reactos/lib/rtl/bitmap.c
Art Yerkes c501d8112c Create a branch for network fixes.
svn path=/branches/aicom-network-fixes/; revision=34994
2008-08-01 11:32:26 +00:00

980 lines
20 KiB
C

/* COPYRIGHT: See COPYING in the top level directory
* PROJECT: ReactOS system libraries
* FILE: lib/rtl/bitmap.c
* PURPOSE: Bitmap functions
* PROGRAMMER: Eric Kohl
*/
/* INCLUDES *****************************************************************/
#include <rtl.h>
#define NDEBUG
#include <debug.h>
/* MACROS *******************************************************************/
/* Bits set from LSB to MSB; used as mask for runs < 8 bits */
static const BYTE NTDLL_maskBits[8] = { 0, 1, 3, 7, 15, 31, 63, 127 };
/* Number of set bits for each value of a nibble; used for counting */
static const BYTE NTDLL_nibbleBitCount[16] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
};
/* First set bit in a nibble; used for determining least significant bit */
static const BYTE NTDLL_leastSignificant[16] = {
0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
/* Last set bit in a nibble; used for determining most significant bit */
static const signed char NTDLL_mostSignificant[16] = {
-1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3
};
/* PRIVATE FUNCTIONS *********************************************************/
static
int
__cdecl
NTDLL_RunSortFn(const void *lhs,
const void *rhs)
{
if (((const RTL_BITMAP_RUN*)lhs)->NumberOfBits > ((const RTL_BITMAP_RUN*)rhs)->NumberOfBits)
return -1;
return 1;
}
static
ULONG
WINAPI
NTDLL_FindRuns(PRTL_BITMAP lpBits,
PRTL_BITMAP_RUN lpSeries,
ULONG ulCount,
BOOLEAN bLongest,
ULONG (*fn)(PRTL_BITMAP,ULONG,PULONG))
{
BOOL bNeedSort = ulCount > 1 ? TRUE : FALSE;
ULONG ulPos = 0, ulRuns = 0;
if (!ulCount)
return ~0U;
while (ulPos < lpBits->SizeOfBitMap)
{
/* Find next set/clear run */
ULONG ulSize, ulNextPos = fn(lpBits, ulPos, &ulSize);
if (ulNextPos == ~0U)
break;
if (bLongest && ulRuns == ulCount)
{
/* Sort runs with shortest at end, if they are out of order */
if (bNeedSort)
qsort(lpSeries, ulRuns, sizeof(RTL_BITMAP_RUN), NTDLL_RunSortFn);
/* Replace last run if this one is bigger */
if (ulSize > lpSeries[ulRuns - 1].NumberOfBits)
{
lpSeries[ulRuns - 1].StartingIndex = ulNextPos;
lpSeries[ulRuns - 1].NumberOfBits = ulSize;
/* We need to re-sort the array, _if_ we didn't leave it sorted */
if (ulRuns > 1 && ulSize > lpSeries[ulRuns - 2].NumberOfBits)
bNeedSort = TRUE;
}
}
else
{
/* Append to found runs */
lpSeries[ulRuns].StartingIndex = ulNextPos;
lpSeries[ulRuns].NumberOfBits = ulSize;
ulRuns++;
if (!bLongest && ulRuns == ulCount)
break;
}
ulPos = ulNextPos + ulSize;
}
return ulRuns;
}
static
ULONG
NTDLL_FindSetRun(PRTL_BITMAP lpBits,
ULONG ulStart,
PULONG lpSize)
{
LPBYTE lpOut;
ULONG ulFoundAt = 0, ulCount = 0;
/* FIXME: It might be more efficient/cleaner to manipulate four bytes
* at a time. But beware of the pointer arithmetics...
*/
lpOut = ((BYTE*)lpBits->Buffer) + (ulStart >> 3u);
while (1)
{
/* Check bits in first byte */
const BYTE bMask = (0xff << (ulStart & 7)) & 0xff;
const BYTE bFirst = *lpOut & bMask;
if (bFirst)
{
/* Have a set bit in first byte */
if (bFirst != bMask)
{
/* Not every bit is set */
ULONG ulOffset;
if (bFirst & 0x0f)
ulOffset = NTDLL_leastSignificant[bFirst & 0x0f];
else
ulOffset = 4 + NTDLL_leastSignificant[bFirst >> 4];
ulStart += ulOffset;
ulFoundAt = ulStart;
for (;ulOffset < 8; ulOffset++)
{
if (!(bFirst & (1 << ulOffset)))
{
*lpSize = ulCount;
return ulFoundAt; /* Set from start, but not until the end */
}
ulCount++;
ulStart++;
}
/* Set to the end - go on to count further bits */
lpOut++;
break;
}
/* every bit from start until the end of the byte is set */
ulFoundAt = ulStart;
ulCount = 8 - (ulStart & 7);
ulStart = (ulStart & ~7u) + 8;
lpOut++;
break;
}
ulStart = (ulStart & ~7u) + 8;
lpOut++;
if (ulStart >= lpBits->SizeOfBitMap)
return ~0U;
}
/* Count blocks of 8 set bits */
while (*lpOut == 0xff)
{
ulCount += 8;
ulStart += 8;
if (ulStart >= lpBits->SizeOfBitMap)
{
*lpSize = ulCount - (ulStart - lpBits->SizeOfBitMap);
return ulFoundAt;
}
lpOut++;
}
/* Count remaining contiguous bits, if any */
if (*lpOut & 1)
{
ULONG ulOffset = 0;
for (;ulOffset < 7u; ulOffset++)
{
if (!(*lpOut & (1 << ulOffset)))
break;
ulCount++;
}
}
*lpSize = ulCount;
return ulFoundAt;
}
static
ULONG
NTDLL_FindClearRun(PRTL_BITMAP lpBits,
ULONG ulStart,
PULONG lpSize)
{
LPBYTE lpOut;
ULONG ulFoundAt = 0, ulCount = 0;
/* FIXME: It might be more efficient/cleaner to manipulate four bytes
* at a time. But beware of the pointer arithmetics...
*/
lpOut = ((BYTE*)lpBits->Buffer) + (ulStart >> 3u);
while (1)
{
/* Check bits in first byte */
const BYTE bMask = (0xff << (ulStart & 7)) & 0xff;
const BYTE bFirst = (~*lpOut) & bMask;
if (bFirst)
{
/* Have a clear bit in first byte */
if (bFirst != bMask)
{
/* Not every bit is clear */
ULONG ulOffset;
if (bFirst & 0x0f)
ulOffset = NTDLL_leastSignificant[bFirst & 0x0f];
else
ulOffset = 4 + NTDLL_leastSignificant[bFirst >> 4];
ulStart += ulOffset;
ulFoundAt = ulStart;
for (;ulOffset < 8; ulOffset++)
{
if (!(bFirst & (1 << ulOffset)))
{
*lpSize = ulCount;
return ulFoundAt; /* Clear from start, but not until the end */
}
ulCount++;
ulStart++;
}
/* Clear to the end - go on to count further bits */
lpOut++;
break;
}
/* Every bit from start until the end of the byte is clear */
ulFoundAt = ulStart;
ulCount = 8 - (ulStart & 7);
ulStart = (ulStart & ~7u) + 8;
lpOut++;
break;
}
ulStart = (ulStart & ~7u) + 8;
lpOut++;
if (ulStart >= lpBits->SizeOfBitMap)
return ~0U;
}
/* Count blocks of 8 clear bits */
while (!*lpOut)
{
ulCount += 8;
ulStart += 8;
if (ulStart >= lpBits->SizeOfBitMap)
{
*lpSize = ulCount - (ulStart - lpBits->SizeOfBitMap);
return ulFoundAt;
}
lpOut++;
}
/* Count remaining contiguous bits, if any */
if (!(*lpOut & 1))
{
ULONG ulOffset = 0;
for (;ulOffset < 7u; ulOffset++)
{
if (*lpOut & (1 << ulOffset))
break;
ulCount++;
}
}
*lpSize = ulCount;
return ulFoundAt;
}
/* FUNCTIONS ****************************************************************/
/*
* @implemented
*/
VOID
NTAPI
RtlInitializeBitMap(IN PRTL_BITMAP BitMapHeader,
IN PULONG BitMapBuffer,
IN ULONG SizeOfBitMap)
{
/* Setup the bitmap header */
BitMapHeader->SizeOfBitMap = SizeOfBitMap;
BitMapHeader->Buffer = BitMapBuffer;
}
/*
* @implemented
*/
BOOLEAN
NTAPI
RtlAreBitsClear(IN PRTL_BITMAP BitMapHeader,
IN ULONG StartingIndex,
IN ULONG Length)
{
LPBYTE lpOut;
ULONG ulRemainder;
if (!BitMapHeader || !Length ||
StartingIndex >= BitMapHeader->SizeOfBitMap ||
Length > BitMapHeader->SizeOfBitMap - StartingIndex)
return FALSE;
/* FIXME: It might be more efficient/cleaner to manipulate four bytes
* at a time. But beware of the pointer arithmetics...
*/
lpOut = ((BYTE*)BitMapHeader->Buffer) + (StartingIndex >> 3u);
/* Check bits in first byte, if StartingIndex isn't a byte boundary */
if (StartingIndex & 7)
{
if (Length > 7)
{
/* Check from start bit to the end of the byte */
if (*lpOut & ((0xff << (StartingIndex & 7)) & 0xff))
return FALSE;
lpOut++;
Length -= (8 - (StartingIndex & 7));
}
else
{
/* Check from the start bit, possibly into the next byte also */
USHORT initialWord = NTDLL_maskBits[Length] << (StartingIndex & 7);
if (*lpOut & (initialWord & 0xff))
return FALSE;
if ((initialWord & 0xff00) && (lpOut[1] & (initialWord >> 8)))
return FALSE;
return TRUE;
}
}
/* Check bits in blocks of 8 bytes */
ulRemainder = Length & 7;
Length >>= 3;
while (Length--)
{
if (*lpOut++)
return FALSE;
}
/* Check remaining bits, if any */
if (ulRemainder && *lpOut & NTDLL_maskBits[ulRemainder])
return FALSE;
return TRUE;
}
/*
* @implemented
*/
BOOLEAN NTAPI
RtlAreBitsSet(PRTL_BITMAP BitMapHeader,
ULONG StartingIndex,
ULONG Length)
{
LPBYTE lpOut;
ULONG ulRemainder;
if (!BitMapHeader || !Length ||
StartingIndex >= BitMapHeader->SizeOfBitMap ||
Length > BitMapHeader->SizeOfBitMap - StartingIndex)
return FALSE;
/* FIXME: It might be more efficient/cleaner to manipulate four bytes
* at a time. But beware of the pointer arithmetics...
*/
lpOut = ((BYTE*)BitMapHeader->Buffer) + (StartingIndex >> 3u);
/* Check bits in first byte, if StartingIndex isn't a byte boundary */
if (StartingIndex & 7)
{
if (Length > 7)
{
/* Check from start bit to the end of the byte */
if ((*lpOut &
((0xff << (StartingIndex & 7))) & 0xff) != ((0xff << (StartingIndex & 7) & 0xff)))
return FALSE;
lpOut++;
Length -= (8 - (StartingIndex & 7));
}
else
{
/* Check from the start bit, possibly into the next byte also */
USHORT initialWord = NTDLL_maskBits[Length] << (StartingIndex & 7);
if ((*lpOut & (initialWord & 0xff)) != (initialWord & 0xff))
return FALSE;
if ((initialWord & 0xff00) &&
((lpOut[1] & (initialWord >> 8)) != (initialWord >> 8)))
return FALSE;
return TRUE;
}
}
/* Check bits in blocks of 8 bytes */
ulRemainder = Length & 7;
Length >>= 3;
while (Length--)
{
if (*lpOut++ != 0xff)
return FALSE;
}
/* Check remaining bits, if any */
if (ulRemainder &&
(*lpOut & NTDLL_maskBits[ulRemainder]) != NTDLL_maskBits[ulRemainder])
return FALSE;
return TRUE;
}
/*
* @implemented
*/
VOID NTAPI
RtlClearAllBits(IN OUT PRTL_BITMAP BitMapHeader)
{
memset(BitMapHeader->Buffer, 0, ((BitMapHeader->SizeOfBitMap + 31) & ~31) >> 3);
}
/*
* @implemented
*/
VOID
NTAPI
RtlClearBit(PRTL_BITMAP BitMapHeader,
ULONG BitNumber)
{
PULONG Ptr;
if (BitNumber >= BitMapHeader->SizeOfBitMap) return;
Ptr = (PULONG)BitMapHeader->Buffer + (BitNumber / 32);
*Ptr &= ~(1 << (BitNumber % 32));
}
/*
* @implemented
*/
VOID
NTAPI
RtlClearBits(IN PRTL_BITMAP BitMapHeader,
IN ULONG StartingIndex,
IN ULONG NumberToClear)
{
LPBYTE lpOut;
if (!BitMapHeader || !NumberToClear ||
StartingIndex >= BitMapHeader->SizeOfBitMap ||
NumberToClear > BitMapHeader->SizeOfBitMap - StartingIndex)
return;
/* FIXME: It might be more efficient/cleaner to manipulate four bytes
* at a time. But beware of the pointer arithmetics...
*/
lpOut = ((BYTE*)BitMapHeader->Buffer) + (StartingIndex >> 3u);
/* Clear bits in first byte, if StartingIndex isn't a byte boundary */
if (StartingIndex & 7)
{
if (NumberToClear > 7)
{
/* Clear from start bit to the end of the byte */
*lpOut++ &= ~(0xff << (StartingIndex & 7));
NumberToClear -= (8 - (StartingIndex & 7));
}
else
{
/* Clear from the start bit, possibly into the next byte also */
USHORT initialWord = ~(NTDLL_maskBits[NumberToClear] << (StartingIndex & 7));
*lpOut++ &= (initialWord & 0xff);
*lpOut &= (initialWord >> 8);
return;
}
}
/* Clear bits (in blocks of 8) on whole byte boundaries */
if (NumberToClear >> 3)
{
memset(lpOut, 0, NumberToClear >> 3);
lpOut = lpOut + (NumberToClear >> 3);
}
/* Clear remaining bits, if any */
if (NumberToClear & 0x7)
*lpOut &= ~NTDLL_maskBits[NumberToClear & 0x7];
}
/*
* @implemented
*/
ULONG NTAPI
RtlFindClearBits(PRTL_BITMAP BitMapHeader,
ULONG NumberToFind,
ULONG HintIndex)
{
ULONG ulPos, ulEnd;
if (!BitMapHeader || !NumberToFind || NumberToFind > BitMapHeader->SizeOfBitMap)
return ~0U;
ulEnd = BitMapHeader->SizeOfBitMap;
if (HintIndex + NumberToFind > BitMapHeader->SizeOfBitMap)
HintIndex = 0;
ulPos = HintIndex;
while (ulPos < ulEnd)
{
/* FIXME: This could be made a _lot_ more efficient */
if (RtlAreBitsClear(BitMapHeader, ulPos, NumberToFind))
return ulPos;
/* Start from the beginning if we hit the end and started from HintIndex */
if (ulPos == ulEnd - 1 && HintIndex)
{
ulEnd = HintIndex;
ulPos = HintIndex = 0;
}
else
ulPos++;
}
return ~0U;
}
/*
* @implemented
*/
ULONG NTAPI
RtlFindClearRuns(PRTL_BITMAP BitMapHeader,
PRTL_BITMAP_RUN RunArray,
ULONG SizeOfRunArray,
BOOLEAN LocateLongestRuns)
{
return NTDLL_FindRuns(BitMapHeader, RunArray, SizeOfRunArray, LocateLongestRuns, NTDLL_FindClearRun);
}
/*
* @unimplemented
*/
ULONG NTAPI
RtlFindLastBackwardRunClear(IN PRTL_BITMAP BitMapHeader,
IN ULONG FromIndex,
IN PULONG StartingRunIndex)
{
UNIMPLEMENTED;
return 0;
}
/*
* @implemented
*/
ULONG NTAPI
RtlFindNextForwardRunClear(IN PRTL_BITMAP BitMapHeader,
IN ULONG FromIndex,
IN PULONG StartingRunIndex)
{
ULONG ulSize = 0;
if (BitMapHeader && FromIndex < BitMapHeader->SizeOfBitMap && StartingRunIndex)
*StartingRunIndex = NTDLL_FindClearRun(BitMapHeader, FromIndex, &ulSize);
return ulSize;
}
/*
* @implemented
*/
ULONG NTAPI
RtlFindFirstRunSet(IN PRTL_BITMAP BitMapHeader,
IN PULONG StartingIndex)
{
ULONG Size;
ULONG Index;
ULONG Count;
PULONG Ptr;
ULONG Mask;
Size = BitMapHeader->SizeOfBitMap;
if (*StartingIndex > Size)
{
*StartingIndex = (ULONG)-1;
return 0;
}
Index = *StartingIndex;
Ptr = (PULONG)BitMapHeader->Buffer + (Index / 32);
Mask = 1 << (Index & 0x1F);
/* Skip clear bits */
for (; Index < Size && ~*Ptr & Mask; Index++)
{
Mask <<= 1;
if (Mask == 0)
{
Mask = 1;
Ptr++;
}
}
/* Return index of first set bit */
if (Index >= Size)
{
*StartingIndex = (ULONG)-1;
return 0;
}
else
{
*StartingIndex = Index;
}
/* Count set bits */
for (Count = 0; Index < Size && *Ptr & Mask; Index++)
{
Count++;
Mask <<= 1;
if (Mask == 0)
{
Mask = 1;
Ptr++;
}
}
return Count;
}
/*
* @implemented
*/
ULONG NTAPI
RtlFindLongestRunClear(PRTL_BITMAP BitMapHeader,
PULONG StartingIndex)
{
RTL_BITMAP_RUN br;
if (RtlFindClearRuns(BitMapHeader, &br, 1, TRUE) == 1)
{
if (StartingIndex)
*StartingIndex = br.StartingIndex;
return br.NumberOfBits;
}
return 0;
}
/*
* @implemented
*/
ULONG NTAPI
RtlFindLongestRunSet(PRTL_BITMAP BitMapHeader,
PULONG StartingIndex)
{
RTL_BITMAP_RUN br;
if (NTDLL_FindRuns(BitMapHeader, &br, 1, TRUE, NTDLL_FindSetRun) == 1)
{
if (StartingIndex)
*StartingIndex = br.StartingIndex;
return br.NumberOfBits;
}
return 0;
}
/*
* @implemented
*/
ULONG NTAPI
RtlFindSetBits(PRTL_BITMAP BitMapHeader,
ULONG NumberToFind,
ULONG HintIndex)
{
ULONG ulPos, ulEnd;
if (!BitMapHeader || !NumberToFind || NumberToFind > BitMapHeader->SizeOfBitMap)
return ~0U;
ulEnd = BitMapHeader->SizeOfBitMap;
if (HintIndex + NumberToFind > BitMapHeader->SizeOfBitMap)
HintIndex = 0;
ulPos = HintIndex;
while (ulPos < ulEnd)
{
/* FIXME: This could be made a _lot_ more efficient */
if (RtlAreBitsSet(BitMapHeader, ulPos, NumberToFind))
return ulPos;
/* Start from the beginning if we hit the end and had a hint */
if (ulPos == ulEnd - 1 && HintIndex)
{
ulEnd = HintIndex;
ulPos = HintIndex = 0;
}
else
ulPos++;
}
return ~0U;
}
/*
* @implemented
*/
ULONG NTAPI
RtlFindSetBitsAndClear(PRTL_BITMAP BitMapHeader,
ULONG NumberToFind,
ULONG HintIndex)
{
ULONG ulPos;
ulPos = RtlFindSetBits(BitMapHeader, NumberToFind, HintIndex);
if (ulPos != ~0U)
RtlClearBits(BitMapHeader, ulPos, NumberToFind);
return ulPos;
}
/*
* @implemented
*/
ULONG NTAPI
RtlNumberOfSetBits(PRTL_BITMAP BitMapHeader)
{
ULONG ulSet = 0;
if (BitMapHeader)
{
LPBYTE lpOut = (BYTE *)BitMapHeader->Buffer;
ULONG Length, ulRemainder;
BYTE bMasked;
Length = BitMapHeader->SizeOfBitMap >> 3;
ulRemainder = BitMapHeader->SizeOfBitMap & 0x7;
while (Length--)
{
ulSet += NTDLL_nibbleBitCount[*lpOut >> 4];
ulSet += NTDLL_nibbleBitCount[*lpOut & 0xf];
lpOut++;
}
bMasked = *lpOut & NTDLL_maskBits[ulRemainder];
ulSet += NTDLL_nibbleBitCount[bMasked >> 4];
ulSet += NTDLL_nibbleBitCount[bMasked & 0xf];
}
return ulSet;
}
/*
* @implemented
*/
VOID NTAPI
RtlSetAllBits(IN OUT PRTL_BITMAP BitMapHeader)
{
memset(BitMapHeader->Buffer, 0xff, ((BitMapHeader->SizeOfBitMap + 31) & ~31) >> 3);
}
/*
* @implemented
*/
VOID NTAPI
RtlSetBit(PRTL_BITMAP BitMapHeader,
ULONG BitNumber)
{
PULONG Ptr;
if (BitNumber >= BitMapHeader->SizeOfBitMap)
return;
Ptr = (PULONG)BitMapHeader->Buffer + (BitNumber / 32);
*Ptr |= (1 << (BitNumber % 32));
}
/*
* @implemented
*/
VOID NTAPI
RtlSetBits(PRTL_BITMAP BitMapHeader,
ULONG StartingIndex,
ULONG NumberToSet)
{
LPBYTE lpOut;
if (!BitMapHeader || !NumberToSet ||
StartingIndex >= BitMapHeader->SizeOfBitMap ||
NumberToSet > BitMapHeader->SizeOfBitMap - StartingIndex)
return;
/* FIXME: It might be more efficient/cleaner to manipulate four bytes
* at a time. But beware of the pointer arithmetics...
*/
lpOut = ((BYTE*)BitMapHeader->Buffer) + (StartingIndex >> 3u);
/* Set bits in first byte, if StartingIndex isn't a byte boundary */
if (StartingIndex & 7)
{
if (NumberToSet > 7)
{
/* Set from start bit to the end of the byte */
*lpOut++ |= 0xff << (StartingIndex & 7);
NumberToSet -= (8 - (StartingIndex & 7));
}
else
{
/* Set from the start bit, possibly into the next byte also */
USHORT initialWord = NTDLL_maskBits[NumberToSet] << (StartingIndex & 7);
*lpOut++ |= (initialWord & 0xff);
*lpOut |= (initialWord >> 8);
return;
}
}
/* Set bits up to complete byte count */
if (NumberToSet >> 3)
{
memset(lpOut, 0xff, NumberToSet >> 3);
lpOut = lpOut + (NumberToSet >> 3);
}
/* Set remaining bits, if any */
*lpOut |= NTDLL_maskBits[NumberToSet & 0x7];
}
/*
* @implemented
*/
BOOLEAN NTAPI
RtlTestBit(PRTL_BITMAP BitMapHeader,
ULONG BitNumber)
{
PULONG Ptr;
if (BitNumber >= BitMapHeader->SizeOfBitMap)
return FALSE;
Ptr = (PULONG)BitMapHeader->Buffer + (BitNumber / 32);
return (BOOLEAN)(*Ptr & (1 << (BitNumber % 32)));
}
/*
* @implemented
*/
ULONG NTAPI
RtlFindFirstRunClear(PRTL_BITMAP BitMapHeader,
PULONG StartingIndex)
{
return RtlFindNextForwardRunClear(BitMapHeader, 0, StartingIndex);
}
/*
* @implemented
*/
ULONG NTAPI
RtlNumberOfClearBits(PRTL_BITMAP BitMapHeader)
{
if (BitMapHeader)
return BitMapHeader->SizeOfBitMap - RtlNumberOfSetBits(BitMapHeader);
return 0;
}
/*
* @implemented
*/
ULONG NTAPI
RtlFindClearBitsAndSet(PRTL_BITMAP BitMapHeader,
ULONG NumberToFind,
ULONG HintIndex)
{
ULONG ulPos;
ulPos = RtlFindClearBits(BitMapHeader, NumberToFind, HintIndex);
if (ulPos != ~0U)
RtlSetBits(BitMapHeader, ulPos, NumberToFind);
return ulPos;
}
/*
* @implemented
*/
CCHAR WINAPI RtlFindMostSignificantBit(ULONGLONG ulLong)
{
signed char ret = 32;
DWORD dw;
if (!(dw = (DWORD)(ulLong >> 32)))
{
ret = 0;
dw = (DWORD)ulLong;
}
if (dw & 0xffff0000)
{
dw >>= 16;
ret += 16;
}
if (dw & 0xff00)
{
dw >>= 8;
ret += 8;
}
if (dw & 0xf0)
{
dw >>= 4;
ret += 4;
}
return ret + NTDLL_mostSignificant[dw];
}
/*
* @implemented
*/
CCHAR WINAPI RtlFindLeastSignificantBit(ULONGLONG ulLong)
{
signed char ret = 0;
DWORD dw;
if (!(dw = (DWORD)ulLong))
{
ret = 32;
if (!(dw = (DWORD)(ulLong >> 32))) return -1;
}
if (!(dw & 0xffff))
{
dw >>= 16;
ret += 16;
}
if (!(dw & 0xff))
{
dw >>= 8;
ret += 8;
}
if (!(dw & 0x0f))
{
dw >>= 4;
ret += 4;
}
return ret + NTDLL_leastSignificant[dw & 0x0f];
}
/* EOF */