u1)
|
|
u = u+ MYDELTA*(u2-u1);
|
|
else
|
|
u = u-MYDELTA*(u2-u1);
|
|
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, tempdu, dv);
|
|
}
|
|
if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
|
|
{
|
|
REAL tempdv[4];
|
|
REAL tempdata[4];
|
|
REAL v1 = global_ev_v1;
|
|
REAL v2 = global_ev_v2;
|
|
if(v-MYDELTA*(v2-v1) < v1)
|
|
v = v+ MYDELTA*(v2-v1);
|
|
else
|
|
v = v-MYDELTA*(v2-v1);
|
|
inDoDomain2WithDerivs(global_ev_k, u,v,global_ev_u1, global_ev_u2, global_ev_uorder, global_ev_v1, global_ev_v2, global_ev_vorder, global_ev_ctlPoints, tempdata, du, tempdv);
|
|
}
|
|
#endif
|
|
|
|
/*compute normal*/
|
|
switch(global_ev_k){
|
|
case 3:
|
|
inComputeNormal2(du, dv, retNormal);
|
|
break;
|
|
case 4:
|
|
inComputeFirstPartials(retPoint, du, dv);
|
|
inComputeNormal2(du, dv, retNormal);
|
|
/*transform the homegeneous coordinate of retPoint into inhomogenous one*/
|
|
retPoint[0] /= retPoint[3];
|
|
retPoint[1] /= retPoint[3];
|
|
retPoint[2] /= retPoint[3];
|
|
break;
|
|
}
|
|
// glNormal3fv(retNormal);
|
|
// glVertex3fv(retPoint);
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inPreEvaluateBV(int k, int uorder, int vorder, REAL vprime, REAL *baseData)
|
|
{
|
|
int j,row,col;
|
|
REAL p, pdv;
|
|
REAL *data;
|
|
|
|
if(global_vprime != vprime || global_vorder != vorder) {
|
|
inPreEvaluateWithDeriv(vorder, vprime, global_vcoeff, global_vcoeffDeriv);
|
|
global_vprime = vprime;
|
|
global_vorder = vorder;
|
|
}
|
|
|
|
for(j=0; j<k; j++){
|
|
data = baseData+j;
|
|
for(row=0; row<uorder; row++){
|
|
p = global_vcoeff[0] * (*data);
|
|
pdv = global_vcoeffDeriv[0] * (*data);
|
|
data += k;
|
|
for(col = 1; col < vorder; col++){
|
|
p += global_vcoeff[col] * (*data);
|
|
pdv += global_vcoeffDeriv[col] * (*data);
|
|
data += k;
|
|
}
|
|
global_BV[row][j] = p;
|
|
global_PBV[row][j] = pdv;
|
|
}
|
|
}
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inPreEvaluateBU(int k, int uorder, int vorder, REAL uprime, REAL *baseData)
|
|
{
|
|
int j,row,col;
|
|
REAL p, pdu;
|
|
REAL *data;
|
|
|
|
if(global_uprime != uprime || global_uorder != uorder) {
|
|
inPreEvaluateWithDeriv(uorder, uprime, global_ucoeff, global_ucoeffDeriv);
|
|
global_uprime = uprime;
|
|
global_uorder = uorder;
|
|
}
|
|
|
|
for(j=0; j<k; j++){
|
|
data = baseData+j;
|
|
for(col=0; col<vorder; col++){
|
|
data = baseData+j + k*col;
|
|
p = global_ucoeff[0] * (*data);
|
|
pdu = global_ucoeffDeriv[0] * (*data);
|
|
data += k*uorder;
|
|
for(row = 1; row < uorder; row++){
|
|
p += global_ucoeff[row] * (*data);
|
|
pdu += global_ucoeffDeriv[row] * (*data);
|
|
data += k * uorder;
|
|
}
|
|
global_BU[col][j] = p;
|
|
global_PBU[col][j] = pdu;
|
|
}
|
|
}
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inDoDomain2WithDerivsBU(int k, REAL u, REAL v,
|
|
REAL u1, REAL u2, int uorder,
|
|
REAL v1, REAL v2, int vorder,
|
|
REAL *baseData,
|
|
REAL *retPoint, REAL* retdu, REAL *retdv)
|
|
{
|
|
int j, col;
|
|
|
|
REAL vprime;
|
|
|
|
|
|
if((u2 == u1) || (v2 == v1))
|
|
return;
|
|
|
|
vprime = (v - v1) / (v2 - v1);
|
|
|
|
|
|
if(global_vprime != vprime || global_vorder != vorder) {
|
|
inPreEvaluateWithDeriv(vorder, vprime, global_vcoeff, global_vcoeffDeriv);
|
|
global_vprime = vprime;
|
|
global_vorder = vorder;
|
|
}
|
|
|
|
|
|
for(j=0; j<k; j++)
|
|
{
|
|
retPoint[j] = retdu[j] = retdv[j] = 0.0;
|
|
for (col = 0; col < vorder; col++) {
|
|
retPoint[j] += global_BU[col][j] * global_vcoeff[col];
|
|
retdu[j] += global_PBU[col][j] * global_vcoeff[col];
|
|
retdv[j] += global_BU[col][j] * global_vcoeffDeriv[col];
|
|
}
|
|
}
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inDoDomain2WithDerivsBV(int k, REAL u, REAL v,
|
|
REAL u1, REAL u2, int uorder,
|
|
REAL v1, REAL v2, int vorder,
|
|
REAL *baseData,
|
|
REAL *retPoint, REAL* retdu, REAL *retdv)
|
|
{
|
|
int j, row;
|
|
REAL uprime;
|
|
|
|
|
|
if((u2 == u1) || (v2 == v1))
|
|
return;
|
|
uprime = (u - u1) / (u2 - u1);
|
|
|
|
|
|
if(global_uprime != uprime || global_uorder != uorder) {
|
|
inPreEvaluateWithDeriv(uorder, uprime, global_ucoeff, global_ucoeffDeriv);
|
|
global_uprime = uprime;
|
|
global_uorder = uorder;
|
|
}
|
|
|
|
|
|
for(j=0; j<k; j++)
|
|
{
|
|
retPoint[j] = retdu[j] = retdv[j] = 0.0;
|
|
for (row = 0; row < uorder; row++) {
|
|
retPoint[j] += global_BV[row][j] * global_ucoeff[row];
|
|
retdu[j] += global_BV[row][j] * global_ucoeffDeriv[row];
|
|
retdv[j] += global_PBV[row][j] * global_ucoeff[row];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
*given a Bezier surface, and parameter (u,v), compute the point in the object space,
|
|
*and the normal
|
|
*k: the dimension of the object space: usually 2,3,or 4.
|
|
*u,v: the paramter pair.
|
|
*u1,u2,uorder: the Bezier polynomial of u coord is defined on [u1,u2] with order uorder.
|
|
*v1,v2,vorder: the Bezier polynomial of v coord is defined on [v1,v2] with order vorder.
|
|
*baseData: contrl points. arranged as: (u,v,k).
|
|
*retPoint: the computed point (one point) with dimension k.
|
|
*retdu: the computed partial derivative with respect to u.
|
|
*retdv: the computed partial derivative with respect to v.
|
|
*/
|
|
void OpenGLSurfaceEvaluator::inDoDomain2WithDerivs(int k, REAL u, REAL v,
|
|
REAL u1, REAL u2, int uorder,
|
|
REAL v1, REAL v2, int vorder,
|
|
REAL *baseData,
|
|
REAL *retPoint, REAL *retdu, REAL *retdv)
|
|
{
|
|
int j, row, col;
|
|
REAL uprime;
|
|
REAL vprime;
|
|
REAL p;
|
|
REAL pdv;
|
|
REAL *data;
|
|
|
|
if((u2 == u1) || (v2 == v1))
|
|
return;
|
|
uprime = (u - u1) / (u2 - u1);
|
|
vprime = (v - v1) / (v2 - v1);
|
|
|
|
/* Compute coefficients for values and derivs */
|
|
|
|
/* Use already cached values if possible */
|
|
if(global_uprime != uprime || global_uorder != uorder) {
|
|
inPreEvaluateWithDeriv(uorder, uprime, global_ucoeff, global_ucoeffDeriv);
|
|
global_uorder = uorder;
|
|
global_uprime = uprime;
|
|
}
|
|
if (global_vprime != vprime ||
|
|
global_vorder != vorder) {
|
|
inPreEvaluateWithDeriv(vorder, vprime, global_vcoeff, global_vcoeffDeriv);
|
|
global_vorder = vorder;
|
|
global_vprime = vprime;
|
|
}
|
|
|
|
for (j = 0; j < k; j++) {
|
|
data=baseData+j;
|
|
retPoint[j] = retdu[j] = retdv[j] = 0.0;
|
|
for (row = 0; row < uorder; row++) {
|
|
/*
|
|
** Minor optimization.
|
|
** The col == 0 part of the loop is extracted so we don't
|
|
** have to initialize p and pdv to 0.
|
|
*/
|
|
p = global_vcoeff[0] * (*data);
|
|
pdv = global_vcoeffDeriv[0] * (*data);
|
|
data += k;
|
|
for (col = 1; col < vorder; col++) {
|
|
/* Incrementally build up p, pdv value */
|
|
p += global_vcoeff[col] * (*data);
|
|
pdv += global_vcoeffDeriv[col] * (*data);
|
|
data += k;
|
|
}
|
|
/* Use p, pdv value to incrementally add up r, du, dv */
|
|
retPoint[j] += global_ucoeff[row] * p;
|
|
retdu[j] += global_ucoeffDeriv[row] * p;
|
|
retdv[j] += global_ucoeff[row] * pdv;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
*compute the Bezier polynomials C[n,j](v) for all j at v with
|
|
*return values stored in coeff[], where
|
|
* C[n,j](v) = (n,j) * v^j * (1-v)^(n-j),
|
|
* j=0,1,2,...,n.
|
|
*order : n+1
|
|
*vprime: v
|
|
*coeff : coeff[j]=C[n,j](v), this array store the returned values.
|
|
*The algorithm is a recursive scheme:
|
|
* C[0,0]=1;
|
|
* C[n,j](v) = (1-v)*C[n-1,j](v) + v*C[n-1,j-1](v), n>=1
|
|
*This code is copied from opengl/soft/so_eval.c:PreEvaluate
|
|
*/
|
|
void OpenGLSurfaceEvaluator::inPreEvaluate(int order, REAL vprime, REAL *coeff)
|
|
{
|
|
int i, j;
|
|
REAL oldval, temp;
|
|
REAL oneMinusvprime;
|
|
|
|
/*
|
|
* Minor optimization
|
|
* Compute orders 1 and 2 outright, and set coeff[0], coeff[1] to
|
|
* their i==1 loop values to avoid the initialization and the i==1 loop.
|
|
*/
|
|
if (order == 1) {
|
|
coeff[0] = 1.0;
|
|
return;
|
|
}
|
|
|
|
oneMinusvprime = 1-vprime;
|
|
coeff[0] = oneMinusvprime;
|
|
coeff[1] = vprime;
|
|
if (order == 2) return;
|
|
|
|
for (i = 2; i < order; i++) {
|
|
oldval = coeff[0] * vprime;
|
|
coeff[0] = oneMinusvprime * coeff[0];
|
|
for (j = 1; j < i; j++) {
|
|
temp = oldval;
|
|
oldval = coeff[j] * vprime;
|
|
coeff[j] = temp + oneMinusvprime * coeff[j];
|
|
}
|
|
coeff[j] = oldval;
|
|
}
|
|
}
|
|
|
|
/*
|
|
*compute the Bezier polynomials C[n,j](v) and derivatives for all j at v with
|
|
*return values stored in coeff[] and coeffDeriv[].
|
|
*see the head of function inPreEvaluate for the definition of C[n,j](v)
|
|
*and how to compute the values.
|
|
*The algorithm to compute the derivative is:
|
|
* dC[0,0](v) = 0.
|
|
* dC[n,j](v) = n*(dC[n-1,j-1](v) - dC[n-1,j](v)).
|
|
*
|
|
*This code is copied from opengl/soft/so_eval.c:PreEvaluateWidthDeriv
|
|
*/
|
|
void OpenGLSurfaceEvaluator::inPreEvaluateWithDeriv(int order, REAL vprime,
|
|
REAL *coeff, REAL *coeffDeriv)
|
|
{
|
|
int i, j;
|
|
REAL oldval, temp;
|
|
REAL oneMinusvprime;
|
|
|
|
oneMinusvprime = 1-vprime;
|
|
/*
|
|
* Minor optimization
|
|
* Compute orders 1 and 2 outright, and set coeff[0], coeff[1] to
|
|
* their i==1 loop values to avoid the initialization and the i==1 loop.
|
|
*/
|
|
if (order == 1) {
|
|
coeff[0] = 1.0;
|
|
coeffDeriv[0] = 0.0;
|
|
return;
|
|
} else if (order == 2) {
|
|
coeffDeriv[0] = -1.0;
|
|
coeffDeriv[1] = 1.0;
|
|
coeff[0] = oneMinusvprime;
|
|
coeff[1] = vprime;
|
|
return;
|
|
}
|
|
coeff[0] = oneMinusvprime;
|
|
coeff[1] = vprime;
|
|
for (i = 2; i < order - 1; i++) {
|
|
oldval = coeff[0] * vprime;
|
|
coeff[0] = oneMinusvprime * coeff[0];
|
|
for (j = 1; j < i; j++) {
|
|
temp = oldval;
|
|
oldval = coeff[j] * vprime;
|
|
coeff[j] = temp + oneMinusvprime * coeff[j];
|
|
}
|
|
coeff[j] = oldval;
|
|
}
|
|
coeffDeriv[0] = -coeff[0];
|
|
/*
|
|
** Minor optimization:
|
|
** Would make this a "for (j=1; j<order-1; j++)" loop, but it is always
|
|
** executed at least once, so this is more efficient.
|
|
*/
|
|
j=1;
|
|
do {
|
|
coeffDeriv[j] = coeff[j-1] - coeff[j];
|
|
j++;
|
|
} while (j < order - 1);
|
|
coeffDeriv[j] = coeff[j-1];
|
|
|
|
oldval = coeff[0] * vprime;
|
|
coeff[0] = oneMinusvprime * coeff[0];
|
|
for (j = 1; j < i; j++) {
|
|
temp = oldval;
|
|
oldval = coeff[j] * vprime;
|
|
coeff[j] = temp + oneMinusvprime * coeff[j];
|
|
}
|
|
coeff[j] = oldval;
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inEvalULine(int n_points, REAL v, REAL* u_vals,
|
|
int stride, REAL ret_points[][3], REAL ret_normals[][3])
|
|
{
|
|
int i,k;
|
|
REAL temp[4];
|
|
inPreEvaluateBV_intfac(v);
|
|
|
|
for(i=0,k=0; i<n_points; i++, k += stride)
|
|
{
|
|
inDoEvalCoord2NOGE_BV(u_vals[k],v,temp, ret_normals[i]);
|
|
|
|
ret_points[i][0] = temp[0];
|
|
ret_points[i][1] = temp[1];
|
|
ret_points[i][2] = temp[2];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inEvalVLine(int n_points, REAL u, REAL* v_vals,
|
|
int stride, REAL ret_points[][3], REAL ret_normals[][3])
|
|
{
|
|
int i,k;
|
|
REAL temp[4];
|
|
inPreEvaluateBU_intfac(u);
|
|
for(i=0,k=0; i<n_points; i++, k += stride)
|
|
{
|
|
inDoEvalCoord2NOGE_BU(u, v_vals[k], temp, ret_normals[i]);
|
|
ret_points[i][0] = temp[0];
|
|
ret_points[i][1] = temp[1];
|
|
ret_points[i][2] = temp[2];
|
|
}
|
|
}
|
|
|
|
|
|
/*triangulate a strip bounded by two lines which are parallel to U-axis
|
|
*upperVerts: the verteces on the upper line
|
|
*lowerVertx: the verteces on the lower line
|
|
*n_upper >=1
|
|
*n_lower >=1
|
|
*/
|
|
void OpenGLSurfaceEvaluator::inEvalUStrip(int n_upper, REAL v_upper, REAL* upper_val, int n_lower, REAL v_lower, REAL* lower_val)
|
|
{
|
|
int i,j,k,l;
|
|
REAL leftMostV[2];
|
|
typedef REAL REAL3[3];
|
|
|
|
REAL3* upperXYZ = (REAL3*) malloc(sizeof(REAL3)*n_upper);
|
|
assert(upperXYZ);
|
|
REAL3* upperNormal = (REAL3*) malloc(sizeof(REAL3) * n_upper);
|
|
assert(upperNormal);
|
|
REAL3* lowerXYZ = (REAL3*) malloc(sizeof(REAL3)*n_lower);
|
|
assert(lowerXYZ);
|
|
REAL3* lowerNormal = (REAL3*) malloc(sizeof(REAL3) * n_lower);
|
|
assert(lowerNormal);
|
|
|
|
inEvalULine(n_upper, v_upper, upper_val, 1, upperXYZ, upperNormal);
|
|
inEvalULine(n_lower, v_lower, lower_val, 1, lowerXYZ, lowerNormal);
|
|
|
|
|
|
|
|
REAL* leftMostXYZ;
|
|
REAL* leftMostNormal;
|
|
|
|
/*
|
|
*the algorithm works by scanning from left to right.
|
|
*leftMostV: the left most of the remaining verteces (on both upper and lower).
|
|
* it could an element of upperVerts or lowerVerts.
|
|
*i: upperVerts[i] is the first vertex to the right of leftMostV on upper line *j: lowerVerts[j] is the first vertex to the right of leftMostV on lower line */
|
|
|
|
/*initialize i,j,and leftMostV
|
|
*/
|
|
if(upper_val[0] <= lower_val[0])
|
|
{
|
|
i=1;
|
|
j=0;
|
|
|
|
leftMostV[0] = upper_val[0];
|
|
leftMostV[1] = v_upper;
|
|
leftMostXYZ = upperXYZ[0];
|
|
leftMostNormal = upperNormal[0];
|
|
}
|
|
else
|
|
{
|
|
i=0;
|
|
j=1;
|
|
|
|
leftMostV[0] = lower_val[0];
|
|
leftMostV[1] = v_lower;
|
|
|
|
leftMostXYZ = lowerXYZ[0];
|
|
leftMostNormal = lowerNormal[0];
|
|
}
|
|
|
|
/*the main loop.
|
|
*the invariance is that:
|
|
*at the beginning of each loop, the meaning of i,j,and leftMostV are
|
|
*maintained
|
|
*/
|
|
while(1)
|
|
{
|
|
if(i >= n_upper) /*case1: no more in upper*/
|
|
{
|
|
if(j<n_lower-1) /*at least two vertices in lower*/
|
|
{
|
|
bgntfan();
|
|
glNormal3fv(leftMostNormal);
|
|
glVertex3fv(leftMostXYZ);
|
|
|
|
while(j<n_lower){
|
|
glNormal3fv(lowerNormal[j]);
|
|
glVertex3fv(lowerXYZ[j]);
|
|
j++;
|
|
|
|
}
|
|
endtfan();
|
|
}
|
|
break; /*exit the main loop*/
|
|
}
|
|
else if(j>= n_lower) /*case2: no more in lower*/
|
|
{
|
|
if(i<n_upper-1) /*at least two vertices in upper*/
|
|
{
|
|
bgntfan();
|
|
glNormal3fv(leftMostNormal);
|
|
glVertex3fv(leftMostXYZ);
|
|
|
|
for(k=n_upper-1; k>=i; k--) /*reverse order for two-side lighting*/
|
|
{
|
|
glNormal3fv(upperNormal[k]);
|
|
glVertex3fv(upperXYZ[k]);
|
|
}
|
|
|
|
endtfan();
|
|
}
|
|
break; /*exit the main loop*/
|
|
}
|
|
else /* case3: neither is empty, plus the leftMostV, there is at least one triangle to output*/
|
|
{
|
|
if(upper_val[i] <= lower_val[j])
|
|
{
|
|
bgntfan();
|
|
|
|
glNormal3fv(lowerNormal[j]);
|
|
glVertex3fv(lowerXYZ[j]);
|
|
|
|
/*find the last k>=i such that
|
|
*upperverts[k][0] <= lowerverts[j][0]
|
|
*/
|
|
k=i;
|
|
|
|
while(k<n_upper)
|
|
{
|
|
if(upper_val[k] > lower_val[j])
|
|
break;
|
|
k++;
|
|
|
|
}
|
|
k--;
|
|
|
|
|
|
for(l=k; l>=i; l--)/*the reverse is for two-side lighting*/
|
|
{
|
|
glNormal3fv(upperNormal[l]);
|
|
glVertex3fv(upperXYZ[l]);
|
|
|
|
}
|
|
glNormal3fv(leftMostNormal);
|
|
glVertex3fv(leftMostXYZ);
|
|
|
|
endtfan();
|
|
|
|
/*update i and leftMostV for next loop
|
|
*/
|
|
i = k+1;
|
|
|
|
leftMostV[0] = upper_val[k];
|
|
leftMostV[1] = v_upper;
|
|
leftMostNormal = upperNormal[k];
|
|
leftMostXYZ = upperXYZ[k];
|
|
}
|
|
else /*upperVerts[i][0] > lowerVerts[j][0]*/
|
|
{
|
|
bgntfan();
|
|
glNormal3fv(upperNormal[i]);
|
|
glVertex3fv(upperXYZ[i]);
|
|
|
|
glNormal3fv(leftMostNormal);
|
|
glVertex3fv(leftMostXYZ);
|
|
|
|
|
|
/*find the last k>=j such that
|
|
*lowerverts[k][0] < upperverts[i][0]
|
|
*/
|
|
k=j;
|
|
while(k< n_lower)
|
|
{
|
|
if(lower_val[k] >= upper_val[i])
|
|
break;
|
|
glNormal3fv(lowerNormal[k]);
|
|
glVertex3fv(lowerXYZ[k]);
|
|
|
|
k++;
|
|
}
|
|
endtfan();
|
|
|
|
/*update j and leftMostV for next loop
|
|
*/
|
|
j=k;
|
|
leftMostV[0] = lower_val[j-1];
|
|
leftMostV[1] = v_lower;
|
|
|
|
leftMostNormal = lowerNormal[j-1];
|
|
leftMostXYZ = lowerXYZ[j-1];
|
|
}
|
|
}
|
|
}
|
|
//clean up
|
|
free(upperXYZ);
|
|
free(lowerXYZ);
|
|
free(upperNormal);
|
|
free(lowerNormal);
|
|
}
|
|
|
|
/*triangulate a strip bounded by two lines which are parallel to V-axis
|
|
*leftVerts: the verteces on the left line
|
|
*rightVertx: the verteces on the right line
|
|
*n_left >=1
|
|
*n_right >=1
|
|
*/
|
|
void OpenGLSurfaceEvaluator::inEvalVStrip(int n_left, REAL u_left, REAL* left_val, int n_right, REAL u_right, REAL* right_val)
|
|
{
|
|
int i,j,k,l;
|
|
REAL botMostV[2];
|
|
typedef REAL REAL3[3];
|
|
|
|
REAL3* leftXYZ = (REAL3*) malloc(sizeof(REAL3)*n_left);
|
|
assert(leftXYZ);
|
|
REAL3* leftNormal = (REAL3*) malloc(sizeof(REAL3) * n_left);
|
|
assert(leftNormal);
|
|
REAL3* rightXYZ = (REAL3*) malloc(sizeof(REAL3)*n_right);
|
|
assert(rightXYZ);
|
|
REAL3* rightNormal = (REAL3*) malloc(sizeof(REAL3) * n_right);
|
|
assert(rightNormal);
|
|
|
|
inEvalVLine(n_left, u_left, left_val, 1, leftXYZ, leftNormal);
|
|
inEvalVLine(n_right, u_right, right_val, 1, rightXYZ, rightNormal);
|
|
|
|
|
|
|
|
REAL* botMostXYZ;
|
|
REAL* botMostNormal;
|
|
|
|
/*
|
|
*the algorithm works by scanning from bot to top.
|
|
*botMostV: the bot most of the remaining verteces (on both left and right).
|
|
* it could an element of leftVerts or rightVerts.
|
|
*i: leftVerts[i] is the first vertex to the top of botMostV on left line
|
|
*j: rightVerts[j] is the first vertex to the top of botMostV on rightline */
|
|
|
|
/*initialize i,j,and botMostV
|
|
*/
|
|
if(left_val[0] <= right_val[0])
|
|
{
|
|
i=1;
|
|
j=0;
|
|
|
|
botMostV[0] = u_left;
|
|
botMostV[1] = left_val[0];
|
|
botMostXYZ = leftXYZ[0];
|
|
botMostNormal = leftNormal[0];
|
|
}
|
|
else
|
|
{
|
|
i=0;
|
|
j=1;
|
|
|
|
botMostV[0] = u_right;
|
|
botMostV[1] = right_val[0];
|
|
|
|
botMostXYZ = rightXYZ[0];
|
|
botMostNormal = rightNormal[0];
|
|
}
|
|
|
|
/*the main loop.
|
|
*the invariance is that:
|
|
*at the beginning of each loop, the meaning of i,j,and botMostV are
|
|
*maintained
|
|
*/
|
|
while(1)
|
|
{
|
|
if(i >= n_left) /*case1: no more in left*/
|
|
{
|
|
if(j<n_right-1) /*at least two vertices in right*/
|
|
{
|
|
bgntfan();
|
|
glNormal3fv(botMostNormal);
|
|
glVertex3fv(botMostXYZ);
|
|
|
|
while(j<n_right){
|
|
glNormal3fv(rightNormal[j]);
|
|
glVertex3fv(rightXYZ[j]);
|
|
j++;
|
|
|
|
}
|
|
endtfan();
|
|
}
|
|
break; /*exit the main loop*/
|
|
}
|
|
else if(j>= n_right) /*case2: no more in right*/
|
|
{
|
|
if(i<n_left-1) /*at least two vertices in left*/
|
|
{
|
|
bgntfan();
|
|
glNormal3fv(botMostNormal);
|
|
glVertex3fv(botMostXYZ);
|
|
|
|
for(k=n_left-1; k>=i; k--) /*reverse order for two-side lighting*/
|
|
{
|
|
glNormal3fv(leftNormal[k]);
|
|
glVertex3fv(leftXYZ[k]);
|
|
}
|
|
|
|
endtfan();
|
|
}
|
|
break; /*exit the main loop*/
|
|
}
|
|
else /* case3: neither is empty, plus the botMostV, there is at least one triangle to output*/
|
|
{
|
|
if(left_val[i] <= right_val[j])
|
|
{
|
|
bgntfan();
|
|
|
|
glNormal3fv(rightNormal[j]);
|
|
glVertex3fv(rightXYZ[j]);
|
|
|
|
/*find the last k>=i such that
|
|
*leftverts[k][0] <= rightverts[j][0]
|
|
*/
|
|
k=i;
|
|
|
|
while(k<n_left)
|
|
{
|
|
if(left_val[k] > right_val[j])
|
|
break;
|
|
k++;
|
|
|
|
}
|
|
k--;
|
|
|
|
|
|
for(l=k; l>=i; l--)/*the reverse is for two-side lighting*/
|
|
{
|
|
glNormal3fv(leftNormal[l]);
|
|
glVertex3fv(leftXYZ[l]);
|
|
|
|
}
|
|
glNormal3fv(botMostNormal);
|
|
glVertex3fv(botMostXYZ);
|
|
|
|
endtfan();
|
|
|
|
/*update i and botMostV for next loop
|
|
*/
|
|
i = k+1;
|
|
|
|
botMostV[0] = u_left;
|
|
botMostV[1] = left_val[k];
|
|
botMostNormal = leftNormal[k];
|
|
botMostXYZ = leftXYZ[k];
|
|
}
|
|
else /*left_val[i] > right_val[j])*/
|
|
{
|
|
bgntfan();
|
|
glNormal3fv(leftNormal[i]);
|
|
glVertex3fv(leftXYZ[i]);
|
|
|
|
glNormal3fv(botMostNormal);
|
|
glVertex3fv(botMostXYZ);
|
|
|
|
|
|
/*find the last k>=j such that
|
|
*rightverts[k][0] < leftverts[i][0]
|
|
*/
|
|
k=j;
|
|
while(k< n_right)
|
|
{
|
|
if(right_val[k] >= left_val[i])
|
|
break;
|
|
glNormal3fv(rightNormal[k]);
|
|
glVertex3fv(rightXYZ[k]);
|
|
|
|
k++;
|
|
}
|
|
endtfan();
|
|
|
|
/*update j and botMostV for next loop
|
|
*/
|
|
j=k;
|
|
botMostV[0] = u_right;
|
|
botMostV[1] = right_val[j-1];
|
|
|
|
botMostNormal = rightNormal[j-1];
|
|
botMostXYZ = rightXYZ[j-1];
|
|
}
|
|
}
|
|
}
|
|
//clean up
|
|
free(leftXYZ);
|
|
free(rightXYZ);
|
|
free(leftNormal);
|
|
free(rightNormal);
|
|
}
|
|
|
|
/*-----------------------begin evalMachine-------------------*/
|
|
void OpenGLSurfaceEvaluator::inMap2fEM(int which, int k,
|
|
REAL ulower,
|
|
REAL uupper,
|
|
int ustride,
|
|
int uorder,
|
|
REAL vlower,
|
|
REAL vupper,
|
|
int vstride,
|
|
int vorder,
|
|
REAL *ctlPoints)
|
|
{
|
|
int i,j,x;
|
|
surfEvalMachine *temp_em;
|
|
switch(which){
|
|
case 0: //vertex
|
|
vertex_flag = 1;
|
|
temp_em = &em_vertex;
|
|
break;
|
|
case 1: //normal
|
|
normal_flag = 1;
|
|
temp_em = &em_normal;
|
|
break;
|
|
case 2: //color
|
|
color_flag = 1;
|
|
temp_em = &em_color;
|
|
break;
|
|
default:
|
|
texcoord_flag = 1;
|
|
temp_em = &em_texcoord;
|
|
break;
|
|
}
|
|
|
|
REAL *data = temp_em->ctlPoints;
|
|
|
|
temp_em->uprime = -1;//initilized
|
|
temp_em->vprime = -1;
|
|
|
|
temp_em->k = k;
|
|
temp_em->u1 = ulower;
|
|
temp_em->u2 = uupper;
|
|
temp_em->ustride = ustride;
|
|
temp_em->uorder = uorder;
|
|
temp_em->v1 = vlower;
|
|
temp_em->v2 = vupper;
|
|
temp_em->vstride = vstride;
|
|
temp_em->vorder = vorder;
|
|
|
|
/*copy the contrl points from ctlPoints to global_ev_ctlPoints*/
|
|
for (i=0; i<uorder; i++) {
|
|
for (j=0; j<vorder; j++) {
|
|
for (x=0; x<k; x++) {
|
|
data[x] = ctlPoints[x];
|
|
}
|
|
ctlPoints += vstride;
|
|
data += k;
|
|
}
|
|
ctlPoints += ustride - vstride * vorder;
|
|
}
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inDoDomain2WithDerivsEM(surfEvalMachine *em, REAL u, REAL v,
|
|
REAL *retPoint, REAL *retdu, REAL *retdv)
|
|
{
|
|
int j, row, col;
|
|
REAL the_uprime;
|
|
REAL the_vprime;
|
|
REAL p;
|
|
REAL pdv;
|
|
REAL *data;
|
|
|
|
if((em->u2 == em->u1) || (em->v2 == em->v1))
|
|
return;
|
|
the_uprime = (u - em->u1) / (em->u2 - em->u1);
|
|
the_vprime = (v - em->v1) / (em->v2 - em->v1);
|
|
|
|
/* Compute coefficients for values and derivs */
|
|
|
|
/* Use already cached values if possible */
|
|
if(em->uprime != the_uprime) {
|
|
inPreEvaluateWithDeriv(em->uorder, the_uprime, em->ucoeff, em->ucoeffDeriv);
|
|
em->uprime = the_uprime;
|
|
}
|
|
if (em->vprime != the_vprime) {
|
|
inPreEvaluateWithDeriv(em->vorder, the_vprime, em->vcoeff, em->vcoeffDeriv);
|
|
em->vprime = the_vprime;
|
|
}
|
|
|
|
for (j = 0; j < em->k; j++) {
|
|
data=em->ctlPoints+j;
|
|
retPoint[j] = retdu[j] = retdv[j] = 0.0;
|
|
for (row = 0; row < em->uorder; row++) {
|
|
/*
|
|
** Minor optimization.
|
|
** The col == 0 part of the loop is extracted so we don't
|
|
** have to initialize p and pdv to 0.
|
|
*/
|
|
p = em->vcoeff[0] * (*data);
|
|
pdv = em->vcoeffDeriv[0] * (*data);
|
|
data += em->k;
|
|
for (col = 1; col < em->vorder; col++) {
|
|
/* Incrementally build up p, pdv value */
|
|
p += em->vcoeff[col] * (*data);
|
|
pdv += em->vcoeffDeriv[col] * (*data);
|
|
data += em->k;
|
|
}
|
|
/* Use p, pdv value to incrementally add up r, du, dv */
|
|
retPoint[j] += em->ucoeff[row] * p;
|
|
retdu[j] += em->ucoeffDeriv[row] * p;
|
|
retdv[j] += em->ucoeff[row] * pdv;
|
|
}
|
|
}
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inDoDomain2EM(surfEvalMachine *em, REAL u, REAL v,
|
|
REAL *retPoint)
|
|
{
|
|
int j, row, col;
|
|
REAL the_uprime;
|
|
REAL the_vprime;
|
|
REAL p;
|
|
REAL *data;
|
|
|
|
if((em->u2 == em->u1) || (em->v2 == em->v1))
|
|
return;
|
|
the_uprime = (u - em->u1) / (em->u2 - em->u1);
|
|
the_vprime = (v - em->v1) / (em->v2 - em->v1);
|
|
|
|
/* Compute coefficients for values and derivs */
|
|
|
|
/* Use already cached values if possible */
|
|
if(em->uprime != the_uprime) {
|
|
inPreEvaluate(em->uorder, the_uprime, em->ucoeff);
|
|
em->uprime = the_uprime;
|
|
}
|
|
if (em->vprime != the_vprime) {
|
|
inPreEvaluate(em->vorder, the_vprime, em->vcoeff);
|
|
em->vprime = the_vprime;
|
|
}
|
|
|
|
for (j = 0; j < em->k; j++) {
|
|
data=em->ctlPoints+j;
|
|
retPoint[j] = 0.0;
|
|
for (row = 0; row < em->uorder; row++) {
|
|
/*
|
|
** Minor optimization.
|
|
** The col == 0 part of the loop is extracted so we don't
|
|
** have to initialize p and pdv to 0.
|
|
*/
|
|
p = em->vcoeff[0] * (*data);
|
|
data += em->k;
|
|
for (col = 1; col < em->vorder; col++) {
|
|
/* Incrementally build up p, pdv value */
|
|
p += em->vcoeff[col] * (*data);
|
|
data += em->k;
|
|
}
|
|
/* Use p, pdv value to incrementally add up r, du, dv */
|
|
retPoint[j] += em->ucoeff[row] * p;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void OpenGLSurfaceEvaluator::inDoEvalCoord2EM(REAL u, REAL v)
|
|
{
|
|
REAL temp_vertex[5];
|
|
REAL temp_normal[3];
|
|
REAL temp_color[4];
|
|
REAL temp_texcoord[4];
|
|
|
|
if(texcoord_flag)
|
|
{
|
|
inDoDomain2EM(&em_texcoord, u,v, temp_texcoord);
|
|
texcoordCallBack(temp_texcoord, userData);
|
|
}
|
|
if(color_flag)
|
|
{
|
|
inDoDomain2EM(&em_color, u,v, temp_color);
|
|
colorCallBack(temp_color, userData);
|
|
}
|
|
|
|
if(normal_flag) //there is a normla map
|
|
{
|
|
inDoDomain2EM(&em_normal, u,v, temp_normal);
|
|
normalCallBack(temp_normal, userData);
|
|
|
|
if(vertex_flag)
|
|
{
|
|
inDoDomain2EM(&em_vertex, u,v,temp_vertex);
|
|
if(em_vertex.k == 4)
|
|
{
|
|
temp_vertex[0] /= temp_vertex[3];
|
|
temp_vertex[1] /= temp_vertex[3];
|
|
temp_vertex[2] /= temp_vertex[3];
|
|
}
|
|
temp_vertex[3]=u;
|
|
temp_vertex[4]=v;
|
|
vertexCallBack(temp_vertex, userData);
|
|
}
|
|
}
|
|
else if(auto_normal_flag) //no normal map but there is a normal callbackfunctin
|
|
{
|
|
REAL du[4];
|
|
REAL dv[4];
|
|
|
|
/*compute homegeneous point and partial derivatives*/
|
|
inDoDomain2WithDerivsEM(&em_vertex, u,v,temp_vertex,du,dv);
|
|
|
|
if(em_vertex.k ==4)
|
|
inComputeFirstPartials(temp_vertex, du, dv);
|
|
|
|
#ifdef AVOID_ZERO_NORMAL
|
|
if(myabs(dv[0]) <= MYZERO && myabs(dv[1]) <= MYZERO && myabs(dv[2]) <= MYZERO)
|
|
{
|
|
|
|
REAL tempdu[4];
|
|
REAL tempdata[4];
|
|
REAL u1 = em_vertex.u1;
|
|
REAL u2 = em_vertex.u2;
|
|
if(u-MYDELTA*(u2-u1) < u1)
|
|
u = u+ MYDELTA*(u2-u1);
|
|
else
|
|
u = u-MYDELTA*(u2-u1);
|
|
inDoDomain2WithDerivsEM(&em_vertex,u,v, tempdata, tempdu, dv);
|
|
|
|
if(em_vertex.k ==4)
|
|
inComputeFirstPartials(temp_vertex, du, dv);
|
|
}
|
|
else if(myabs(du[0]) <= MYZERO && myabs(du[1]) <= MYZERO && myabs(du[2]) <= MYZERO)
|
|
{
|
|
REAL tempdv[4];
|
|
REAL tempdata[4];
|
|
REAL v1 = em_vertex.v1;
|
|
REAL v2 = em_vertex.v2;
|
|
if(v-MYDELTA*(v2-v1) < v1)
|
|
v = v+ MYDELTA*(v2-v1);
|
|
else
|
|
v = v-MYDELTA*(v2-v1);
|
|
inDoDomain2WithDerivsEM(&em_vertex,u,v, tempdata, du, tempdv);
|
|
|
|
if(em_vertex.k ==4)
|
|
inComputeFirstPartials(temp_vertex, du, dv);
|
|
}
|
|
#endif
|
|
|
|
/*compute normal*/
|
|
switch(em_vertex.k){
|
|
case 3:
|
|
|
|
inComputeNormal2(du, dv, temp_normal);
|
|
break;
|
|
case 4:
|
|
|
|
// inComputeFirstPartials(temp_vertex, du, dv);
|
|
inComputeNormal2(du, dv, temp_normal);
|
|
|
|
/*transform the homegeneous coordinate of retPoint into inhomogenous one*/
|
|
temp_vertex[0] /= temp_vertex[3];
|
|
temp_vertex[1] /= temp_vertex[3];
|
|
temp_vertex[2] /= temp_vertex[3];
|
|
break;
|
|
}
|
|
normalCallBack(temp_normal, userData);
|
|
temp_vertex[3] = u;
|
|
temp_vertex[4] = v;
|
|
vertexCallBack(temp_vertex, userData);
|
|
|
|
}/*end if auto_normal*/
|
|
else //no normal map, and no normal callback function
|
|
{
|
|
if(vertex_flag)
|
|
{
|
|
inDoDomain2EM(&em_vertex, u,v,temp_vertex);
|
|
if(em_vertex.k == 4)
|
|
{
|
|
temp_vertex[0] /= temp_vertex[3];
|
|
temp_vertex[1] /= temp_vertex[3];
|
|
temp_vertex[2] /= temp_vertex[3];
|
|
}
|
|
temp_vertex[3] = u;
|
|
temp_vertex[4] = v;
|
|
vertexCallBack(temp_vertex, userData);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void OpenGLSurfaceEvaluator::inBPMEvalEM(bezierPatchMesh* bpm)
|
|
{
|
|
int i,j,k;
|
|
float u,v;
|
|
|
|
int ustride;
|
|
int vstride;
|
|
|
|
#ifdef USE_LOD
|
|
if(bpm->bpatch != NULL)
|
|
{
|
|
bezierPatch* p=bpm->bpatch;
|
|
ustride = p->dimension * p->vorder;
|
|
vstride = p->dimension;
|
|
|
|
glMap2f( (p->dimension == 3)? GL_MAP2_VERTEX_3 : GL_MAP2_VERTEX_4,
|
|
p->umin,
|
|
p->umax,
|
|
ustride,
|
|
p->uorder,
|
|
p->vmin,
|
|
p->vmax,
|
|
vstride,
|
|
p->vorder,
|
|
p->ctlpoints);
|
|
|
|
|
|
/*
|
|
inMap2fEM(0, p->dimension,
|
|
p->umin,
|
|
p->umax,
|
|
ustride,
|
|
p->uorder,
|
|
p->vmin,
|
|
p->vmax,
|
|
vstride,
|
|
p->vorder,
|
|
p->ctlpoints);
|
|
*/
|
|
}
|
|
#else
|
|
|
|
if(bpm->bpatch != NULL){
|
|
bezierPatch* p = bpm->bpatch;
|
|
ustride = p->dimension * p->vorder;
|
|
vstride = p->dimension;
|
|
inMap2fEM(0, p->dimension,
|
|
p->umin,
|
|
p->umax,
|
|
ustride,
|
|
p->uorder,
|
|
p->vmin,
|
|
p->vmax,
|
|
vstride,
|
|
p->vorder,
|
|
p->ctlpoints);
|
|
}
|
|
if(bpm->bpatch_normal != NULL){
|
|
bezierPatch* p = bpm->bpatch_normal;
|
|
ustride = p->dimension * p->vorder;
|
|
vstride = p->dimension;
|
|
inMap2fEM(1, p->dimension,
|
|
p->umin,
|
|
p->umax,
|
|
ustride,
|
|
p->uorder,
|
|
p->vmin,
|
|
p->vmax,
|
|
vstride,
|
|
p->vorder,
|
|
p->ctlpoints);
|
|
}
|
|
if(bpm->bpatch_color != NULL){
|
|
bezierPatch* p = bpm->bpatch_color;
|
|
ustride = p->dimension * p->vorder;
|
|
vstride = p->dimension;
|
|
inMap2fEM(2, p->dimension,
|
|
p->umin,
|
|
p->umax,
|
|
ustride,
|
|
p->uorder,
|
|
p->vmin,
|
|
p->vmax,
|
|
vstride,
|
|
p->vorder,
|
|
p->ctlpoints);
|
|
}
|
|
if(bpm->bpatch_texcoord != NULL){
|
|
bezierPatch* p = bpm->bpatch_texcoord;
|
|
ustride = p->dimension * p->vorder;
|
|
vstride = p->dimension;
|
|
inMap2fEM(3, p->dimension,
|
|
p->umin,
|
|
p->umax,
|
|
ustride,
|
|
p->uorder,
|
|
p->vmin,
|
|
p->vmax,
|
|
vstride,
|
|
p->vorder,
|
|
p->ctlpoints);
|
|
}
|
|
#endif
|
|
|
|
|
|
k=0;
|
|
for(i=0; i<bpm->index_length_array; i++)
|
|
{
|
|
#ifdef USE_LOD
|
|
if(bpm->type_array[i] == GL_POLYGON) //a mesh
|
|
{
|
|
GLfloat *temp = bpm->UVarray+k;
|
|
GLfloat u0 = temp[0];
|
|
GLfloat v0 = temp[1];
|
|
GLfloat u1 = temp[2];
|
|
GLfloat v1 = temp[3];
|
|
GLint nu = (GLint) ( temp[4]);
|
|
GLint nv = (GLint) ( temp[5]);
|
|
GLint umin = (GLint) ( temp[6]);
|
|
GLint vmin = (GLint) ( temp[7]);
|
|
GLint umax = (GLint) ( temp[8]);
|
|
GLint vmax = (GLint) ( temp[9]);
|
|
|
|
glMapGrid2f(LOD_eval_level*nu, u0, u1, LOD_eval_level*nv, v0, v1);
|
|
glEvalMesh2(GL_FILL, LOD_eval_level*umin, LOD_eval_level*umax, LOD_eval_level*vmin, LOD_eval_level*vmax);
|
|
}
|
|
else
|
|
{
|
|
LOD_eval(bpm->length_array[i], bpm->UVarray+k, bpm->type_array[i],
|
|
0
|
|
);
|
|
}
|
|
k+= 2*bpm->length_array[i];
|
|
|
|
#else //undef USE_LOD
|
|
|
|
#ifdef CRACK_TEST
|
|
if( bpm->bpatch->umin == 2 && bpm->bpatch->umax == 3
|
|
&& bpm->bpatch->vmin ==2 && bpm->bpatch->vmax == 3)
|
|
{
|
|
REAL vertex[4];
|
|
REAL normal[4];
|
|
#ifdef DEBUG
|
|
printf("***number ****1\n");
|
|
#endif
|
|
|
|
beginCallBack(GL_QUAD_STRIP, NULL);
|
|
inDoEvalCoord2EM(3.0, 3.0);
|
|
inDoEvalCoord2EM(2.0, 3.0);
|
|
inDoEvalCoord2EM(3.0, 2.7);
|
|
inDoEvalCoord2EM(2.0, 2.7);
|
|
inDoEvalCoord2EM(3.0, 2.0);
|
|
inDoEvalCoord2EM(2.0, 2.0);
|
|
endCallBack(NULL);
|
|
|
|
beginCallBack(GL_TRIANGLE_STRIP, NULL);
|
|
inDoEvalCoord2EM(2.0, 3.0);
|
|
inDoEvalCoord2EM(2.0, 2.0);
|
|
inDoEvalCoord2EM(2.0, 2.7);
|
|
endCallBack(NULL);
|
|
|
|
}
|
|
if( bpm->bpatch->umin == 1 && bpm->bpatch->umax == 2
|
|
&& bpm->bpatch->vmin ==2 && bpm->bpatch->vmax == 3)
|
|
{
|
|
#ifdef DEBUG
|
|
printf("***number 3\n");
|
|
#endif
|
|
beginCallBack(GL_QUAD_STRIP, NULL);
|
|
inDoEvalCoord2EM(2.0, 3.0);
|
|
inDoEvalCoord2EM(1.0, 3.0);
|
|
inDoEvalCoord2EM(2.0, 2.3);
|
|
inDoEvalCoord2EM(1.0, 2.3);
|
|
inDoEvalCoord2EM(2.0, 2.0);
|
|
inDoEvalCoord2EM(1.0, 2.0);
|
|
endCallBack(NULL);
|
|
|
|
beginCallBack(GL_TRIANGLE_STRIP, NULL);
|
|
inDoEvalCoord2EM(2.0, 2.3);
|
|
inDoEvalCoord2EM(2.0, 2.0);
|
|
inDoEvalCoord2EM(2.0, 3.0);
|
|
endCallBack(NULL);
|
|
|
|
}
|
|
return;
|
|
#endif //CRACK_TEST
|
|
|
|
beginCallBack(bpm->type_array[i], userData);
|
|
|
|
for(j=0; j<bpm->length_array[i]; j++)
|
|
{
|
|
u = bpm->UVarray[k];
|
|
v = bpm->UVarray[k+1];
|
|
#ifdef USE_LOD
|
|
LOD_EVAL_COORD(u,v);
|
|
// glEvalCoord2f(u,v);
|
|
#else
|
|
|
|
#ifdef GENERIC_TEST
|
|
float temp_normal[3];
|
|
float temp_vertex[3];
|
|
if(temp_signal == 0)
|
|
{
|
|
gTessVertexSphere(u,v, temp_normal, temp_vertex);
|
|
//printf("normal=(%f,%f,%f)\n", temp_normal[0], temp_normal[1], temp_normal[2])//printf("veretx=(%f,%f,%f)\n", temp_vertex[0], temp_vertex[1], temp_vertex[2]);
|
|
normalCallBack(temp_normal, userData);
|
|
vertexCallBack(temp_vertex, userData);
|
|
}
|
|
else if(temp_signal == 1)
|
|
{
|
|
gTessVertexCyl(u,v, temp_normal, temp_vertex);
|
|
//printf("normal=(%f,%f,%f)\n", temp_normal[0], temp_normal[1], temp_normal[2])//printf("veretx=(%f,%f,%f)\n", temp_vertex[0], temp_vertex[1], temp_vertex[2]);
|
|
normalCallBack(temp_normal, userData);
|
|
vertexCallBack(temp_vertex, userData);
|
|
}
|
|
else
|
|
#endif //GENERIC_TEST
|
|
|
|
inDoEvalCoord2EM(u,v);
|
|
|
|
#endif //USE_LOD
|
|
|
|
k += 2;
|
|
}
|
|
endCallBack(userData);
|
|
|
|
#endif //USE_LOD
|
|
}
|
|
}
|
|
|
|
void OpenGLSurfaceEvaluator::inBPMListEvalEM(bezierPatchMesh* list)
|
|
{
|
|
bezierPatchMesh* temp;
|
|
for(temp = list; temp != NULL; temp = temp->next)
|
|
{
|
|
inBPMEvalEM(temp);
|
|
}
|
|
}
|
|
|