mirror of
https://github.com/reactos/reactos.git
synced 2024-11-01 04:11:30 +00:00
3856 lines
101 KiB
C
3856 lines
101 KiB
C
/*
|
|
* COPYRIGHT: See COPYING in the top level directory
|
|
* PROJECT: ReactOS TCP/IP protocol driver
|
|
* FILE: include/tcpcore.h
|
|
* PURPOSE: Transmission Control Protocol definitions
|
|
* REVISIONS:
|
|
* CSH 01/01-2003 Ported from linux kernel 2.4.20
|
|
*/
|
|
|
|
/*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* Definitions for the TCP module.
|
|
*
|
|
* Version: @(#)tcp.h 1.0.5 05/23/93
|
|
*
|
|
* Authors: Ross Biro, <bir7@leland.Stanford.Edu>
|
|
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tcpdef.h"
|
|
|
|
|
|
struct socket;
|
|
|
|
|
|
|
|
#if 1 /* skbuff */
|
|
|
|
#define HAVE_ALLOC_SKB /* For the drivers to know */
|
|
#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
|
|
#define SLAB_SKB /* Slabified skbuffs */
|
|
|
|
#define CHECKSUM_NONE 0
|
|
#define CHECKSUM_HW 1
|
|
#define CHECKSUM_UNNECESSARY 2
|
|
|
|
#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES-1)) & ~(SMP_CACHE_BYTES-1))
|
|
#define SKB_MAX_ORDER(X,ORDER) (((PAGE_SIZE<<(ORDER)) - (X) - sizeof(struct skb_shared_info))&~(SMP_CACHE_BYTES-1))
|
|
#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X),0))
|
|
#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0,2))
|
|
|
|
/* A. Checksumming of received packets by device.
|
|
*
|
|
* NONE: device failed to checksum this packet.
|
|
* skb->csum is undefined.
|
|
*
|
|
* UNNECESSARY: device parsed packet and wouldbe verified checksum.
|
|
* skb->csum is undefined.
|
|
* It is bad option, but, unfortunately, many of vendors do this.
|
|
* Apparently with secret goal to sell you new device, when you
|
|
* will add new protocol to your host. F.e. IPv6. 8)
|
|
*
|
|
* HW: the most generic way. Device supplied checksum of _all_
|
|
* the packet as seen by netif_rx in skb->csum.
|
|
* NOTE: Even if device supports only some protocols, but
|
|
* is able to produce some skb->csum, it MUST use HW,
|
|
* not UNNECESSARY.
|
|
*
|
|
* B. Checksumming on output.
|
|
*
|
|
* NONE: skb is checksummed by protocol or csum is not required.
|
|
*
|
|
* HW: device is required to csum packet as seen by hard_start_xmit
|
|
* from skb->h.raw to the end and to record the checksum
|
|
* at skb->h.raw+skb->csum.
|
|
*
|
|
* Device must show its capabilities in dev->features, set
|
|
* at device setup time.
|
|
* NETIF_F_HW_CSUM - it is clever device, it is able to checksum
|
|
* everything.
|
|
* NETIF_F_NO_CSUM - loopback or reliable single hop media.
|
|
* NETIF_F_IP_CSUM - device is dumb. It is able to csum only
|
|
* TCP/UDP over IPv4. Sigh. Vendors like this
|
|
* way by an unknown reason. Though, see comment above
|
|
* about CHECKSUM_UNNECESSARY. 8)
|
|
*
|
|
* Any questions? No questions, good. --ANK
|
|
*/
|
|
|
|
#ifdef __i386__
|
|
#define NET_CALLER(arg) (*(((void**)&arg)-1))
|
|
#else
|
|
#define NET_CALLER(arg) __builtin_return_address(0)
|
|
#endif
|
|
|
|
#ifdef CONFIG_NETFILTER
|
|
struct nf_conntrack {
|
|
atomic_t use;
|
|
void (*destroy)(struct nf_conntrack *);
|
|
};
|
|
|
|
struct nf_ct_info {
|
|
struct nf_conntrack *master;
|
|
};
|
|
#endif
|
|
|
|
struct sk_buff_head {
|
|
/* These two members must be first. */
|
|
struct sk_buff * next;
|
|
struct sk_buff * prev;
|
|
|
|
__u32 qlen;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
struct sk_buff;
|
|
|
|
#define MAX_SKB_FRAGS 6
|
|
|
|
typedef struct skb_frag_struct skb_frag_t;
|
|
|
|
struct skb_frag_struct
|
|
{
|
|
struct page *page;
|
|
__u16 page_offset;
|
|
__u16 size;
|
|
};
|
|
|
|
/* This data is invariant across clones and lives at
|
|
* the end of the header data, ie. at skb->end.
|
|
*/
|
|
struct skb_shared_info {
|
|
atomic_t dataref;
|
|
unsigned int nr_frags;
|
|
struct sk_buff *frag_list;
|
|
skb_frag_t frags[MAX_SKB_FRAGS];
|
|
};
|
|
|
|
struct sk_buff {
|
|
/* These two members must be first. */
|
|
struct sk_buff * next; /* Next buffer in list */
|
|
struct sk_buff * prev; /* Previous buffer in list */
|
|
|
|
struct sk_buff_head * list; /* List we are on */
|
|
struct sock *sk; /* Socket we are owned by */
|
|
struct timeval stamp; /* Time we arrived */
|
|
struct net_device *dev; /* Device we arrived on/are leaving by */
|
|
|
|
/* Transport layer header */
|
|
union
|
|
{
|
|
struct tcphdr *th;
|
|
struct udphdr *uh;
|
|
struct icmphdr *icmph;
|
|
struct igmphdr *igmph;
|
|
struct iphdr *ipiph;
|
|
struct spxhdr *spxh;
|
|
unsigned char *raw;
|
|
} h;
|
|
|
|
/* Network layer header */
|
|
union
|
|
{
|
|
struct iphdr *iph;
|
|
struct ipv6hdr *ipv6h;
|
|
struct arphdr *arph;
|
|
struct ipxhdr *ipxh;
|
|
unsigned char *raw;
|
|
} nh;
|
|
|
|
/* Link layer header */
|
|
union
|
|
{
|
|
struct ethhdr *ethernet;
|
|
unsigned char *raw;
|
|
} mac;
|
|
|
|
struct dst_entry *dst;
|
|
|
|
/*
|
|
* This is the control buffer. It is free to use for every
|
|
* layer. Please put your private variables there. If you
|
|
* want to keep them across layers you have to do a skb_clone()
|
|
* first. This is owned by whoever has the skb queued ATM.
|
|
*/
|
|
char cb[48];
|
|
|
|
unsigned int len; /* Length of actual data */
|
|
unsigned int data_len;
|
|
unsigned int csum; /* Checksum */
|
|
unsigned char __unused, /* Dead field, may be reused */
|
|
cloned, /* head may be cloned (check refcnt to be sure). */
|
|
pkt_type, /* Packet class */
|
|
ip_summed; /* Driver fed us an IP checksum */
|
|
__u32 priority; /* Packet queueing priority */
|
|
atomic_t users; /* User count - see datagram.c,tcp.c */
|
|
unsigned short protocol; /* Packet protocol from driver. */
|
|
unsigned short security; /* Security level of packet */
|
|
unsigned int truesize; /* Buffer size */
|
|
|
|
unsigned char *head; /* Head of buffer */
|
|
unsigned char *data; /* Data head pointer */
|
|
unsigned char *tail; /* Tail pointer */
|
|
unsigned char *end; /* End pointer */
|
|
|
|
void (*destructor)(struct sk_buff *); /* Destruct function */
|
|
#ifdef CONFIG_NETFILTER
|
|
/* Can be used for communication between hooks. */
|
|
unsigned long nfmark;
|
|
/* Cache info */
|
|
__u32 nfcache;
|
|
/* Associated connection, if any */
|
|
struct nf_ct_info *nfct;
|
|
#ifdef CONFIG_NETFILTER_DEBUG
|
|
unsigned int nf_debug;
|
|
#endif
|
|
#endif /*CONFIG_NETFILTER*/
|
|
|
|
#if defined(CONFIG_HIPPI)
|
|
union{
|
|
__u32 ifield;
|
|
} private;
|
|
#endif
|
|
|
|
#ifdef CONFIG_NET_SCHED
|
|
__u32 tc_index; /* traffic control index */
|
|
#endif
|
|
};
|
|
|
|
#define SK_WMEM_MAX 65535
|
|
#define SK_RMEM_MAX 65535
|
|
|
|
#if 1
|
|
//#ifdef __KERNEL__
|
|
/*
|
|
* Handling routines are only of interest to the kernel
|
|
*/
|
|
|
|
extern void __kfree_skb(struct sk_buff *skb);
|
|
extern struct sk_buff * alloc_skb(unsigned int size, int priority);
|
|
extern void kfree_skbmem(struct sk_buff *skb);
|
|
extern struct sk_buff * skb_clone(struct sk_buff *skb, int priority);
|
|
extern struct sk_buff * skb_copy(const struct sk_buff *skb, int priority);
|
|
extern struct sk_buff * pskb_copy(struct sk_buff *skb, int gfp_mask);
|
|
extern int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, int gfp_mask);
|
|
extern struct sk_buff * skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom);
|
|
extern struct sk_buff * skb_copy_expand(const struct sk_buff *skb,
|
|
int newheadroom,
|
|
int newtailroom,
|
|
int priority);
|
|
#define dev_kfree_skb(a) kfree_skb(a)
|
|
extern void skb_over_panic(struct sk_buff *skb, int len, void *here);
|
|
extern void skb_under_panic(struct sk_buff *skb, int len, void *here);
|
|
|
|
/* Internal */
|
|
#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
|
|
|
|
/**
|
|
* skb_queue_empty - check if a queue is empty
|
|
* @list: queue head
|
|
*
|
|
* Returns true if the queue is empty, false otherwise.
|
|
*/
|
|
|
|
static __inline int skb_queue_empty(struct sk_buff_head *list)
|
|
{
|
|
return (list->next == (struct sk_buff *) list);
|
|
}
|
|
|
|
/**
|
|
* skb_get - reference buffer
|
|
* @skb: buffer to reference
|
|
*
|
|
* Makes another reference to a socket buffer and returns a pointer
|
|
* to the buffer.
|
|
*/
|
|
|
|
static __inline struct sk_buff *skb_get(struct sk_buff *skb)
|
|
{
|
|
atomic_inc(&skb->users);
|
|
return skb;
|
|
}
|
|
|
|
/*
|
|
* If users==1, we are the only owner and are can avoid redundant
|
|
* atomic change.
|
|
*/
|
|
|
|
/**
|
|
* kfree_skb - free an sk_buff
|
|
* @skb: buffer to free
|
|
*
|
|
* Drop a reference to the buffer and free it if the usage count has
|
|
* hit zero.
|
|
*/
|
|
|
|
static __inline void kfree_skb(struct sk_buff *skb)
|
|
{
|
|
if (atomic_read(&skb->users) == 1 || atomic_dec_and_test(&skb->users))
|
|
__kfree_skb(skb);
|
|
}
|
|
|
|
/* Use this if you didn't touch the skb state [for fast switching] */
|
|
static __inline void kfree_skb_fast(struct sk_buff *skb)
|
|
{
|
|
if (atomic_read(&skb->users) == 1 || atomic_dec_and_test(&skb->users))
|
|
kfree_skbmem(skb);
|
|
}
|
|
|
|
/**
|
|
* skb_cloned - is the buffer a clone
|
|
* @skb: buffer to check
|
|
*
|
|
* Returns true if the buffer was generated with skb_clone() and is
|
|
* one of multiple shared copies of the buffer. Cloned buffers are
|
|
* shared data so must not be written to under normal circumstances.
|
|
*/
|
|
|
|
static __inline int skb_cloned(struct sk_buff *skb)
|
|
{
|
|
return skb->cloned && atomic_read(&skb_shinfo(skb)->dataref) != 1;
|
|
}
|
|
|
|
/**
|
|
* skb_shared - is the buffer shared
|
|
* @skb: buffer to check
|
|
*
|
|
* Returns true if more than one person has a reference to this
|
|
* buffer.
|
|
*/
|
|
|
|
static __inline int skb_shared(struct sk_buff *skb)
|
|
{
|
|
return (atomic_read(&skb->users) != 1);
|
|
}
|
|
|
|
/**
|
|
* skb_share_check - check if buffer is shared and if so clone it
|
|
* @skb: buffer to check
|
|
* @pri: priority for memory allocation
|
|
*
|
|
* If the buffer is shared the buffer is cloned and the old copy
|
|
* drops a reference. A new clone with a single reference is returned.
|
|
* If the buffer is not shared the original buffer is returned. When
|
|
* being called from interrupt status or with spinlocks held pri must
|
|
* be GFP_ATOMIC.
|
|
*
|
|
* NULL is returned on a memory allocation failure.
|
|
*/
|
|
|
|
static __inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri)
|
|
{
|
|
if (skb_shared(skb)) {
|
|
struct sk_buff *nskb;
|
|
nskb = skb_clone(skb, pri);
|
|
kfree_skb(skb);
|
|
return nskb;
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
|
|
/*
|
|
* Copy shared buffers into a new sk_buff. We effectively do COW on
|
|
* packets to handle cases where we have a local reader and forward
|
|
* and a couple of other messy ones. The normal one is tcpdumping
|
|
* a packet thats being forwarded.
|
|
*/
|
|
|
|
/**
|
|
* skb_unshare - make a copy of a shared buffer
|
|
* @skb: buffer to check
|
|
* @pri: priority for memory allocation
|
|
*
|
|
* If the socket buffer is a clone then this function creates a new
|
|
* copy of the data, drops a reference count on the old copy and returns
|
|
* the new copy with the reference count at 1. If the buffer is not a clone
|
|
* the original buffer is returned. When called with a spinlock held or
|
|
* from interrupt state @pri must be %GFP_ATOMIC
|
|
*
|
|
* %NULL is returned on a memory allocation failure.
|
|
*/
|
|
|
|
static __inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri)
|
|
{
|
|
struct sk_buff *nskb;
|
|
if(!skb_cloned(skb))
|
|
return skb;
|
|
nskb=skb_copy(skb, pri);
|
|
kfree_skb(skb); /* Free our shared copy */
|
|
return nskb;
|
|
}
|
|
|
|
/**
|
|
* skb_peek
|
|
* @list_: list to peek at
|
|
*
|
|
* Peek an &sk_buff. Unlike most other operations you _MUST_
|
|
* be careful with this one. A peek leaves the buffer on the
|
|
* list and someone else may run off with it. You must hold
|
|
* the appropriate locks or have a private queue to do this.
|
|
*
|
|
* Returns %NULL for an empty list or a pointer to the head element.
|
|
* The reference count is not incremented and the reference is therefore
|
|
* volatile. Use with caution.
|
|
*/
|
|
|
|
static __inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
|
|
{
|
|
struct sk_buff *list = ((struct sk_buff *)list_)->next;
|
|
if (list == (struct sk_buff *)list_)
|
|
list = NULL;
|
|
return list;
|
|
}
|
|
|
|
/**
|
|
* skb_peek_tail
|
|
* @list_: list to peek at
|
|
*
|
|
* Peek an &sk_buff. Unlike most other operations you _MUST_
|
|
* be careful with this one. A peek leaves the buffer on the
|
|
* list and someone else may run off with it. You must hold
|
|
* the appropriate locks or have a private queue to do this.
|
|
*
|
|
* Returns %NULL for an empty list or a pointer to the tail element.
|
|
* The reference count is not incremented and the reference is therefore
|
|
* volatile. Use with caution.
|
|
*/
|
|
|
|
static __inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
|
|
{
|
|
struct sk_buff *list = ((struct sk_buff *)list_)->prev;
|
|
if (list == (struct sk_buff *)list_)
|
|
list = NULL;
|
|
return list;
|
|
}
|
|
|
|
/**
|
|
* skb_queue_len - get queue length
|
|
* @list_: list to measure
|
|
*
|
|
* Return the length of an &sk_buff queue.
|
|
*/
|
|
|
|
static __inline __u32 skb_queue_len(struct sk_buff_head *list_)
|
|
{
|
|
return(list_->qlen);
|
|
}
|
|
|
|
static __inline void skb_queue_head_init(struct sk_buff_head *list)
|
|
{
|
|
spin_lock_init(&list->lock);
|
|
list->prev = (struct sk_buff *)list;
|
|
list->next = (struct sk_buff *)list;
|
|
list->qlen = 0;
|
|
}
|
|
|
|
/*
|
|
* Insert an sk_buff at the start of a list.
|
|
*
|
|
* The "__skb_xxxx()" functions are the non-atomic ones that
|
|
* can only be called with interrupts disabled.
|
|
*/
|
|
|
|
/**
|
|
* __skb_queue_head - queue a buffer at the list head
|
|
* @list: list to use
|
|
* @newsk: buffer to queue
|
|
*
|
|
* Queue a buffer at the start of a list. This function takes no locks
|
|
* and you must therefore hold required locks before calling it.
|
|
*
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
|
|
static __inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
|
|
{
|
|
struct sk_buff *prev, *next;
|
|
|
|
newsk->list = list;
|
|
list->qlen++;
|
|
prev = (struct sk_buff *)list;
|
|
next = prev->next;
|
|
newsk->next = next;
|
|
newsk->prev = prev;
|
|
next->prev = newsk;
|
|
prev->next = newsk;
|
|
}
|
|
|
|
|
|
/**
|
|
* skb_queue_head - queue a buffer at the list head
|
|
* @list: list to use
|
|
* @newsk: buffer to queue
|
|
*
|
|
* Queue a buffer at the start of the list. This function takes the
|
|
* list lock and can be used safely with other locking &sk_buff functions
|
|
* safely.
|
|
*
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
|
|
static __inline void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
__skb_queue_head(list, newsk);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* __skb_queue_tail - queue a buffer at the list tail
|
|
* @list: list to use
|
|
* @newsk: buffer to queue
|
|
*
|
|
* Queue a buffer at the end of a list. This function takes no locks
|
|
* and you must therefore hold required locks before calling it.
|
|
*
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
|
|
|
|
static __inline void __skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
|
|
{
|
|
struct sk_buff *prev, *next;
|
|
|
|
newsk->list = list;
|
|
list->qlen++;
|
|
next = (struct sk_buff *)list;
|
|
prev = next->prev;
|
|
newsk->next = next;
|
|
newsk->prev = prev;
|
|
next->prev = newsk;
|
|
prev->next = newsk;
|
|
}
|
|
|
|
/**
|
|
* skb_queue_tail - queue a buffer at the list tail
|
|
* @list: list to use
|
|
* @newsk: buffer to queue
|
|
*
|
|
* Queue a buffer at the tail of the list. This function takes the
|
|
* list lock and can be used safely with other locking &sk_buff functions
|
|
* safely.
|
|
*
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
|
|
static __inline void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
__skb_queue_tail(list, newsk);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* __skb_dequeue - remove from the head of the queue
|
|
* @list: list to dequeue from
|
|
*
|
|
* Remove the head of the list. This function does not take any locks
|
|
* so must be used with appropriate locks held only. The head item is
|
|
* returned or %NULL if the list is empty.
|
|
*/
|
|
|
|
static __inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
|
|
{
|
|
struct sk_buff *next, *prev, *result;
|
|
|
|
prev = (struct sk_buff *) list;
|
|
next = prev->next;
|
|
result = NULL;
|
|
if (next != prev) {
|
|
result = next;
|
|
next = next->next;
|
|
list->qlen--;
|
|
next->prev = prev;
|
|
prev->next = next;
|
|
result->next = NULL;
|
|
result->prev = NULL;
|
|
result->list = NULL;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* skb_dequeue - remove from the head of the queue
|
|
* @list: list to dequeue from
|
|
*
|
|
* Remove the head of the list. The list lock is taken so the function
|
|
* may be used safely with other locking list functions. The head item is
|
|
* returned or %NULL if the list is empty.
|
|
*/
|
|
|
|
static __inline struct sk_buff *skb_dequeue(struct sk_buff_head *list)
|
|
{
|
|
unsigned long flags;
|
|
struct sk_buff *result;
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
result = __skb_dequeue(list);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Insert a packet on a list.
|
|
*/
|
|
|
|
static __inline void __skb_insert(struct sk_buff *newsk,
|
|
struct sk_buff * prev, struct sk_buff *next,
|
|
struct sk_buff_head * list)
|
|
{
|
|
newsk->next = next;
|
|
newsk->prev = prev;
|
|
next->prev = newsk;
|
|
prev->next = newsk;
|
|
newsk->list = list;
|
|
list->qlen++;
|
|
}
|
|
|
|
/**
|
|
* skb_insert - insert a buffer
|
|
* @old: buffer to insert before
|
|
* @newsk: buffer to insert
|
|
*
|
|
* Place a packet before a given packet in a list. The list locks are taken
|
|
* and this function is atomic with respect to other list locked calls
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
|
|
static __inline void skb_insert(struct sk_buff *old, struct sk_buff *newsk)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&old->list->lock, flags);
|
|
__skb_insert(newsk, old->prev, old, old->list);
|
|
spin_unlock_irqrestore(&old->list->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Place a packet after a given packet in a list.
|
|
*/
|
|
|
|
static __inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk)
|
|
{
|
|
__skb_insert(newsk, old, old->next, old->list);
|
|
}
|
|
|
|
/**
|
|
* skb_append - append a buffer
|
|
* @old: buffer to insert after
|
|
* @newsk: buffer to insert
|
|
*
|
|
* Place a packet after a given packet in a list. The list locks are taken
|
|
* and this function is atomic with respect to other list locked calls.
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
|
|
|
|
static __inline void skb_append(struct sk_buff *old, struct sk_buff *newsk)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&old->list->lock, flags);
|
|
__skb_append(old, newsk);
|
|
spin_unlock_irqrestore(&old->list->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* remove sk_buff from list. _Must_ be called atomically, and with
|
|
* the list known..
|
|
*/
|
|
|
|
static __inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
|
|
{
|
|
struct sk_buff * next, * prev;
|
|
|
|
list->qlen--;
|
|
next = skb->next;
|
|
prev = skb->prev;
|
|
skb->next = NULL;
|
|
skb->prev = NULL;
|
|
skb->list = NULL;
|
|
next->prev = prev;
|
|
prev->next = next;
|
|
}
|
|
|
|
/**
|
|
* skb_unlink - remove a buffer from a list
|
|
* @skb: buffer to remove
|
|
*
|
|
* Place a packet after a given packet in a list. The list locks are taken
|
|
* and this function is atomic with respect to other list locked calls
|
|
*
|
|
* Works even without knowing the list it is sitting on, which can be
|
|
* handy at times. It also means that THE LIST MUST EXIST when you
|
|
* unlink. Thus a list must have its contents unlinked before it is
|
|
* destroyed.
|
|
*/
|
|
|
|
static __inline void skb_unlink(struct sk_buff *skb)
|
|
{
|
|
struct sk_buff_head *list = skb->list;
|
|
|
|
if(list) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
if(skb->list == list)
|
|
__skb_unlink(skb, skb->list);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
}
|
|
}
|
|
|
|
/* XXX: more streamlined implementation */
|
|
|
|
/**
|
|
* __skb_dequeue_tail - remove from the tail of the queue
|
|
* @list: list to dequeue from
|
|
*
|
|
* Remove the tail of the list. This function does not take any locks
|
|
* so must be used with appropriate locks held only. The tail item is
|
|
* returned or %NULL if the list is empty.
|
|
*/
|
|
|
|
static __inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
|
|
{
|
|
struct sk_buff *skb = skb_peek_tail(list);
|
|
if (skb)
|
|
__skb_unlink(skb, list);
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* skb_dequeue - remove from the head of the queue
|
|
* @list: list to dequeue from
|
|
*
|
|
* Remove the head of the list. The list lock is taken so the function
|
|
* may be used safely with other locking list functions. The tail item is
|
|
* returned or %NULL if the list is empty.
|
|
*/
|
|
|
|
static __inline struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
|
|
{
|
|
unsigned long flags;
|
|
struct sk_buff *result;
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
result = __skb_dequeue_tail(list);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
return result;
|
|
}
|
|
|
|
static __inline int skb_is_nonlinear(const struct sk_buff *skb)
|
|
{
|
|
return skb->data_len;
|
|
}
|
|
|
|
static __inline int skb_headlen(const struct sk_buff *skb)
|
|
{
|
|
return skb->len - skb->data_len;
|
|
}
|
|
|
|
#define SKB_PAGE_ASSERT(skb) do { if (skb_shinfo(skb)->nr_frags) out_of_line_bug(); } while (0)
|
|
#define SKB_FRAG_ASSERT(skb) do { if (skb_shinfo(skb)->frag_list) out_of_line_bug(); } while (0)
|
|
#define SKB_LINEAR_ASSERT(skb) do { if (skb_is_nonlinear(skb)) out_of_line_bug(); } while (0)
|
|
|
|
/*
|
|
* Add data to an sk_buff
|
|
*/
|
|
|
|
static __inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
unsigned char *tmp=skb->tail;
|
|
SKB_LINEAR_ASSERT(skb);
|
|
skb->tail+=len;
|
|
skb->len+=len;
|
|
return tmp;
|
|
}
|
|
|
|
/**
|
|
* skb_put - add data to a buffer
|
|
* @skb: buffer to use
|
|
* @len: amount of data to add
|
|
*
|
|
* This function extends the used data area of the buffer. If this would
|
|
* exceed the total buffer size the kernel will panic. A pointer to the
|
|
* first byte of the extra data is returned.
|
|
*/
|
|
|
|
static __inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
#if 0
|
|
unsigned char *tmp=skb->tail;
|
|
SKB_LINEAR_ASSERT(skb);
|
|
skb->tail+=len;
|
|
skb->len+=len;
|
|
if(skb->tail>skb->end) {
|
|
skb_over_panic(skb, len, current_text_addr());
|
|
}
|
|
return tmp;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
static __inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
skb->data-=len;
|
|
skb->len+=len;
|
|
return skb->data;
|
|
}
|
|
|
|
/**
|
|
* skb_push - add data to the start of a buffer
|
|
* @skb: buffer to use
|
|
* @len: amount of data to add
|
|
*
|
|
* This function extends the used data area of the buffer at the buffer
|
|
* start. If this would exceed the total buffer headroom the kernel will
|
|
* panic. A pointer to the first byte of the extra data is returned.
|
|
*/
|
|
|
|
static __inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
#if 0
|
|
skb->data-=len;
|
|
skb->len+=len;
|
|
if(skb->data<skb->head) {
|
|
skb_under_panic(skb, len, current_text_addr());
|
|
}
|
|
return skb->data;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
static __inline char *__skb_pull(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
skb->len-=len;
|
|
if (skb->len < skb->data_len)
|
|
out_of_line_bug();
|
|
return skb->data+=len;
|
|
}
|
|
|
|
/**
|
|
* skb_pull - remove data from the start of a buffer
|
|
* @skb: buffer to use
|
|
* @len: amount of data to remove
|
|
*
|
|
* This function removes data from the start of a buffer, returning
|
|
* the memory to the headroom. A pointer to the next data in the buffer
|
|
* is returned. Once the data has been pulled future pushes will overwrite
|
|
* the old data.
|
|
*/
|
|
|
|
static __inline unsigned char * skb_pull(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (len > skb->len)
|
|
return NULL;
|
|
return __skb_pull(skb,len);
|
|
}
|
|
|
|
extern unsigned char * __pskb_pull_tail(struct sk_buff *skb, int delta);
|
|
|
|
static __inline char *__pskb_pull(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (len > skb_headlen(skb) &&
|
|
__pskb_pull_tail(skb, len-skb_headlen(skb)) == NULL)
|
|
return NULL;
|
|
skb->len -= len;
|
|
return skb->data += len;
|
|
}
|
|
|
|
static __inline unsigned char * pskb_pull(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (len > skb->len)
|
|
return NULL;
|
|
return __pskb_pull(skb,len);
|
|
}
|
|
|
|
static __inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (len <= skb_headlen(skb))
|
|
return 1;
|
|
if (len > skb->len)
|
|
return 0;
|
|
return (__pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL);
|
|
}
|
|
|
|
/**
|
|
* skb_headroom - bytes at buffer head
|
|
* @skb: buffer to check
|
|
*
|
|
* Return the number of bytes of free space at the head of an &sk_buff.
|
|
*/
|
|
|
|
static __inline int skb_headroom(const struct sk_buff *skb)
|
|
{
|
|
return skb->data-skb->head;
|
|
}
|
|
|
|
/**
|
|
* skb_tailroom - bytes at buffer end
|
|
* @skb: buffer to check
|
|
*
|
|
* Return the number of bytes of free space at the tail of an sk_buff
|
|
*/
|
|
|
|
static __inline int skb_tailroom(const struct sk_buff *skb)
|
|
{
|
|
return skb_is_nonlinear(skb) ? 0 : skb->end-skb->tail;
|
|
}
|
|
|
|
/**
|
|
* skb_reserve - adjust headroom
|
|
* @skb: buffer to alter
|
|
* @len: bytes to move
|
|
*
|
|
* Increase the headroom of an empty &sk_buff by reducing the tail
|
|
* room. This is only allowed for an empty buffer.
|
|
*/
|
|
|
|
static __inline void skb_reserve(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
skb->data+=len;
|
|
skb->tail+=len;
|
|
}
|
|
|
|
extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
|
|
|
|
static __inline void __skb_trim(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (!skb->data_len) {
|
|
skb->len = len;
|
|
skb->tail = skb->data+len;
|
|
} else {
|
|
___pskb_trim(skb, len, 0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* skb_trim - remove end from a buffer
|
|
* @skb: buffer to alter
|
|
* @len: new length
|
|
*
|
|
* Cut the length of a buffer down by removing data from the tail. If
|
|
* the buffer is already under the length specified it is not modified.
|
|
*/
|
|
|
|
static __inline void skb_trim(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (skb->len > len) {
|
|
__skb_trim(skb, len);
|
|
}
|
|
}
|
|
|
|
|
|
static __inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (!skb->data_len) {
|
|
skb->len = len;
|
|
skb->tail = skb->data+len;
|
|
return 0;
|
|
} else {
|
|
return ___pskb_trim(skb, len, 1);
|
|
}
|
|
}
|
|
|
|
static __inline int pskb_trim(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (len < skb->len)
|
|
return __pskb_trim(skb, len);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* skb_orphan - orphan a buffer
|
|
* @skb: buffer to orphan
|
|
*
|
|
* If a buffer currently has an owner then we call the owner's
|
|
* destructor function and make the @skb unowned. The buffer continues
|
|
* to exist but is no longer charged to its former owner.
|
|
*/
|
|
|
|
|
|
static __inline void skb_orphan(struct sk_buff *skb)
|
|
{
|
|
if (skb->destructor)
|
|
skb->destructor(skb);
|
|
skb->destructor = NULL;
|
|
skb->sk = NULL;
|
|
}
|
|
|
|
/**
|
|
* skb_purge - empty a list
|
|
* @list: list to empty
|
|
*
|
|
* Delete all buffers on an &sk_buff list. Each buffer is removed from
|
|
* the list and one reference dropped. This function takes the list
|
|
* lock and is atomic with respect to other list locking functions.
|
|
*/
|
|
|
|
|
|
static __inline void skb_queue_purge(struct sk_buff_head *list)
|
|
{
|
|
struct sk_buff *skb;
|
|
while ((skb=skb_dequeue(list))!=NULL)
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
/**
|
|
* __skb_purge - empty a list
|
|
* @list: list to empty
|
|
*
|
|
* Delete all buffers on an &sk_buff list. Each buffer is removed from
|
|
* the list and one reference dropped. This function does not take the
|
|
* list lock and the caller must hold the relevant locks to use it.
|
|
*/
|
|
|
|
|
|
static __inline void __skb_queue_purge(struct sk_buff_head *list)
|
|
{
|
|
struct sk_buff *skb;
|
|
while ((skb=__skb_dequeue(list))!=NULL)
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
/**
|
|
* __dev_alloc_skb - allocate an skbuff for sending
|
|
* @length: length to allocate
|
|
* @gfp_mask: get_free_pages mask, passed to alloc_skb
|
|
*
|
|
* Allocate a new &sk_buff and assign it a usage count of one. The
|
|
* buffer has unspecified headroom built in. Users should allocate
|
|
* the headroom they think they need without accounting for the
|
|
* built in space. The built in space is used for optimisations.
|
|
*
|
|
* %NULL is returned in there is no free memory.
|
|
*/
|
|
|
|
static __inline struct sk_buff *__dev_alloc_skb(unsigned int length,
|
|
int gfp_mask)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = alloc_skb(length+16, gfp_mask);
|
|
if (skb)
|
|
skb_reserve(skb,16);
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* dev_alloc_skb - allocate an skbuff for sending
|
|
* @length: length to allocate
|
|
*
|
|
* Allocate a new &sk_buff and assign it a usage count of one. The
|
|
* buffer has unspecified headroom built in. Users should allocate
|
|
* the headroom they think they need without accounting for the
|
|
* built in space. The built in space is used for optimisations.
|
|
*
|
|
* %NULL is returned in there is no free memory. Although this function
|
|
* allocates memory it can be called from an interrupt.
|
|
*/
|
|
|
|
static __inline struct sk_buff *dev_alloc_skb(unsigned int length)
|
|
{
|
|
#if 0
|
|
return __dev_alloc_skb(length, GFP_ATOMIC);
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* skb_cow - copy header of skb when it is required
|
|
* @skb: buffer to cow
|
|
* @headroom: needed headroom
|
|
*
|
|
* If the skb passed lacks sufficient headroom or its data part
|
|
* is shared, data is reallocated. If reallocation fails, an error
|
|
* is returned and original skb is not changed.
|
|
*
|
|
* The result is skb with writable area skb->head...skb->tail
|
|
* and at least @headroom of space at head.
|
|
*/
|
|
|
|
static __inline int
|
|
skb_cow(struct sk_buff *skb, unsigned int headroom)
|
|
{
|
|
#if 0
|
|
int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
|
|
|
|
if (delta < 0)
|
|
delta = 0;
|
|
|
|
if (delta || skb_cloned(skb))
|
|
return pskb_expand_head(skb, (delta+15)&~15, 0, GFP_ATOMIC);
|
|
return 0;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* skb_linearize - convert paged skb to linear one
|
|
* @skb: buffer to linarize
|
|
* @gfp: allocation mode
|
|
*
|
|
* If there is no free memory -ENOMEM is returned, otherwise zero
|
|
* is returned and the old skb data released. */
|
|
int skb_linearize(struct sk_buff *skb, int gfp);
|
|
|
|
static __inline void *kmap_skb_frag(const skb_frag_t *frag)
|
|
{
|
|
#if 0
|
|
#ifdef CONFIG_HIGHMEM
|
|
if (in_irq())
|
|
out_of_line_bug();
|
|
|
|
local_bh_disable();
|
|
#endif
|
|
return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
static __inline void kunmap_skb_frag(void *vaddr)
|
|
{
|
|
#if 0
|
|
kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
|
|
#ifdef CONFIG_HIGHMEM
|
|
local_bh_enable();
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#define skb_queue_walk(queue, skb) \
|
|
for (skb = (queue)->next; \
|
|
(skb != (struct sk_buff *)(queue)); \
|
|
skb=skb->next)
|
|
|
|
|
|
extern struct sk_buff * skb_recv_datagram(struct sock *sk,unsigned flags,int noblock, int *err);
|
|
extern unsigned int datagram_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait);
|
|
extern int skb_copy_datagram(const struct sk_buff *from, int offset, char *to,int size);
|
|
extern int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, struct iovec *to,int size);
|
|
extern int skb_copy_and_csum_datagram(const struct sk_buff *skb, int offset, u8 *to, int len, unsigned int *csump);
|
|
extern int skb_copy_and_csum_datagram_iovec(const struct sk_buff *skb, int hlen, struct iovec *iov);
|
|
extern void skb_free_datagram(struct sock * sk, struct sk_buff *skb);
|
|
|
|
extern unsigned int skb_checksum(const struct sk_buff *skb, int offset, int len, unsigned int csum);
|
|
extern int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
|
|
extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len, unsigned int csum);
|
|
extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
|
|
|
|
extern void skb_init(void);
|
|
extern void skb_add_mtu(int mtu);
|
|
|
|
#ifdef CONFIG_NETFILTER
|
|
static __inline void
|
|
nf_conntrack_put(struct nf_ct_info *nfct)
|
|
{
|
|
if (nfct && atomic_dec_and_test(&nfct->master->use))
|
|
nfct->master->destroy(nfct->master);
|
|
}
|
|
static __inline void
|
|
nf_conntrack_get(struct nf_ct_info *nfct)
|
|
{
|
|
if (nfct)
|
|
atomic_inc(&nfct->master->use);
|
|
}
|
|
#endif
|
|
|
|
|
|
#endif /* skbuff */
|
|
|
|
|
|
|
|
|
|
|
|
struct sock;
|
|
|
|
typedef struct sockaddr
|
|
{
|
|
int x;
|
|
} _sockaddr;
|
|
|
|
|
|
struct msghdr {
|
|
void * msg_name; /* Socket name */
|
|
int msg_namelen; /* Length of name */
|
|
struct iovec * msg_iov; /* Data blocks */
|
|
__kernel_size_t msg_iovlen; /* Number of blocks */
|
|
void * msg_control; /* Per protocol magic (eg BSD file descriptor passing) */
|
|
__kernel_size_t msg_controllen; /* Length of cmsg list */
|
|
unsigned msg_flags;
|
|
};
|
|
|
|
|
|
/* IP protocol blocks we attach to sockets.
|
|
* socket layer -> transport layer interface
|
|
* transport -> network interface is defined by struct inet_proto
|
|
*/
|
|
struct proto {
|
|
void (*close)(struct sock *sk,
|
|
long timeout);
|
|
int (*connect)(struct sock *sk,
|
|
struct sockaddr *uaddr,
|
|
int addr_len);
|
|
int (*disconnect)(struct sock *sk, int flags);
|
|
|
|
struct sock * (*accept) (struct sock *sk, int flags, int *err);
|
|
|
|
int (*ioctl)(struct sock *sk, int cmd,
|
|
unsigned long arg);
|
|
int (*init)(struct sock *sk);
|
|
int (*destroy)(struct sock *sk);
|
|
void (*shutdown)(struct sock *sk, int how);
|
|
int (*setsockopt)(struct sock *sk, int level,
|
|
int optname, char *optval, int optlen);
|
|
int (*getsockopt)(struct sock *sk, int level,
|
|
int optname, char *optval,
|
|
int *option);
|
|
int (*sendmsg)(struct sock *sk, struct msghdr *msg,
|
|
int len);
|
|
int (*recvmsg)(struct sock *sk, struct msghdr *msg,
|
|
int len, int noblock, int flags,
|
|
int *addr_len);
|
|
int (*bind)(struct sock *sk,
|
|
struct sockaddr *uaddr, int addr_len);
|
|
|
|
int (*backlog_rcv) (struct sock *sk,
|
|
struct sk_buff *skb);
|
|
|
|
/* Keeping track of sk's, looking them up, and port selection methods. */
|
|
void (*hash)(struct sock *sk);
|
|
void (*unhash)(struct sock *sk);
|
|
int (*get_port)(struct sock *sk, unsigned short snum);
|
|
|
|
char name[32];
|
|
|
|
struct {
|
|
int inuse;
|
|
} stats[32];
|
|
// u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
|
|
// } stats[NR_CPUS];
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* This defines a selective acknowledgement block. */
|
|
struct tcp_sack_block {
|
|
__u32 start_seq;
|
|
__u32 end_seq;
|
|
};
|
|
|
|
|
|
struct tcp_opt {
|
|
int tcp_header_len; /* Bytes of tcp header to send */
|
|
|
|
/*
|
|
* Header prediction flags
|
|
* 0x5?10 << 16 + snd_wnd in net byte order
|
|
*/
|
|
__u32 pred_flags;
|
|
|
|
/*
|
|
* RFC793 variables by their proper names. This means you can
|
|
* read the code and the spec side by side (and laugh ...)
|
|
* See RFC793 and RFC1122. The RFC writes these in capitals.
|
|
*/
|
|
__u32 rcv_nxt; /* What we want to receive next */
|
|
__u32 snd_nxt; /* Next sequence we send */
|
|
|
|
__u32 snd_una; /* First byte we want an ack for */
|
|
__u32 snd_sml; /* Last byte of the most recently transmitted small packet */
|
|
__u32 rcv_tstamp; /* timestamp of last received ACK (for keepalives) */
|
|
__u32 lsndtime; /* timestamp of last sent data packet (for restart window) */
|
|
|
|
/* Delayed ACK control data */
|
|
struct {
|
|
__u8 pending; /* ACK is pending */
|
|
__u8 quick; /* Scheduled number of quick acks */
|
|
__u8 pingpong; /* The session is interactive */
|
|
__u8 blocked; /* Delayed ACK was blocked by socket lock*/
|
|
__u32 ato; /* Predicted tick of soft clock */
|
|
unsigned long timeout; /* Currently scheduled timeout */
|
|
__u32 lrcvtime; /* timestamp of last received data packet*/
|
|
__u16 last_seg_size; /* Size of last incoming segment */
|
|
__u16 rcv_mss; /* MSS used for delayed ACK decisions */
|
|
} ack;
|
|
|
|
/* Data for direct copy to user */
|
|
struct {
|
|
//struct sk_buff_head prequeue;
|
|
struct task_struct *task;
|
|
struct iovec *iov;
|
|
int memory;
|
|
int len;
|
|
} ucopy;
|
|
|
|
__u32 snd_wl1; /* Sequence for window update */
|
|
__u32 snd_wnd; /* The window we expect to receive */
|
|
__u32 max_window; /* Maximal window ever seen from peer */
|
|
__u32 pmtu_cookie; /* Last pmtu seen by socket */
|
|
__u16 mss_cache; /* Cached effective mss, not including SACKS */
|
|
__u16 mss_clamp; /* Maximal mss, negotiated at connection setup */
|
|
__u16 ext_header_len; /* Network protocol overhead (IP/IPv6 options) */
|
|
__u8 ca_state; /* State of fast-retransmit machine */
|
|
__u8 retransmits; /* Number of unrecovered RTO timeouts. */
|
|
|
|
__u8 reordering; /* Packet reordering metric. */
|
|
__u8 queue_shrunk; /* Write queue has been shrunk recently.*/
|
|
__u8 defer_accept; /* User waits for some data after accept() */
|
|
|
|
/* RTT measurement */
|
|
__u8 backoff; /* backoff */
|
|
__u32 srtt; /* smoothed round trip time << 3 */
|
|
__u32 mdev; /* medium deviation */
|
|
__u32 mdev_max; /* maximal mdev for the last rtt period */
|
|
__u32 rttvar; /* smoothed mdev_max */
|
|
__u32 rtt_seq; /* sequence number to update rttvar */
|
|
__u32 rto; /* retransmit timeout */
|
|
|
|
__u32 packets_out; /* Packets which are "in flight" */
|
|
__u32 left_out; /* Packets which leaved network */
|
|
__u32 retrans_out; /* Retransmitted packets out */
|
|
|
|
|
|
/*
|
|
* Slow start and congestion control (see also Nagle, and Karn & Partridge)
|
|
*/
|
|
__u32 snd_ssthresh; /* Slow start size threshold */
|
|
__u32 snd_cwnd; /* Sending congestion window */
|
|
__u16 snd_cwnd_cnt; /* Linear increase counter */
|
|
__u16 snd_cwnd_clamp; /* Do not allow snd_cwnd to grow above this */
|
|
__u32 snd_cwnd_used;
|
|
__u32 snd_cwnd_stamp;
|
|
|
|
/* Two commonly used timers in both sender and receiver paths. */
|
|
unsigned long timeout;
|
|
struct timer_list retransmit_timer; /* Resend (no ack) */
|
|
struct timer_list delack_timer; /* Ack delay */
|
|
|
|
struct sk_buff_head out_of_order_queue; /* Out of order segments go here */
|
|
|
|
struct tcp_func *af_specific; /* Operations which are AF_INET{4,6} specific */
|
|
struct sk_buff *send_head; /* Front of stuff to transmit */
|
|
struct page *sndmsg_page; /* Cached page for sendmsg */
|
|
u32 sndmsg_off; /* Cached offset for sendmsg */
|
|
|
|
__u32 rcv_wnd; /* Current receiver window */
|
|
__u32 rcv_wup; /* rcv_nxt on last window update sent */
|
|
__u32 write_seq; /* Tail(+1) of data held in tcp send buffer */
|
|
__u32 pushed_seq; /* Last pushed seq, required to talk to windows */
|
|
__u32 copied_seq; /* Head of yet unread data */
|
|
/*
|
|
* Options received (usually on last packet, some only on SYN packets).
|
|
*/
|
|
char tstamp_ok, /* TIMESTAMP seen on SYN packet */
|
|
wscale_ok, /* Wscale seen on SYN packet */
|
|
sack_ok; /* SACK seen on SYN packet */
|
|
char saw_tstamp; /* Saw TIMESTAMP on last packet */
|
|
__u8 snd_wscale; /* Window scaling received from sender */
|
|
__u8 rcv_wscale; /* Window scaling to send to receiver */
|
|
__u8 nonagle; /* Disable Nagle algorithm? */
|
|
__u8 keepalive_probes; /* num of allowed keep alive probes */
|
|
|
|
/* PAWS/RTTM data */
|
|
__u32 rcv_tsval; /* Time stamp value */
|
|
__u32 rcv_tsecr; /* Time stamp echo reply */
|
|
__u32 ts_recent; /* Time stamp to echo next */
|
|
long ts_recent_stamp;/* Time we stored ts_recent (for aging) */
|
|
|
|
/* SACKs data */
|
|
__u16 user_mss; /* mss requested by user in ioctl */
|
|
__u8 dsack; /* D-SACK is scheduled */
|
|
__u8 eff_sacks; /* Size of SACK array to send with next packet */
|
|
struct tcp_sack_block duplicate_sack[1]; /* D-SACK block */
|
|
struct tcp_sack_block selective_acks[4]; /* The SACKS themselves*/
|
|
|
|
__u32 window_clamp; /* Maximal window to advertise */
|
|
__u32 rcv_ssthresh; /* Current window clamp */
|
|
__u8 probes_out; /* unanswered 0 window probes */
|
|
__u8 num_sacks; /* Number of SACK blocks */
|
|
__u16 advmss; /* Advertised MSS */
|
|
|
|
__u8 syn_retries; /* num of allowed syn retries */
|
|
__u8 ecn_flags; /* ECN status bits. */
|
|
__u16 prior_ssthresh; /* ssthresh saved at recovery start */
|
|
__u32 lost_out; /* Lost packets */
|
|
__u32 sacked_out; /* SACK'd packets */
|
|
__u32 fackets_out; /* FACK'd packets */
|
|
__u32 high_seq; /* snd_nxt at onset of congestion */
|
|
|
|
__u32 retrans_stamp; /* Timestamp of the last retransmit,
|
|
* also used in SYN-SENT to remember stamp of
|
|
* the first SYN. */
|
|
__u32 undo_marker; /* tracking retrans started here. */
|
|
int undo_retrans; /* number of undoable retransmissions. */
|
|
__u32 urg_seq; /* Seq of received urgent pointer */
|
|
__u16 urg_data; /* Saved octet of OOB data and control flags */
|
|
__u8 pending; /* Scheduled timer event */
|
|
__u8 urg_mode; /* In urgent mode */
|
|
__u32 snd_up; /* Urgent pointer */
|
|
|
|
/* The syn_wait_lock is necessary only to avoid tcp_get_info having
|
|
* to grab the main lock sock while browsing the listening hash
|
|
* (otherwise it's deadlock prone).
|
|
* This lock is acquired in read mode only from tcp_get_info() and
|
|
* it's acquired in write mode _only_ from code that is actively
|
|
* changing the syn_wait_queue. All readers that are holding
|
|
* the master sock lock don't need to grab this lock in read mode
|
|
* too as the syn_wait_queue writes are always protected from
|
|
* the main sock lock.
|
|
*/
|
|
rwlock_t syn_wait_lock;
|
|
struct tcp_listen_opt *listen_opt;
|
|
|
|
/* FIFO of established children */
|
|
struct open_request *accept_queue;
|
|
struct open_request *accept_queue_tail;
|
|
|
|
int write_pending; /* A write to socket waits to start. */
|
|
|
|
unsigned int keepalive_time; /* time before keep alive takes place */
|
|
unsigned int keepalive_intvl; /* time interval between keep alive probes */
|
|
int linger2;
|
|
|
|
unsigned long last_synq_overflow;
|
|
};
|
|
|
|
|
|
|
|
|
|
/* This is the per-socket lock. The spinlock provides a synchronization
|
|
* between user contexts and software interrupt processing, whereas the
|
|
* mini-semaphore synchronizes multiple users amongst themselves.
|
|
*/
|
|
typedef struct {
|
|
spinlock_t slock;
|
|
unsigned int users;
|
|
wait_queue_head_t wq;
|
|
} socket_lock_t;
|
|
|
|
struct sock {
|
|
/* Socket demultiplex comparisons on incoming packets. */
|
|
__u32 daddr; /* Foreign IPv4 addr */
|
|
__u32 rcv_saddr; /* Bound local IPv4 addr */
|
|
__u16 dport; /* Destination port */
|
|
unsigned short num; /* Local port */
|
|
int bound_dev_if; /* Bound device index if != 0 */
|
|
|
|
/* Main hash linkage for various protocol lookup tables. */
|
|
struct sock *next;
|
|
struct sock **pprev;
|
|
struct sock *bind_next;
|
|
struct sock **bind_pprev;
|
|
|
|
volatile unsigned char state, /* Connection state */
|
|
zapped; /* In ax25 & ipx means not linked */
|
|
__u16 sport; /* Source port */
|
|
|
|
unsigned short family; /* Address family */
|
|
unsigned char reuse; /* SO_REUSEADDR setting */
|
|
unsigned char shutdown;
|
|
atomic_t refcnt; /* Reference count */
|
|
|
|
socket_lock_t lock; /* Synchronizer... */
|
|
int rcvbuf; /* Size of receive buffer in bytes */
|
|
|
|
wait_queue_head_t *sleep; /* Sock wait queue */
|
|
struct dst_entry *dst_cache; /* Destination cache */
|
|
rwlock_t dst_lock;
|
|
atomic_t rmem_alloc; /* Receive queue bytes committed */
|
|
struct sk_buff_head receive_queue; /* Incoming packets */
|
|
atomic_t wmem_alloc; /* Transmit queue bytes committed */
|
|
struct sk_buff_head write_queue; /* Packet sending queue */
|
|
atomic_t omem_alloc; /* "o" is "option" or "other" */
|
|
int wmem_queued; /* Persistent queue size */
|
|
int forward_alloc; /* Space allocated forward. */
|
|
__u32 saddr; /* Sending source */
|
|
unsigned int allocation; /* Allocation mode */
|
|
int sndbuf; /* Size of send buffer in bytes */
|
|
struct sock *prev;
|
|
|
|
/* Not all are volatile, but some are, so we might as well say they all are.
|
|
* XXX Make this a flag word -DaveM
|
|
*/
|
|
volatile char dead,
|
|
done,
|
|
urginline,
|
|
keepopen,
|
|
linger,
|
|
destroy,
|
|
no_check,
|
|
broadcast,
|
|
bsdism;
|
|
unsigned char debug;
|
|
unsigned char rcvtstamp;
|
|
unsigned char use_write_queue;
|
|
unsigned char userlocks;
|
|
/* Hole of 3 bytes. Try to pack. */
|
|
int route_caps;
|
|
int proc;
|
|
unsigned long lingertime;
|
|
|
|
int hashent;
|
|
struct sock *pair;
|
|
|
|
/* The backlog queue is special, it is always used with
|
|
* the per-socket spinlock held and requires low latency
|
|
* access. Therefore we special case it's implementation.
|
|
*/
|
|
struct {
|
|
struct sk_buff *head;
|
|
struct sk_buff *tail;
|
|
} backlog;
|
|
|
|
rwlock_t callback_lock;
|
|
|
|
/* Error queue, rarely used. */
|
|
struct sk_buff_head error_queue;
|
|
|
|
struct proto *prot;
|
|
|
|
#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
|
|
union {
|
|
struct ipv6_pinfo af_inet6;
|
|
} net_pinfo;
|
|
#endif
|
|
|
|
union {
|
|
struct tcp_opt af_tcp;
|
|
#if defined(CONFIG_INET) || defined (CONFIG_INET_MODULE)
|
|
struct raw_opt tp_raw4;
|
|
#endif
|
|
#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
|
|
struct raw6_opt tp_raw;
|
|
#endif /* CONFIG_IPV6 */
|
|
#if defined(CONFIG_SPX) || defined (CONFIG_SPX_MODULE)
|
|
struct spx_opt af_spx;
|
|
#endif /* CONFIG_SPX */
|
|
|
|
} tp_pinfo;
|
|
|
|
int err, err_soft; /* Soft holds errors that don't
|
|
cause failure but are the cause
|
|
of a persistent failure not just
|
|
'timed out' */
|
|
unsigned short ack_backlog;
|
|
unsigned short max_ack_backlog;
|
|
__u32 priority;
|
|
unsigned short type;
|
|
unsigned char localroute; /* Route locally only */
|
|
unsigned char protocol;
|
|
// struct ucred peercred;
|
|
int rcvlowat;
|
|
long rcvtimeo;
|
|
long sndtimeo;
|
|
|
|
#ifdef CONFIG_FILTER
|
|
/* Socket Filtering Instructions */
|
|
struct sk_filter *filter;
|
|
#endif /* CONFIG_FILTER */
|
|
|
|
/* This is where all the private (optional) areas that don't
|
|
* overlap will eventually live.
|
|
*/
|
|
union {
|
|
void *destruct_hook;
|
|
// struct unix_opt af_unix;
|
|
#if defined(CONFIG_INET) || defined (CONFIG_INET_MODULE)
|
|
struct inet_opt af_inet;
|
|
#endif
|
|
#if defined(CONFIG_ATALK) || defined(CONFIG_ATALK_MODULE)
|
|
struct atalk_sock af_at;
|
|
#endif
|
|
#if defined(CONFIG_IPX) || defined(CONFIG_IPX_MODULE)
|
|
struct ipx_opt af_ipx;
|
|
#endif
|
|
#if defined (CONFIG_DECNET) || defined(CONFIG_DECNET_MODULE)
|
|
struct dn_scp dn;
|
|
#endif
|
|
#if defined (CONFIG_PACKET) || defined(CONFIG_PACKET_MODULE)
|
|
struct packet_opt *af_packet;
|
|
#endif
|
|
#if defined(CONFIG_X25) || defined(CONFIG_X25_MODULE)
|
|
x25_cb *x25;
|
|
#endif
|
|
#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
|
|
ax25_cb *ax25;
|
|
#endif
|
|
#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
|
|
nr_cb *nr;
|
|
#endif
|
|
#if defined(CONFIG_ROSE) || defined(CONFIG_ROSE_MODULE)
|
|
rose_cb *rose;
|
|
#endif
|
|
#if defined(CONFIG_PPPOE) || defined(CONFIG_PPPOE_MODULE)
|
|
struct pppox_opt *pppox;
|
|
#endif
|
|
struct netlink_opt *af_netlink;
|
|
#if defined(CONFIG_ECONET) || defined(CONFIG_ECONET_MODULE)
|
|
struct econet_opt *af_econet;
|
|
#endif
|
|
#if defined(CONFIG_ATM) || defined(CONFIG_ATM_MODULE)
|
|
struct atm_vcc *af_atm;
|
|
#endif
|
|
#if defined(CONFIG_IRDA) || defined(CONFIG_IRDA_MODULE)
|
|
struct irda_sock *irda;
|
|
#endif
|
|
#if defined(CONFIG_WAN_ROUTER) || defined(CONFIG_WAN_ROUTER_MODULE)
|
|
struct wanpipe_opt *af_wanpipe;
|
|
#endif
|
|
} protinfo;
|
|
|
|
|
|
/* This part is used for the timeout functions. */
|
|
struct timer_list timer; /* This is the sock cleanup timer. */
|
|
struct timeval stamp;
|
|
|
|
/* Identd and reporting IO signals */
|
|
struct socket *socket;
|
|
|
|
/* RPC layer private data */
|
|
void *user_data;
|
|
|
|
/* Callbacks */
|
|
void (*state_change)(struct sock *sk);
|
|
void (*data_ready)(struct sock *sk,int bytes);
|
|
void (*write_space)(struct sock *sk);
|
|
void (*error_report)(struct sock *sk);
|
|
|
|
int (*backlog_rcv) (struct sock *sk,
|
|
struct sk_buff *skb);
|
|
void (*destruct)(struct sock *sk);
|
|
};
|
|
|
|
|
|
|
|
|
|
#if 1 /* dst (_NET_DST_H) */
|
|
|
|
#if 0
|
|
#include <linux/config.h>
|
|
#include <net/neighbour.h>
|
|
#endif
|
|
|
|
/*
|
|
* 0 - no debugging messages
|
|
* 1 - rare events and bugs (default)
|
|
* 2 - trace mode.
|
|
*/
|
|
#define RT_CACHE_DEBUG 0
|
|
|
|
#define DST_GC_MIN (1*HZ)
|
|
#define DST_GC_INC (5*HZ)
|
|
#define DST_GC_MAX (120*HZ)
|
|
|
|
struct sk_buff;
|
|
|
|
struct dst_entry
|
|
{
|
|
struct dst_entry *next;
|
|
atomic_t __refcnt; /* client references */
|
|
int __use;
|
|
struct net_device *dev;
|
|
int obsolete;
|
|
int flags;
|
|
#define DST_HOST 1
|
|
unsigned long lastuse;
|
|
unsigned long expires;
|
|
|
|
unsigned mxlock;
|
|
unsigned pmtu;
|
|
unsigned window;
|
|
unsigned rtt;
|
|
unsigned rttvar;
|
|
unsigned ssthresh;
|
|
unsigned cwnd;
|
|
unsigned advmss;
|
|
unsigned reordering;
|
|
|
|
unsigned long rate_last; /* rate limiting for ICMP */
|
|
unsigned long rate_tokens;
|
|
|
|
int error;
|
|
|
|
struct neighbour *neighbour;
|
|
struct hh_cache *hh;
|
|
|
|
int (*input)(struct sk_buff*);
|
|
int (*output)(struct sk_buff*);
|
|
|
|
#ifdef CONFIG_NET_CLS_ROUTE
|
|
__u32 tclassid;
|
|
#endif
|
|
|
|
struct dst_ops *ops;
|
|
|
|
char info[0];
|
|
};
|
|
|
|
|
|
struct dst_ops
|
|
{
|
|
unsigned short family;
|
|
unsigned short protocol;
|
|
unsigned gc_thresh;
|
|
|
|
int (*gc)(void);
|
|
struct dst_entry * (*check)(struct dst_entry *, __u32 cookie);
|
|
struct dst_entry * (*reroute)(struct dst_entry *,
|
|
struct sk_buff *);
|
|
void (*destroy)(struct dst_entry *);
|
|
struct dst_entry * (*negative_advice)(struct dst_entry *);
|
|
void (*link_failure)(struct sk_buff *);
|
|
int entry_size;
|
|
|
|
atomic_t entries;
|
|
kmem_cache_t *kmem_cachep;
|
|
};
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
static __inline void dst_hold(struct dst_entry * dst)
|
|
{
|
|
atomic_inc(&dst->__refcnt);
|
|
}
|
|
|
|
static __inline
|
|
struct dst_entry * dst_clone(struct dst_entry * dst)
|
|
{
|
|
if (dst)
|
|
atomic_inc(&dst->__refcnt);
|
|
return dst;
|
|
}
|
|
|
|
static __inline
|
|
void dst_release(struct dst_entry * dst)
|
|
{
|
|
if (dst)
|
|
atomic_dec(&dst->__refcnt);
|
|
}
|
|
|
|
extern void * dst_alloc(struct dst_ops * ops);
|
|
extern void __dst_free(struct dst_entry * dst);
|
|
extern void dst_destroy(struct dst_entry * dst);
|
|
|
|
static __inline
|
|
void dst_free(struct dst_entry * dst)
|
|
{
|
|
if (dst->obsolete > 1)
|
|
return;
|
|
if (!atomic_read(&dst->__refcnt)) {
|
|
dst_destroy(dst);
|
|
return;
|
|
}
|
|
__dst_free(dst);
|
|
}
|
|
|
|
static __inline void dst_confirm(struct dst_entry *dst)
|
|
{
|
|
if (dst)
|
|
neigh_confirm(dst->neighbour);
|
|
}
|
|
|
|
static __inline void dst_negative_advice(struct dst_entry **dst_p)
|
|
{
|
|
struct dst_entry * dst = *dst_p;
|
|
if (dst && dst->ops->negative_advice)
|
|
*dst_p = dst->ops->negative_advice(dst);
|
|
}
|
|
|
|
static __inline void dst_link_failure(struct sk_buff *skb)
|
|
{
|
|
struct dst_entry * dst = skb->dst;
|
|
if (dst && dst->ops && dst->ops->link_failure)
|
|
dst->ops->link_failure(skb);
|
|
}
|
|
|
|
static __inline void dst_set_expires(struct dst_entry *dst, int timeout)
|
|
{
|
|
unsigned long expires = jiffies + timeout;
|
|
|
|
if (expires == 0)
|
|
expires = 1;
|
|
|
|
if (dst->expires == 0 || (long)(dst->expires - expires) > 0)
|
|
dst->expires = expires;
|
|
}
|
|
|
|
extern void dst_init(void);
|
|
|
|
#endif /* dst */
|
|
|
|
|
|
|
|
#if 1
|
|
/* dummy types */
|
|
|
|
|
|
#endif
|
|
|
|
#define TCP_DEBUG 1
|
|
#define FASTRETRANS_DEBUG 1
|
|
|
|
/* Cancel timers, when they are not required. */
|
|
#undef TCP_CLEAR_TIMERS
|
|
|
|
#if 0
|
|
#include <linux/config.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cache.h>
|
|
#include <net/checksum.h>
|
|
#include <net/sock.h>
|
|
#else
|
|
#include "linux.h"
|
|
#endif
|
|
|
|
/* This is for all connections with a full identity, no wildcards.
|
|
* New scheme, half the table is for TIME_WAIT, the other half is
|
|
* for the rest. I'll experiment with dynamic table growth later.
|
|
*/
|
|
struct tcp_ehash_bucket {
|
|
rwlock_t lock;
|
|
struct sock *chain;
|
|
} __attribute__((__aligned__(8)));
|
|
|
|
/* This is for listening sockets, thus all sockets which possess wildcards. */
|
|
#define TCP_LHTABLE_SIZE 32 /* Yes, really, this is all you need. */
|
|
|
|
/* There are a few simple rules, which allow for local port reuse by
|
|
* an application. In essence:
|
|
*
|
|
* 1) Sockets bound to different interfaces may share a local port.
|
|
* Failing that, goto test 2.
|
|
* 2) If all sockets have sk->reuse set, and none of them are in
|
|
* TCP_LISTEN state, the port may be shared.
|
|
* Failing that, goto test 3.
|
|
* 3) If all sockets are bound to a specific sk->rcv_saddr local
|
|
* address, and none of them are the same, the port may be
|
|
* shared.
|
|
* Failing this, the port cannot be shared.
|
|
*
|
|
* The interesting point, is test #2. This is what an FTP server does
|
|
* all day. To optimize this case we use a specific flag bit defined
|
|
* below. As we add sockets to a bind bucket list, we perform a
|
|
* check of: (newsk->reuse && (newsk->state != TCP_LISTEN))
|
|
* As long as all sockets added to a bind bucket pass this test,
|
|
* the flag bit will be set.
|
|
* The resulting situation is that tcp_v[46]_verify_bind() can just check
|
|
* for this flag bit, if it is set and the socket trying to bind has
|
|
* sk->reuse set, we don't even have to walk the owners list at all,
|
|
* we return that it is ok to bind this socket to the requested local port.
|
|
*
|
|
* Sounds like a lot of work, but it is worth it. In a more naive
|
|
* implementation (ie. current FreeBSD etc.) the entire list of ports
|
|
* must be walked for each data port opened by an ftp server. Needless
|
|
* to say, this does not scale at all. With a couple thousand FTP
|
|
* users logged onto your box, isn't it nice to know that new data
|
|
* ports are created in O(1) time? I thought so. ;-) -DaveM
|
|
*/
|
|
struct tcp_bind_bucket {
|
|
unsigned short port;
|
|
signed short fastreuse;
|
|
struct tcp_bind_bucket *next;
|
|
struct sock *owners;
|
|
struct tcp_bind_bucket **pprev;
|
|
};
|
|
|
|
struct tcp_bind_hashbucket {
|
|
spinlock_t lock;
|
|
struct tcp_bind_bucket *chain;
|
|
};
|
|
|
|
extern struct tcp_hashinfo {
|
|
/* This is for sockets with full identity only. Sockets here will
|
|
* always be without wildcards and will have the following invariant:
|
|
*
|
|
* TCP_ESTABLISHED <= sk->state < TCP_CLOSE
|
|
*
|
|
* First half of the table is for sockets not in TIME_WAIT, second half
|
|
* is for TIME_WAIT sockets only.
|
|
*/
|
|
struct tcp_ehash_bucket *__tcp_ehash;
|
|
|
|
/* Ok, let's try this, I give up, we do need a local binding
|
|
* TCP hash as well as the others for fast bind/connect.
|
|
*/
|
|
struct tcp_bind_hashbucket *__tcp_bhash;
|
|
|
|
int __tcp_bhash_size;
|
|
int __tcp_ehash_size;
|
|
|
|
/* All sockets in TCP_LISTEN state will be in here. This is the only
|
|
* table where wildcard'd TCP sockets can exist. Hash function here
|
|
* is just local port number.
|
|
*/
|
|
struct sock *__tcp_listening_hash[TCP_LHTABLE_SIZE];
|
|
|
|
/* All the above members are written once at bootup and
|
|
* never written again _or_ are predominantly read-access.
|
|
*
|
|
* Now align to a new cache line as all the following members
|
|
* are often dirty.
|
|
*/
|
|
rwlock_t __tcp_lhash_lock ____cacheline_aligned;
|
|
atomic_t __tcp_lhash_users;
|
|
wait_queue_head_t __tcp_lhash_wait;
|
|
spinlock_t __tcp_portalloc_lock;
|
|
} tcp_hashinfo;
|
|
|
|
#define tcp_ehash (tcp_hashinfo.__tcp_ehash)
|
|
#define tcp_bhash (tcp_hashinfo.__tcp_bhash)
|
|
#define tcp_ehash_size (tcp_hashinfo.__tcp_ehash_size)
|
|
#define tcp_bhash_size (tcp_hashinfo.__tcp_bhash_size)
|
|
#define tcp_listening_hash (tcp_hashinfo.__tcp_listening_hash)
|
|
#define tcp_lhash_lock (tcp_hashinfo.__tcp_lhash_lock)
|
|
#define tcp_lhash_users (tcp_hashinfo.__tcp_lhash_users)
|
|
#define tcp_lhash_wait (tcp_hashinfo.__tcp_lhash_wait)
|
|
#define tcp_portalloc_lock (tcp_hashinfo.__tcp_portalloc_lock)
|
|
|
|
extern kmem_cache_t *tcp_bucket_cachep;
|
|
extern struct tcp_bind_bucket *tcp_bucket_create(struct tcp_bind_hashbucket *head,
|
|
unsigned short snum);
|
|
extern void tcp_bucket_unlock(struct sock *sk);
|
|
extern int tcp_port_rover;
|
|
extern struct sock *tcp_v4_lookup_listener(u32 addr, unsigned short hnum, int dif);
|
|
|
|
/* These are AF independent. */
|
|
static __inline int tcp_bhashfn(__u16 lport)
|
|
{
|
|
return (lport & (tcp_bhash_size - 1));
|
|
}
|
|
|
|
/* This is a TIME_WAIT bucket. It works around the memory consumption
|
|
* problems of sockets in such a state on heavily loaded servers, but
|
|
* without violating the protocol specification.
|
|
*/
|
|
struct tcp_tw_bucket {
|
|
/* These _must_ match the beginning of struct sock precisely.
|
|
* XXX Yes I know this is gross, but I'd have to edit every single
|
|
* XXX networking file if I created a "struct sock_header". -DaveM
|
|
*/
|
|
__u32 daddr;
|
|
__u32 rcv_saddr;
|
|
__u16 dport;
|
|
unsigned short num;
|
|
int bound_dev_if;
|
|
struct sock *next;
|
|
struct sock **pprev;
|
|
struct sock *bind_next;
|
|
struct sock **bind_pprev;
|
|
unsigned char state,
|
|
substate; /* "zapped" is replaced with "substate" */
|
|
__u16 sport;
|
|
unsigned short family;
|
|
unsigned char reuse,
|
|
rcv_wscale; /* It is also TW bucket specific */
|
|
atomic_t refcnt;
|
|
|
|
/* And these are ours. */
|
|
int hashent;
|
|
int timeout;
|
|
__u32 rcv_nxt;
|
|
__u32 snd_nxt;
|
|
__u32 rcv_wnd;
|
|
__u32 ts_recent;
|
|
long ts_recent_stamp;
|
|
unsigned long ttd;
|
|
struct tcp_bind_bucket *tb;
|
|
struct tcp_tw_bucket *next_death;
|
|
struct tcp_tw_bucket **pprev_death;
|
|
|
|
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
|
|
struct in6_addr v6_daddr;
|
|
struct in6_addr v6_rcv_saddr;
|
|
#endif
|
|
};
|
|
|
|
extern kmem_cache_t *tcp_timewait_cachep;
|
|
|
|
static __inline void tcp_tw_put(struct tcp_tw_bucket *tw)
|
|
{
|
|
if (atomic_dec_and_test(&tw->refcnt)) {
|
|
#ifdef INET_REFCNT_DEBUG
|
|
printk(KERN_DEBUG "tw_bucket %p released\n", tw);
|
|
#endif
|
|
kmem_cache_free(tcp_timewait_cachep, tw);
|
|
}
|
|
}
|
|
|
|
extern atomic_t tcp_orphan_count;
|
|
extern int tcp_tw_count;
|
|
extern void tcp_time_wait(struct sock *sk, int state, int timeo);
|
|
extern void tcp_timewait_kill(struct tcp_tw_bucket *tw);
|
|
extern void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo);
|
|
extern void tcp_tw_deschedule(struct tcp_tw_bucket *tw);
|
|
|
|
|
|
/* Socket demux engine toys. */
|
|
#ifdef __BIG_ENDIAN
|
|
#define TCP_COMBINED_PORTS(__sport, __dport) \
|
|
(((__u32)(__sport)<<16) | (__u32)(__dport))
|
|
#else /* __LITTLE_ENDIAN */
|
|
#define TCP_COMBINED_PORTS(__sport, __dport) \
|
|
(((__u32)(__dport)<<16) | (__u32)(__sport))
|
|
#endif
|
|
|
|
#if (BITS_PER_LONG == 64)
|
|
#ifdef __BIG_ENDIAN
|
|
#define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr) \
|
|
__u64 __name = (((__u64)(__saddr))<<32)|((__u64)(__daddr));
|
|
#else /* __LITTLE_ENDIAN */
|
|
#define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr) \
|
|
__u64 __name = (((__u64)(__daddr))<<32)|((__u64)(__saddr));
|
|
#endif /* __BIG_ENDIAN */
|
|
#define TCP_IPV4_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
|
|
(((*((__u64 *)&((__sk)->daddr)))== (__cookie)) && \
|
|
((*((__u32 *)&((__sk)->dport)))== (__ports)) && \
|
|
(!((__sk)->bound_dev_if) || ((__sk)->bound_dev_if == (__dif))))
|
|
#else /* 32-bit arch */
|
|
#define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr)
|
|
#define TCP_IPV4_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
|
|
(((__sk)->daddr == (__saddr)) && \
|
|
((__sk)->rcv_saddr == (__daddr)) && \
|
|
((*((__u32 *)&((__sk)->dport)))== (__ports)) && \
|
|
(!((__sk)->bound_dev_if) || ((__sk)->bound_dev_if == (__dif))))
|
|
#endif /* 64-bit arch */
|
|
|
|
#define TCP_IPV6_MATCH(__sk, __saddr, __daddr, __ports, __dif) \
|
|
(((*((__u32 *)&((__sk)->dport)))== (__ports)) && \
|
|
((__sk)->family == AF_INET6) && \
|
|
!ipv6_addr_cmp(&(__sk)->net_pinfo.af_inet6.daddr, (__saddr)) && \
|
|
!ipv6_addr_cmp(&(__sk)->net_pinfo.af_inet6.rcv_saddr, (__daddr)) && \
|
|
(!((__sk)->bound_dev_if) || ((__sk)->bound_dev_if == (__dif))))
|
|
|
|
/* These can have wildcards, don't try too hard. */
|
|
static __inline int tcp_lhashfn(unsigned short num)
|
|
{
|
|
#if 0
|
|
return num & (TCP_LHTABLE_SIZE - 1);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_sk_listen_hashfn(struct sock *sk)
|
|
{
|
|
#if 0
|
|
return tcp_lhashfn(sk->num);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#define MAX_TCP_HEADER (128 + MAX_HEADER)
|
|
|
|
/*
|
|
* Never offer a window over 32767 without using window scaling. Some
|
|
* poor stacks do signed 16bit maths!
|
|
*/
|
|
#define MAX_TCP_WINDOW 32767U
|
|
|
|
/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
|
|
#define TCP_MIN_MSS 88U
|
|
|
|
/* Minimal RCV_MSS. */
|
|
#define TCP_MIN_RCVMSS 536U
|
|
|
|
/* After receiving this amount of duplicate ACKs fast retransmit starts. */
|
|
#define TCP_FASTRETRANS_THRESH 3
|
|
|
|
/* Maximal reordering. */
|
|
#define TCP_MAX_REORDERING 127
|
|
|
|
/* Maximal number of ACKs sent quickly to accelerate slow-start. */
|
|
#define TCP_MAX_QUICKACKS 16U
|
|
|
|
/* urg_data states */
|
|
#define TCP_URG_VALID 0x0100
|
|
#define TCP_URG_NOTYET 0x0200
|
|
#define TCP_URG_READ 0x0400
|
|
|
|
#define TCP_RETR1 3 /*
|
|
* This is how many retries it does before it
|
|
* tries to figure out if the gateway is
|
|
* down. Minimal RFC value is 3; it corresponds
|
|
* to ~3sec-8min depending on RTO.
|
|
*/
|
|
|
|
#define TCP_RETR2 15 /*
|
|
* This should take at least
|
|
* 90 minutes to time out.
|
|
* RFC1122 says that the limit is 100 sec.
|
|
* 15 is ~13-30min depending on RTO.
|
|
*/
|
|
|
|
#define TCP_SYN_RETRIES 5 /* number of times to retry active opening a
|
|
* connection: ~180sec is RFC minimum */
|
|
|
|
#define TCP_SYNACK_RETRIES 5 /* number of times to retry passive opening a
|
|
* connection: ~180sec is RFC minimum */
|
|
|
|
|
|
#define TCP_ORPHAN_RETRIES 7 /* number of times to retry on an orphaned
|
|
* socket. 7 is ~50sec-16min.
|
|
*/
|
|
|
|
|
|
#define TCP_TIMEWAIT_LEN (60*1000)
|
|
//#define TCP_TIMEWAIT_LEN (60*HZ)
|
|
/* how long to wait to destroy TIME-WAIT
|
|
* state, about 60 seconds */
|
|
#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
|
|
/* BSD style FIN_WAIT2 deadlock breaker.
|
|
* It used to be 3min, new value is 60sec,
|
|
* to combine FIN-WAIT-2 timeout with
|
|
* TIME-WAIT timer.
|
|
*/
|
|
|
|
#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
|
|
#if HZ >= 100
|
|
#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
|
|
#define TCP_ATO_MIN ((unsigned)(HZ/25))
|
|
#else
|
|
#define TCP_DELACK_MIN 4U
|
|
#define TCP_ATO_MIN 4U
|
|
#endif
|
|
#define TCP_RTO_MAX ((unsigned)(120*HZ))
|
|
#define TCP_RTO_MIN ((unsigned)(HZ/5))
|
|
#define TCP_TIMEOUT_INIT ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value */
|
|
|
|
#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
|
|
* for local resources.
|
|
*/
|
|
|
|
#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
|
|
#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
|
|
#define TCP_KEEPALIVE_INTVL (75*HZ)
|
|
|
|
#define MAX_TCP_KEEPIDLE 32767
|
|
#define MAX_TCP_KEEPINTVL 32767
|
|
#define MAX_TCP_KEEPCNT 127
|
|
#define MAX_TCP_SYNCNT 127
|
|
|
|
/* TIME_WAIT reaping mechanism. */
|
|
#define TCP_TWKILL_SLOTS 8 /* Please keep this a power of 2. */
|
|
#define TCP_TWKILL_PERIOD (TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS)
|
|
|
|
#define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
|
|
#define TCP_SYNQ_HSIZE 512 /* Size of SYNACK hash table */
|
|
|
|
#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
|
|
#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
|
|
* after this time. It should be equal
|
|
* (or greater than) TCP_TIMEWAIT_LEN
|
|
* to provide reliability equal to one
|
|
* provided by timewait state.
|
|
*/
|
|
#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
|
|
* timestamps. It must be less than
|
|
* minimal timewait lifetime.
|
|
*/
|
|
|
|
#define TCP_TW_RECYCLE_SLOTS_LOG 5
|
|
#define TCP_TW_RECYCLE_SLOTS (1<<TCP_TW_RECYCLE_SLOTS_LOG)
|
|
|
|
/* If time > 4sec, it is "slow" path, no recycling is required,
|
|
so that we select tick to get range about 4 seconds.
|
|
*/
|
|
|
|
#if 0
|
|
#if HZ <= 16 || HZ > 4096
|
|
# error Unsupported: HZ <= 16 or HZ > 4096
|
|
#elif HZ <= 32
|
|
# define TCP_TW_RECYCLE_TICK (5+2-TCP_TW_RECYCLE_SLOTS_LOG)
|
|
#elif HZ <= 64
|
|
# define TCP_TW_RECYCLE_TICK (6+2-TCP_TW_RECYCLE_SLOTS_LOG)
|
|
#elif HZ <= 128
|
|
# define TCP_TW_RECYCLE_TICK (7+2-TCP_TW_RECYCLE_SLOTS_LOG)
|
|
#elif HZ <= 256
|
|
# define TCP_TW_RECYCLE_TICK (8+2-TCP_TW_RECYCLE_SLOTS_LOG)
|
|
#elif HZ <= 512
|
|
# define TCP_TW_RECYCLE_TICK (9+2-TCP_TW_RECYCLE_SLOTS_LOG)
|
|
#elif HZ <= 1024
|
|
# define TCP_TW_RECYCLE_TICK (10+2-TCP_TW_RECYCLE_SLOTS_LOG)
|
|
#elif HZ <= 2048
|
|
# define TCP_TW_RECYCLE_TICK (11+2-TCP_TW_RECYCLE_SLOTS_LOG)
|
|
#else
|
|
# define TCP_TW_RECYCLE_TICK (12+2-TCP_TW_RECYCLE_SLOTS_LOG)
|
|
#endif
|
|
#else
|
|
#define TCP_TW_RECYCLE_TICK (0)
|
|
#endif
|
|
|
|
/*
|
|
* TCP option
|
|
*/
|
|
|
|
#define TCPOPT_NOP 1 /* Padding */
|
|
#define TCPOPT_EOL 0 /* End of options */
|
|
#define TCPOPT_MSS 2 /* Segment size negotiating */
|
|
#define TCPOPT_WINDOW 3 /* Window scaling */
|
|
#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
|
|
#define TCPOPT_SACK 5 /* SACK Block */
|
|
#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
|
|
|
|
/*
|
|
* TCP option lengths
|
|
*/
|
|
|
|
#define TCPOLEN_MSS 4
|
|
#define TCPOLEN_WINDOW 3
|
|
#define TCPOLEN_SACK_PERM 2
|
|
#define TCPOLEN_TIMESTAMP 10
|
|
|
|
/* But this is what stacks really send out. */
|
|
#define TCPOLEN_TSTAMP_ALIGNED 12
|
|
#define TCPOLEN_WSCALE_ALIGNED 4
|
|
#define TCPOLEN_SACKPERM_ALIGNED 4
|
|
#define TCPOLEN_SACK_BASE 2
|
|
#define TCPOLEN_SACK_BASE_ALIGNED 4
|
|
#define TCPOLEN_SACK_PERBLOCK 8
|
|
|
|
#define TCP_TIME_RETRANS 1 /* Retransmit timer */
|
|
#define TCP_TIME_DACK 2 /* Delayed ack timer */
|
|
#define TCP_TIME_PROBE0 3 /* Zero window probe timer */
|
|
#define TCP_TIME_KEEPOPEN 4 /* Keepalive timer */
|
|
|
|
#if 0
|
|
/* sysctl variables for tcp */
|
|
extern int sysctl_max_syn_backlog;
|
|
extern int sysctl_tcp_timestamps;
|
|
extern int sysctl_tcp_window_scaling;
|
|
extern int sysctl_tcp_sack;
|
|
extern int sysctl_tcp_fin_timeout;
|
|
extern int sysctl_tcp_tw_recycle;
|
|
extern int sysctl_tcp_keepalive_time;
|
|
extern int sysctl_tcp_keepalive_probes;
|
|
extern int sysctl_tcp_keepalive_intvl;
|
|
extern int sysctl_tcp_syn_retries;
|
|
extern int sysctl_tcp_synack_retries;
|
|
extern int sysctl_tcp_retries1;
|
|
extern int sysctl_tcp_retries2;
|
|
extern int sysctl_tcp_orphan_retries;
|
|
extern int sysctl_tcp_syncookies;
|
|
extern int sysctl_tcp_retrans_collapse;
|
|
extern int sysctl_tcp_stdurg;
|
|
extern int sysctl_tcp_rfc1337;
|
|
extern int sysctl_tcp_abort_on_overflow;
|
|
extern int sysctl_tcp_max_orphans;
|
|
extern int sysctl_tcp_max_tw_buckets;
|
|
extern int sysctl_tcp_fack;
|
|
extern int sysctl_tcp_reordering;
|
|
extern int sysctl_tcp_ecn;
|
|
extern int sysctl_tcp_dsack;
|
|
extern int sysctl_tcp_mem[3];
|
|
extern int sysctl_tcp_wmem[3];
|
|
extern int sysctl_tcp_rmem[3];
|
|
extern int sysctl_tcp_app_win;
|
|
extern int sysctl_tcp_adv_win_scale;
|
|
extern int sysctl_tcp_tw_reuse;
|
|
#endif
|
|
|
|
extern atomic_t tcp_memory_allocated;
|
|
extern atomic_t tcp_sockets_allocated;
|
|
extern int tcp_memory_pressure;
|
|
|
|
struct open_request;
|
|
|
|
struct or_calltable {
|
|
int family;
|
|
int (*rtx_syn_ack) (struct sock *sk, struct open_request *req, struct dst_entry*);
|
|
void (*send_ack) (struct sk_buff *skb, struct open_request *req);
|
|
void (*destructor) (struct open_request *req);
|
|
void (*send_reset) (struct sk_buff *skb);
|
|
};
|
|
|
|
struct tcp_v4_open_req {
|
|
__u32 loc_addr;
|
|
__u32 rmt_addr;
|
|
struct ip_options *opt;
|
|
};
|
|
|
|
#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
|
|
struct tcp_v6_open_req {
|
|
struct in6_addr loc_addr;
|
|
struct in6_addr rmt_addr;
|
|
struct sk_buff *pktopts;
|
|
int iif;
|
|
};
|
|
#endif
|
|
|
|
/* this structure is too big */
|
|
struct open_request {
|
|
struct open_request *dl_next; /* Must be first member! */
|
|
__u32 rcv_isn;
|
|
__u32 snt_isn;
|
|
__u16 rmt_port;
|
|
__u16 mss;
|
|
__u8 retrans;
|
|
__u8 __pad;
|
|
__u16 snd_wscale : 4,
|
|
rcv_wscale : 4,
|
|
tstamp_ok : 1,
|
|
sack_ok : 1,
|
|
wscale_ok : 1,
|
|
ecn_ok : 1,
|
|
acked : 1;
|
|
/* The following two fields can be easily recomputed I think -AK */
|
|
__u32 window_clamp; /* window clamp at creation time */
|
|
__u32 rcv_wnd; /* rcv_wnd offered first time */
|
|
__u32 ts_recent;
|
|
unsigned long expires;
|
|
struct or_calltable *class;
|
|
struct sock *sk;
|
|
union {
|
|
struct tcp_v4_open_req v4_req;
|
|
#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
|
|
struct tcp_v6_open_req v6_req;
|
|
#endif
|
|
} af;
|
|
};
|
|
|
|
/* SLAB cache for open requests. */
|
|
extern kmem_cache_t *tcp_openreq_cachep;
|
|
|
|
#define tcp_openreq_alloc() kmem_cache_alloc(tcp_openreq_cachep, SLAB_ATOMIC)
|
|
#define tcp_openreq_fastfree(req) kmem_cache_free(tcp_openreq_cachep, req)
|
|
|
|
static __inline void tcp_openreq_free(struct open_request *req)
|
|
{
|
|
req->class->destructor(req);
|
|
tcp_openreq_fastfree(req);
|
|
}
|
|
|
|
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
|
|
#define TCP_INET_FAMILY(fam) ((fam) == AF_INET)
|
|
#else
|
|
#define TCP_INET_FAMILY(fam) 1
|
|
#endif
|
|
|
|
/*
|
|
* Pointers to address related TCP functions
|
|
* (i.e. things that depend on the address family)
|
|
*
|
|
* BUGGG_FUTURE: all the idea behind this struct is wrong.
|
|
* It mixes socket frontend with transport function.
|
|
* With port sharing between IPv6/v4 it gives the only advantage,
|
|
* only poor IPv6 needs to permanently recheck, that it
|
|
* is still IPv6 8)8) It must be cleaned up as soon as possible.
|
|
* --ANK (980802)
|
|
*/
|
|
|
|
struct tcp_func {
|
|
int (*queue_xmit) (struct sk_buff *skb);
|
|
|
|
void (*send_check) (struct sock *sk,
|
|
struct tcphdr *th,
|
|
int len,
|
|
struct sk_buff *skb);
|
|
|
|
int (*rebuild_header) (struct sock *sk);
|
|
|
|
int (*conn_request) (struct sock *sk,
|
|
struct sk_buff *skb);
|
|
|
|
struct sock * (*syn_recv_sock) (struct sock *sk,
|
|
struct sk_buff *skb,
|
|
struct open_request *req,
|
|
struct dst_entry *dst);
|
|
|
|
int (*remember_stamp) (struct sock *sk);
|
|
|
|
__u16 net_header_len;
|
|
|
|
int (*setsockopt) (struct sock *sk,
|
|
int level,
|
|
int optname,
|
|
char *optval,
|
|
int optlen);
|
|
|
|
int (*getsockopt) (struct sock *sk,
|
|
int level,
|
|
int optname,
|
|
char *optval,
|
|
int *optlen);
|
|
|
|
|
|
void (*addr2sockaddr) (struct sock *sk,
|
|
struct sockaddr *);
|
|
|
|
int sockaddr_len;
|
|
};
|
|
|
|
/*
|
|
* The next routines deal with comparing 32 bit unsigned ints
|
|
* and worry about wraparound (automatic with unsigned arithmetic).
|
|
*/
|
|
|
|
extern __inline int before(__u32 seq1, __u32 seq2)
|
|
{
|
|
return (__s32)(seq1-seq2) < 0;
|
|
}
|
|
|
|
extern __inline int after(__u32 seq1, __u32 seq2)
|
|
{
|
|
return (__s32)(seq2-seq1) < 0;
|
|
}
|
|
|
|
|
|
/* is s2<=s1<=s3 ? */
|
|
extern __inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
|
|
{
|
|
return seq3 - seq2 >= seq1 - seq2;
|
|
}
|
|
|
|
|
|
extern struct proto tcp_prot;
|
|
|
|
#ifdef ROS_STATISTICS
|
|
extern struct tcp_mib tcp_statistics[NR_CPUS*2];
|
|
|
|
#define TCP_INC_STATS(field) SNMP_INC_STATS(tcp_statistics, field)
|
|
#define TCP_INC_STATS_BH(field) SNMP_INC_STATS_BH(tcp_statistics, field)
|
|
#define TCP_INC_STATS_USER(field) SNMP_INC_STATS_USER(tcp_statistics, field)
|
|
#endif
|
|
|
|
extern void tcp_put_port(struct sock *sk);
|
|
extern void __tcp_put_port(struct sock *sk);
|
|
extern void tcp_inherit_port(struct sock *sk, struct sock *child);
|
|
|
|
extern void tcp_v4_err(struct sk_buff *skb, u32);
|
|
|
|
extern void tcp_shutdown (struct sock *sk, int how);
|
|
|
|
extern int tcp_v4_rcv(struct sk_buff *skb);
|
|
|
|
extern int tcp_v4_remember_stamp(struct sock *sk);
|
|
|
|
extern int tcp_v4_tw_remember_stamp(struct tcp_tw_bucket *tw);
|
|
|
|
extern int tcp_sendmsg(struct sock *sk, struct msghdr *msg, int size);
|
|
extern ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags);
|
|
|
|
extern int tcp_ioctl(struct sock *sk,
|
|
int cmd,
|
|
unsigned long arg);
|
|
|
|
extern int tcp_rcv_state_process(struct sock *sk,
|
|
struct sk_buff *skb,
|
|
struct tcphdr *th,
|
|
unsigned len);
|
|
|
|
extern int tcp_rcv_established(struct sock *sk,
|
|
struct sk_buff *skb,
|
|
struct tcphdr *th,
|
|
unsigned len);
|
|
|
|
enum tcp_ack_state_t
|
|
{
|
|
TCP_ACK_SCHED = 1,
|
|
TCP_ACK_TIMER = 2,
|
|
TCP_ACK_PUSHED= 4
|
|
};
|
|
|
|
static __inline void tcp_schedule_ack(struct tcp_opt *tp)
|
|
{
|
|
tp->ack.pending |= TCP_ACK_SCHED;
|
|
}
|
|
|
|
static __inline int tcp_ack_scheduled(struct tcp_opt *tp)
|
|
{
|
|
return tp->ack.pending&TCP_ACK_SCHED;
|
|
}
|
|
|
|
static __inline void tcp_dec_quickack_mode(struct tcp_opt *tp)
|
|
{
|
|
if (tp->ack.quick && --tp->ack.quick == 0) {
|
|
/* Leaving quickack mode we deflate ATO. */
|
|
tp->ack.ato = TCP_ATO_MIN;
|
|
}
|
|
}
|
|
|
|
extern void tcp_enter_quickack_mode(struct tcp_opt *tp);
|
|
|
|
static __inline void tcp_delack_init(struct tcp_opt *tp)
|
|
{
|
|
memset(&tp->ack, 0, sizeof(tp->ack));
|
|
}
|
|
|
|
static __inline void tcp_clear_options(struct tcp_opt *tp)
|
|
{
|
|
tp->tstamp_ok = tp->sack_ok = tp->wscale_ok = tp->snd_wscale = 0;
|
|
}
|
|
|
|
enum tcp_tw_status
|
|
{
|
|
TCP_TW_SUCCESS = 0,
|
|
TCP_TW_RST = 1,
|
|
TCP_TW_ACK = 2,
|
|
TCP_TW_SYN = 3
|
|
};
|
|
|
|
|
|
extern enum tcp_tw_status tcp_timewait_state_process(struct tcp_tw_bucket *tw,
|
|
struct sk_buff *skb,
|
|
struct tcphdr *th,
|
|
unsigned len);
|
|
|
|
extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
|
|
struct open_request *req,
|
|
struct open_request **prev);
|
|
extern int tcp_child_process(struct sock *parent,
|
|
struct sock *child,
|
|
struct sk_buff *skb);
|
|
extern void tcp_enter_loss(struct sock *sk, int how);
|
|
extern void tcp_clear_retrans(struct tcp_opt *tp);
|
|
extern void tcp_update_metrics(struct sock *sk);
|
|
|
|
extern void tcp_close(struct sock *sk,
|
|
long timeout);
|
|
extern struct sock * tcp_accept(struct sock *sk, int flags, int *err);
|
|
extern unsigned int tcp_poll(struct file * file, struct socket *sock, struct poll_table_struct *wait);
|
|
extern void tcp_write_space(struct sock *sk);
|
|
|
|
extern int tcp_getsockopt(struct sock *sk, int level,
|
|
int optname, char *optval,
|
|
int *optlen);
|
|
extern int tcp_setsockopt(struct sock *sk, int level,
|
|
int optname, char *optval,
|
|
int optlen);
|
|
extern void tcp_set_keepalive(struct sock *sk, int val);
|
|
extern int tcp_recvmsg(struct sock *sk,
|
|
struct msghdr *msg,
|
|
int len, int nonblock,
|
|
int flags, int *addr_len);
|
|
|
|
extern int tcp_listen_start(struct sock *sk);
|
|
|
|
extern void tcp_parse_options(struct sk_buff *skb,
|
|
struct tcp_opt *tp,
|
|
int estab);
|
|
|
|
/*
|
|
* TCP v4 functions exported for the inet6 API
|
|
*/
|
|
|
|
extern int tcp_v4_rebuild_header(struct sock *sk);
|
|
|
|
extern int tcp_v4_build_header(struct sock *sk,
|
|
struct sk_buff *skb);
|
|
|
|
extern void tcp_v4_send_check(struct sock *sk,
|
|
struct tcphdr *th, int len,
|
|
struct sk_buff *skb);
|
|
|
|
extern int tcp_v4_conn_request(struct sock *sk,
|
|
struct sk_buff *skb);
|
|
|
|
extern struct sock * tcp_create_openreq_child(struct sock *sk,
|
|
struct open_request *req,
|
|
struct sk_buff *skb);
|
|
|
|
extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk,
|
|
struct sk_buff *skb,
|
|
struct open_request *req,
|
|
struct dst_entry *dst);
|
|
|
|
extern int tcp_v4_do_rcv(struct sock *sk,
|
|
struct sk_buff *skb);
|
|
|
|
extern int tcp_v4_connect(struct sock *sk,
|
|
struct sockaddr *uaddr,
|
|
int addr_len);
|
|
|
|
extern int tcp_connect(struct sock *sk);
|
|
|
|
extern struct sk_buff * tcp_make_synack(struct sock *sk,
|
|
struct dst_entry *dst,
|
|
struct open_request *req);
|
|
|
|
extern int tcp_disconnect(struct sock *sk, int flags);
|
|
|
|
extern void tcp_unhash(struct sock *sk);
|
|
|
|
extern int tcp_v4_hash_connecting(struct sock *sk);
|
|
|
|
|
|
/* From syncookies.c */
|
|
extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
|
|
struct ip_options *opt);
|
|
extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
|
|
__u16 *mss);
|
|
|
|
/* tcp_output.c */
|
|
|
|
extern int tcp_write_xmit(struct sock *, int nonagle);
|
|
extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
|
|
extern void tcp_xmit_retransmit_queue(struct sock *);
|
|
extern void tcp_simple_retransmit(struct sock *);
|
|
|
|
extern void tcp_send_probe0(struct sock *);
|
|
extern void tcp_send_partial(struct sock *);
|
|
extern int tcp_write_wakeup(struct sock *);
|
|
extern void tcp_send_fin(struct sock *sk);
|
|
extern void tcp_send_active_reset(struct sock *sk, int priority);
|
|
extern int tcp_send_synack(struct sock *);
|
|
extern int tcp_transmit_skb(struct sock *, struct sk_buff *);
|
|
extern void tcp_send_skb(struct sock *, struct sk_buff *, int force_queue, unsigned mss_now);
|
|
extern void tcp_push_one(struct sock *, unsigned mss_now);
|
|
extern void tcp_send_ack(struct sock *sk);
|
|
extern void tcp_send_delayed_ack(struct sock *sk);
|
|
|
|
/* tcp_timer.c */
|
|
extern void tcp_init_xmit_timers(struct sock *);
|
|
extern void tcp_clear_xmit_timers(struct sock *);
|
|
|
|
extern void tcp_delete_keepalive_timer (struct sock *);
|
|
extern void tcp_reset_keepalive_timer (struct sock *, unsigned long);
|
|
extern int tcp_sync_mss(struct sock *sk, u32 pmtu);
|
|
|
|
extern const char timer_bug_msg[];
|
|
|
|
/* Read 'sendfile()'-style from a TCP socket */
|
|
typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
|
|
unsigned int, size_t);
|
|
extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
|
|
sk_read_actor_t recv_actor);
|
|
|
|
static __inline void tcp_clear_xmit_timer(struct sock *sk, int what)
|
|
{
|
|
#if 0
|
|
struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
|
|
|
|
switch (what) {
|
|
case TCP_TIME_RETRANS:
|
|
case TCP_TIME_PROBE0:
|
|
tp->pending = 0;
|
|
|
|
#ifdef TCP_CLEAR_TIMERS
|
|
if (timer_pending(&tp->retransmit_timer) &&
|
|
del_timer(&tp->retransmit_timer))
|
|
__sock_put(sk);
|
|
#endif
|
|
break;
|
|
case TCP_TIME_DACK:
|
|
tp->ack.blocked = 0;
|
|
tp->ack.pending = 0;
|
|
|
|
#ifdef TCP_CLEAR_TIMERS
|
|
if (timer_pending(&tp->delack_timer) &&
|
|
del_timer(&tp->delack_timer))
|
|
__sock_put(sk);
|
|
#endif
|
|
break;
|
|
default:
|
|
printk(timer_bug_msg);
|
|
return;
|
|
};
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Reset the retransmission timer
|
|
*/
|
|
static __inline void tcp_reset_xmit_timer(struct sock *sk, int what, unsigned long when)
|
|
{
|
|
#if 0
|
|
struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
|
|
|
|
if (when > TCP_RTO_MAX) {
|
|
#ifdef TCP_DEBUG
|
|
printk(KERN_DEBUG "reset_xmit_timer sk=%p %d when=0x%lx, caller=%p\n", sk, what, when, current_text_addr());
|
|
#endif
|
|
when = TCP_RTO_MAX;
|
|
}
|
|
|
|
switch (what) {
|
|
case TCP_TIME_RETRANS:
|
|
case TCP_TIME_PROBE0:
|
|
tp->pending = what;
|
|
tp->timeout = jiffies+when;
|
|
if (!mod_timer(&tp->retransmit_timer, tp->timeout))
|
|
sock_hold(sk);
|
|
break;
|
|
|
|
case TCP_TIME_DACK:
|
|
tp->ack.pending |= TCP_ACK_TIMER;
|
|
tp->ack.timeout = jiffies+when;
|
|
if (!mod_timer(&tp->delack_timer, tp->ack.timeout))
|
|
sock_hold(sk);
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_DEBUG "bug: unknown timer value\n");
|
|
};
|
|
#endif
|
|
}
|
|
|
|
/* Compute the current effective MSS, taking SACKs and IP options,
|
|
* and even PMTU discovery events into account.
|
|
*/
|
|
|
|
static __inline unsigned int tcp_current_mss(struct sock *sk)
|
|
{
|
|
#if 0
|
|
struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
|
|
struct dst_entry *dst = __sk_dst_get(sk);
|
|
int mss_now = tp->mss_cache;
|
|
|
|
if (dst && dst->pmtu != tp->pmtu_cookie)
|
|
mss_now = tcp_sync_mss(sk, dst->pmtu);
|
|
|
|
if (tp->eff_sacks)
|
|
mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
|
|
(tp->eff_sacks * TCPOLEN_SACK_PERBLOCK));
|
|
return mss_now;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Initialize RCV_MSS value.
|
|
* RCV_MSS is an our guess about MSS used by the peer.
|
|
* We haven't any direct information about the MSS.
|
|
* It's better to underestimate the RCV_MSS rather than overestimate.
|
|
* Overestimations make us ACKing less frequently than needed.
|
|
* Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
|
|
*/
|
|
|
|
static __inline void tcp_initialize_rcv_mss(struct sock *sk)
|
|
{
|
|
#if 0
|
|
struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
|
|
unsigned int hint = min(tp->advmss, tp->mss_cache);
|
|
|
|
hint = min(hint, tp->rcv_wnd/2);
|
|
hint = min(hint, TCP_MIN_RCVMSS);
|
|
hint = max(hint, TCP_MIN_MSS);
|
|
|
|
tp->ack.rcv_mss = hint;
|
|
#endif
|
|
}
|
|
|
|
static __inline void __tcp_fast_path_on(struct tcp_opt *tp, u32 snd_wnd)
|
|
{
|
|
#if 0
|
|
tp->pred_flags = htonl((tp->tcp_header_len << 26) |
|
|
ntohl(TCP_FLAG_ACK) |
|
|
snd_wnd);
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_fast_path_on(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
__tcp_fast_path_on(tp, tp->snd_wnd>>tp->snd_wscale);
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_fast_path_check(struct sock *sk, struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
if (skb_queue_len(&tp->out_of_order_queue) == 0 &&
|
|
tp->rcv_wnd &&
|
|
atomic_read(&sk->rmem_alloc) < sk->rcvbuf &&
|
|
!tp->urg_data)
|
|
tcp_fast_path_on(tp);
|
|
#endif
|
|
}
|
|
|
|
/* Compute the actual receive window we are currently advertising.
|
|
* Rcv_nxt can be after the window if our peer push more data
|
|
* than the offered window.
|
|
*/
|
|
static __inline u32 tcp_receive_window(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
|
|
|
|
if (win < 0)
|
|
win = 0;
|
|
return (u32) win;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Choose a new window, without checks for shrinking, and without
|
|
* scaling applied to the result. The caller does these things
|
|
* if necessary. This is a "raw" window selection.
|
|
*/
|
|
extern u32 __tcp_select_window(struct sock *sk);
|
|
|
|
/* TCP timestamps are only 32-bits, this causes a slight
|
|
* complication on 64-bit systems since we store a snapshot
|
|
* of jiffies in the buffer control blocks below. We decidedly
|
|
* only use of the low 32-bits of jiffies and hide the ugly
|
|
* casts with the following macro.
|
|
*/
|
|
#define tcp_time_stamp ((__u32)(jiffies))
|
|
|
|
/* This is what the send packet queueing engine uses to pass
|
|
* TCP per-packet control information to the transmission
|
|
* code. We also store the host-order sequence numbers in
|
|
* here too. This is 36 bytes on 32-bit architectures,
|
|
* 40 bytes on 64-bit machines, if this grows please adjust
|
|
* skbuff.h:skbuff->cb[xxx] size appropriately.
|
|
*/
|
|
struct tcp_skb_cb {
|
|
union {
|
|
#if 0
|
|
struct inet_skb_parm h4;
|
|
#endif
|
|
#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
|
|
struct inet6_skb_parm h6;
|
|
#endif
|
|
} header; /* For incoming frames */
|
|
__u32 seq; /* Starting sequence number */
|
|
__u32 end_seq; /* SEQ + FIN + SYN + datalen */
|
|
__u32 when; /* used to compute rtt's */
|
|
__u8 flags; /* TCP header flags. */
|
|
|
|
/* NOTE: These must match up to the flags byte in a
|
|
* real TCP header.
|
|
*/
|
|
#define TCPCB_FLAG_FIN 0x01
|
|
#define TCPCB_FLAG_SYN 0x02
|
|
#define TCPCB_FLAG_RST 0x04
|
|
#define TCPCB_FLAG_PSH 0x08
|
|
#define TCPCB_FLAG_ACK 0x10
|
|
#define TCPCB_FLAG_URG 0x20
|
|
#define TCPCB_FLAG_ECE 0x40
|
|
#define TCPCB_FLAG_CWR 0x80
|
|
|
|
__u8 sacked; /* State flags for SACK/FACK. */
|
|
#define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
|
|
#define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
|
|
#define TCPCB_LOST 0x04 /* SKB is lost */
|
|
#define TCPCB_TAGBITS 0x07 /* All tag bits */
|
|
|
|
#define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
|
|
#define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
|
|
|
|
#define TCPCB_URG 0x20 /* Urgent pointer advenced here */
|
|
|
|
#define TCPCB_AT_TAIL (TCPCB_URG)
|
|
|
|
__u16 urg_ptr; /* Valid w/URG flags is set. */
|
|
__u32 ack_seq; /* Sequence number ACK'd */
|
|
};
|
|
|
|
#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
|
|
|
|
#define for_retrans_queue(skb, sk, tp) \
|
|
for (skb = (sk)->write_queue.next; \
|
|
(skb != (tp)->send_head) && \
|
|
(skb != (struct sk_buff *)&(sk)->write_queue); \
|
|
skb=skb->next)
|
|
|
|
|
|
//#include <net/tcp_ecn.h>
|
|
|
|
|
|
/*
|
|
* Compute minimal free write space needed to queue new packets.
|
|
*/
|
|
static __inline int tcp_min_write_space(struct sock *sk)
|
|
{
|
|
#if 0
|
|
return sk->wmem_queued/2;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_wspace(struct sock *sk)
|
|
{
|
|
#if 0
|
|
return sk->sndbuf - sk->wmem_queued;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
/* This determines how many packets are "in the network" to the best
|
|
* of our knowledge. In many cases it is conservative, but where
|
|
* detailed information is available from the receiver (via SACK
|
|
* blocks etc.) we can make more aggressive calculations.
|
|
*
|
|
* Use this for decisions involving congestion control, use just
|
|
* tp->packets_out to determine if the send queue is empty or not.
|
|
*
|
|
* Read this equation as:
|
|
*
|
|
* "Packets sent once on transmission queue" MINUS
|
|
* "Packets left network, but not honestly ACKed yet" PLUS
|
|
* "Packets fast retransmitted"
|
|
*/
|
|
static __inline unsigned int tcp_packets_in_flight(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
return tp->packets_out - tp->left_out + tp->retrans_out;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Recalculate snd_ssthresh, we want to set it to:
|
|
*
|
|
* one half the current congestion window, but no
|
|
* less than two segments
|
|
*/
|
|
static __inline __u32 tcp_recalc_ssthresh(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
return max(tp->snd_cwnd >> 1U, 2U);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
|
|
* The exception is rate halving phase, when cwnd is decreasing towards
|
|
* ssthresh.
|
|
*/
|
|
static __inline __u32 tcp_current_ssthresh(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
if ((1<<tp->ca_state)&(TCPF_CA_CWR|TCPF_CA_Recovery))
|
|
return tp->snd_ssthresh;
|
|
else
|
|
return max(tp->snd_ssthresh,
|
|
((tp->snd_cwnd >> 1) +
|
|
(tp->snd_cwnd >> 2)));
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_sync_left_out(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
if (tp->sack_ok && tp->sacked_out >= tp->packets_out - tp->lost_out)
|
|
tp->sacked_out = tp->packets_out - tp->lost_out;
|
|
tp->left_out = tp->sacked_out + tp->lost_out;
|
|
#endif
|
|
}
|
|
|
|
extern void tcp_cwnd_application_limited(struct sock *sk);
|
|
|
|
/* Congestion window validation. (RFC2861) */
|
|
|
|
static __inline void tcp_cwnd_validate(struct sock *sk, struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
if (tp->packets_out >= tp->snd_cwnd) {
|
|
/* Network is feed fully. */
|
|
tp->snd_cwnd_used = 0;
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
|
} else {
|
|
/* Network starves. */
|
|
if (tp->packets_out > tp->snd_cwnd_used)
|
|
tp->snd_cwnd_used = tp->packets_out;
|
|
|
|
if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= tp->rto)
|
|
tcp_cwnd_application_limited(sk);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Set slow start threshold and cwnd not falling to slow start */
|
|
static __inline void __tcp_enter_cwr(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
tp->undo_marker = 0;
|
|
tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
|
|
tp->snd_cwnd = min(tp->snd_cwnd,
|
|
tcp_packets_in_flight(tp) + 1U);
|
|
tp->snd_cwnd_cnt = 0;
|
|
tp->high_seq = tp->snd_nxt;
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
|
TCP_ECN_queue_cwr(tp);
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_enter_cwr(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
tp->prior_ssthresh = 0;
|
|
if (tp->ca_state < TCP_CA_CWR) {
|
|
__tcp_enter_cwr(tp);
|
|
tp->ca_state = TCP_CA_CWR;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
extern __u32 tcp_init_cwnd(struct tcp_opt *tp);
|
|
|
|
/* Slow start with delack produces 3 packets of burst, so that
|
|
* it is safe "de facto".
|
|
*/
|
|
static __inline __u32 tcp_max_burst(struct tcp_opt *tp)
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
static __inline__ int tcp_minshall_check(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
return after(tp->snd_sml,tp->snd_una) &&
|
|
!after(tp->snd_sml, tp->snd_nxt);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_minshall_update(struct tcp_opt *tp, int mss, struct sk_buff *skb)
|
|
{
|
|
#if 0
|
|
if (skb->len < mss)
|
|
tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
|
|
#endif
|
|
}
|
|
|
|
/* Return 0, if packet can be sent now without violation Nagle's rules:
|
|
1. It is full sized.
|
|
2. Or it contains FIN.
|
|
3. Or TCP_NODELAY was set.
|
|
4. Or TCP_CORK is not set, and all sent packets are ACKed.
|
|
With Minshall's modification: all sent small packets are ACKed.
|
|
*/
|
|
|
|
static __inline int
|
|
tcp_nagle_check(struct tcp_opt *tp, struct sk_buff *skb, unsigned mss_now, int nonagle)
|
|
{
|
|
#if 0
|
|
return (skb->len < mss_now &&
|
|
!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
|
|
(nonagle == 2 ||
|
|
(!nonagle &&
|
|
tp->packets_out &&
|
|
tcp_minshall_check(tp))));
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* This checks if the data bearing packet SKB (usually tp->send_head)
|
|
* should be put on the wire right now.
|
|
*/
|
|
static __inline int tcp_snd_test(struct tcp_opt *tp, struct sk_buff *skb,
|
|
unsigned cur_mss, int nonagle)
|
|
{
|
|
#if 0
|
|
/* RFC 1122 - section 4.2.3.4
|
|
*
|
|
* We must queue if
|
|
*
|
|
* a) The right edge of this frame exceeds the window
|
|
* b) There are packets in flight and we have a small segment
|
|
* [SWS avoidance and Nagle algorithm]
|
|
* (part of SWS is done on packetization)
|
|
* Minshall version sounds: there are no _small_
|
|
* segments in flight. (tcp_nagle_check)
|
|
* c) We have too many packets 'in flight'
|
|
*
|
|
* Don't use the nagle rule for urgent data (or
|
|
* for the final FIN -DaveM).
|
|
*
|
|
* Also, Nagle rule does not apply to frames, which
|
|
* sit in the middle of queue (they have no chances
|
|
* to get new data) and if room at tail of skb is
|
|
* not enough to save something seriously (<32 for now).
|
|
*/
|
|
|
|
/* Don't be strict about the congestion window for the
|
|
* final FIN frame. -DaveM
|
|
*/
|
|
return ((nonagle==1 || tp->urg_mode
|
|
|| !tcp_nagle_check(tp, skb, cur_mss, nonagle)) &&
|
|
((tcp_packets_in_flight(tp) < tp->snd_cwnd) ||
|
|
(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) &&
|
|
!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd));
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_check_probe_timer(struct sock *sk, struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
if (!tp->packets_out && !tp->pending)
|
|
tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0, tp->rto);
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_skb_is_last(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
#if 0
|
|
return (skb->next == (struct sk_buff*)&sk->write_queue);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Push out any pending frames which were held back due to
|
|
* TCP_CORK or attempt at coalescing tiny packets.
|
|
* The socket must be locked by the caller.
|
|
*/
|
|
static __inline void __tcp_push_pending_frames(struct sock *sk,
|
|
struct tcp_opt *tp,
|
|
unsigned cur_mss,
|
|
int nonagle)
|
|
{
|
|
#if 0
|
|
struct sk_buff *skb = tp->send_head;
|
|
|
|
if (skb) {
|
|
if (!tcp_skb_is_last(sk, skb))
|
|
nonagle = 1;
|
|
if (!tcp_snd_test(tp, skb, cur_mss, nonagle) ||
|
|
tcp_write_xmit(sk, nonagle))
|
|
tcp_check_probe_timer(sk, tp);
|
|
}
|
|
tcp_cwnd_validate(sk, tp);
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_push_pending_frames(struct sock *sk,
|
|
struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
__tcp_push_pending_frames(sk, tp, tcp_current_mss(sk), tp->nonagle);
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_may_send_now(struct sock *sk, struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
struct sk_buff *skb = tp->send_head;
|
|
|
|
return (skb &&
|
|
tcp_snd_test(tp, skb, tcp_current_mss(sk),
|
|
tcp_skb_is_last(sk, skb) ? 1 : tp->nonagle));
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_init_wl(struct tcp_opt *tp, u32 ack, u32 seq)
|
|
{
|
|
#if 0
|
|
tp->snd_wl1 = seq;
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_update_wl(struct tcp_opt *tp, u32 ack, u32 seq)
|
|
{
|
|
#if 0
|
|
tp->snd_wl1 = seq;
|
|
#endif
|
|
}
|
|
|
|
extern void tcp_destroy_sock(struct sock *sk);
|
|
|
|
|
|
/*
|
|
* Calculate(/check) TCP checksum
|
|
*/
|
|
static __inline u16 tcp_v4_check(struct tcphdr *th, int len,
|
|
unsigned long saddr, unsigned long daddr,
|
|
unsigned long base)
|
|
{
|
|
#if 0
|
|
return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline int __tcp_checksum_complete(struct sk_buff *skb)
|
|
{
|
|
#if 0
|
|
return (unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum));
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_checksum_complete(struct sk_buff *skb)
|
|
{
|
|
#if 0
|
|
return skb->ip_summed != CHECKSUM_UNNECESSARY &&
|
|
__tcp_checksum_complete(skb);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Prequeue for VJ style copy to user, combined with checksumming. */
|
|
|
|
static __inline void tcp_prequeue_init(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
tp->ucopy.task = NULL;
|
|
tp->ucopy.len = 0;
|
|
tp->ucopy.memory = 0;
|
|
skb_queue_head_init(&tp->ucopy.prequeue);
|
|
#endif
|
|
}
|
|
|
|
/* Packet is added to VJ-style prequeue for processing in process
|
|
* context, if a reader task is waiting. Apparently, this exciting
|
|
* idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
|
|
* failed somewhere. Latency? Burstiness? Well, at least now we will
|
|
* see, why it failed. 8)8) --ANK
|
|
*
|
|
* NOTE: is this not too big to inline?
|
|
*/
|
|
static __inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
#if 0
|
|
struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
|
|
|
|
if (tp->ucopy.task) {
|
|
__skb_queue_tail(&tp->ucopy.prequeue, skb);
|
|
tp->ucopy.memory += skb->truesize;
|
|
if (tp->ucopy.memory > sk->rcvbuf) {
|
|
struct sk_buff *skb1;
|
|
|
|
if (sk->lock.users)
|
|
out_of_line_bug();
|
|
|
|
while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
|
|
sk->backlog_rcv(sk, skb1);
|
|
NET_INC_STATS_BH(TCPPrequeueDropped);
|
|
}
|
|
|
|
tp->ucopy.memory = 0;
|
|
} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
|
|
wake_up_interruptible(sk->sleep);
|
|
if (!tcp_ack_scheduled(tp))
|
|
tcp_reset_xmit_timer(sk, TCP_TIME_DACK, (3*TCP_RTO_MIN)/4);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
#undef STATE_TRACE
|
|
|
|
#ifdef STATE_TRACE
|
|
static char *statename[]={
|
|
"Unused","Established","Syn Sent","Syn Recv",
|
|
"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
|
|
"Close Wait","Last ACK","Listen","Closing"
|
|
};
|
|
#endif
|
|
|
|
static __inline void tcp_set_state(struct sock *sk, int state)
|
|
{
|
|
#if 0
|
|
int oldstate = sk->state;
|
|
|
|
switch (state) {
|
|
case TCP_ESTABLISHED:
|
|
if (oldstate != TCP_ESTABLISHED)
|
|
TCP_INC_STATS(TcpCurrEstab);
|
|
break;
|
|
|
|
case TCP_CLOSE:
|
|
sk->prot->unhash(sk);
|
|
if (sk->prev && !(sk->userlocks&SOCK_BINDPORT_LOCK))
|
|
tcp_put_port(sk);
|
|
/* fall through */
|
|
default:
|
|
if (oldstate==TCP_ESTABLISHED)
|
|
tcp_statistics[smp_processor_id()*2+!in_softirq()].TcpCurrEstab--;
|
|
}
|
|
|
|
/* Change state AFTER socket is unhashed to avoid closed
|
|
* socket sitting in hash tables.
|
|
*/
|
|
sk->state = state;
|
|
|
|
#ifdef STATE_TRACE
|
|
SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_done(struct sock *sk)
|
|
{
|
|
#if 0
|
|
tcp_set_state(sk, TCP_CLOSE);
|
|
tcp_clear_xmit_timers(sk);
|
|
|
|
sk->shutdown = SHUTDOWN_MASK;
|
|
|
|
if (!sk->dead)
|
|
sk->state_change(sk);
|
|
else
|
|
tcp_destroy_sock(sk);
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_sack_reset(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
tp->dsack = 0;
|
|
tp->eff_sacks = 0;
|
|
tp->num_sacks = 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_build_and_update_options(__u32 *ptr, struct tcp_opt *tp, __u32 tstamp)
|
|
{
|
|
#if 0
|
|
if (tp->tstamp_ok) {
|
|
*ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
|
|
(TCPOPT_NOP << 16) |
|
|
(TCPOPT_TIMESTAMP << 8) |
|
|
TCPOLEN_TIMESTAMP);
|
|
*ptr++ = htonl(tstamp);
|
|
*ptr++ = htonl(tp->ts_recent);
|
|
}
|
|
if (tp->eff_sacks) {
|
|
struct tcp_sack_block *sp = tp->dsack ? tp->duplicate_sack : tp->selective_acks;
|
|
int this_sack;
|
|
|
|
*ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
|
|
(TCPOPT_NOP << 16) |
|
|
(TCPOPT_SACK << 8) |
|
|
(TCPOLEN_SACK_BASE +
|
|
(tp->eff_sacks * TCPOLEN_SACK_PERBLOCK)));
|
|
for(this_sack = 0; this_sack < tp->eff_sacks; this_sack++) {
|
|
*ptr++ = htonl(sp[this_sack].start_seq);
|
|
*ptr++ = htonl(sp[this_sack].end_seq);
|
|
}
|
|
if (tp->dsack) {
|
|
tp->dsack = 0;
|
|
tp->eff_sacks--;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Construct a tcp options header for a SYN or SYN_ACK packet.
|
|
* If this is every changed make sure to change the definition of
|
|
* MAX_SYN_SIZE to match the new maximum number of options that you
|
|
* can generate.
|
|
*/
|
|
static __inline void tcp_syn_build_options(__u32 *ptr, int mss, int ts, int sack,
|
|
int offer_wscale, int wscale, __u32 tstamp, __u32 ts_recent)
|
|
{
|
|
#if 0
|
|
/* We always get an MSS option.
|
|
* The option bytes which will be seen in normal data
|
|
* packets should timestamps be used, must be in the MSS
|
|
* advertised. But we subtract them from tp->mss_cache so
|
|
* that calculations in tcp_sendmsg are simpler etc.
|
|
* So account for this fact here if necessary. If we
|
|
* don't do this correctly, as a receiver we won't
|
|
* recognize data packets as being full sized when we
|
|
* should, and thus we won't abide by the delayed ACK
|
|
* rules correctly.
|
|
* SACKs don't matter, we never delay an ACK when we
|
|
* have any of those going out.
|
|
*/
|
|
*ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss);
|
|
if (ts) {
|
|
if(sack)
|
|
*ptr++ = __constant_htonl((TCPOPT_SACK_PERM << 24) | (TCPOLEN_SACK_PERM << 16) |
|
|
(TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
|
|
else
|
|
*ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
|
|
(TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
|
|
*ptr++ = htonl(tstamp); /* TSVAL */
|
|
*ptr++ = htonl(ts_recent); /* TSECR */
|
|
} else if(sack)
|
|
*ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
|
|
(TCPOPT_SACK_PERM << 8) | TCPOLEN_SACK_PERM);
|
|
if (offer_wscale)
|
|
*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_WINDOW << 16) | (TCPOLEN_WINDOW << 8) | (wscale));
|
|
#endif
|
|
}
|
|
|
|
/* Determine a window scaling and initial window to offer.
|
|
* Based on the assumption that the given amount of space
|
|
* will be offered. Store the results in the tp structure.
|
|
* NOTE: for smooth operation initial space offering should
|
|
* be a multiple of mss if possible. We assume here that mss >= 1.
|
|
* This MUST be enforced by all callers.
|
|
*/
|
|
static __inline void tcp_select_initial_window(int __space, __u32 mss,
|
|
__u32 *rcv_wnd,
|
|
__u32 *window_clamp,
|
|
int wscale_ok,
|
|
__u8 *rcv_wscale)
|
|
{
|
|
#if 0
|
|
unsigned int space = (__space < 0 ? 0 : __space);
|
|
|
|
/* If no clamp set the clamp to the max possible scaled window */
|
|
if (*window_clamp == 0)
|
|
(*window_clamp) = (65535 << 14);
|
|
space = min(*window_clamp, space);
|
|
|
|
/* Quantize space offering to a multiple of mss if possible. */
|
|
if (space > mss)
|
|
space = (space / mss) * mss;
|
|
|
|
/* NOTE: offering an initial window larger than 32767
|
|
* will break some buggy TCP stacks. We try to be nice.
|
|
* If we are not window scaling, then this truncates
|
|
* our initial window offering to 32k. There should also
|
|
* be a sysctl option to stop being nice.
|
|
*/
|
|
(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
|
|
(*rcv_wscale) = 0;
|
|
if (wscale_ok) {
|
|
/* See RFC1323 for an explanation of the limit to 14 */
|
|
while (space > 65535 && (*rcv_wscale) < 14) {
|
|
space >>= 1;
|
|
(*rcv_wscale)++;
|
|
}
|
|
if (*rcv_wscale && sysctl_tcp_app_win && space>=mss &&
|
|
space - max((space>>sysctl_tcp_app_win), mss>>*rcv_wscale) < 65536/2)
|
|
(*rcv_wscale)--;
|
|
}
|
|
|
|
/* Set initial window to value enough for senders,
|
|
* following RFC1414. Senders, not following this RFC,
|
|
* will be satisfied with 2.
|
|
*/
|
|
if (mss > (1<<*rcv_wscale)) {
|
|
int init_cwnd = 4;
|
|
if (mss > 1460*3)
|
|
init_cwnd = 2;
|
|
else if (mss > 1460)
|
|
init_cwnd = 3;
|
|
if (*rcv_wnd > init_cwnd*mss)
|
|
*rcv_wnd = init_cwnd*mss;
|
|
}
|
|
/* Set the clamp no higher than max representable value */
|
|
(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_win_from_space(int space)
|
|
{
|
|
#if 0
|
|
return sysctl_tcp_adv_win_scale<=0 ?
|
|
(space>>(-sysctl_tcp_adv_win_scale)) :
|
|
space - (space>>sysctl_tcp_adv_win_scale);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Note: caller must be prepared to deal with negative returns */
|
|
static __inline int tcp_space(struct sock *sk)
|
|
{
|
|
#if 0
|
|
return tcp_win_from_space(sk->rcvbuf - atomic_read(&sk->rmem_alloc));
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_full_space( struct sock *sk)
|
|
{
|
|
#if 0
|
|
return tcp_win_from_space(sk->rcvbuf);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_acceptq_removed(struct sock *sk)
|
|
{
|
|
#if 0
|
|
sk->ack_backlog--;
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_acceptq_added(struct sock *sk)
|
|
{
|
|
#if 0
|
|
sk->ack_backlog++;
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_acceptq_is_full(struct sock *sk)
|
|
{
|
|
#if 0
|
|
return sk->ack_backlog > sk->max_ack_backlog;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_acceptq_queue(struct sock *sk, struct open_request *req,
|
|
struct sock *child)
|
|
{
|
|
#if 0
|
|
struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
|
|
|
|
req->sk = child;
|
|
tcp_acceptq_added(sk);
|
|
|
|
if (!tp->accept_queue_tail) {
|
|
tp->accept_queue = req;
|
|
} else {
|
|
tp->accept_queue_tail->dl_next = req;
|
|
}
|
|
tp->accept_queue_tail = req;
|
|
req->dl_next = NULL;
|
|
#endif
|
|
}
|
|
|
|
struct tcp_listen_opt
|
|
{
|
|
u8 max_qlen_log; /* log_2 of maximal queued SYNs */
|
|
int qlen;
|
|
int qlen_young;
|
|
int clock_hand;
|
|
struct open_request *syn_table[TCP_SYNQ_HSIZE];
|
|
};
|
|
|
|
static __inline void
|
|
tcp_synq_removed(struct sock *sk, struct open_request *req)
|
|
{
|
|
#if 0
|
|
struct tcp_listen_opt *lopt = sk->tp_pinfo.af_tcp.listen_opt;
|
|
|
|
if (--lopt->qlen == 0)
|
|
tcp_delete_keepalive_timer(sk);
|
|
if (req->retrans == 0)
|
|
lopt->qlen_young--;
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_synq_added(struct sock *sk)
|
|
{
|
|
#if 0
|
|
struct tcp_listen_opt *lopt = sk->tp_pinfo.af_tcp.listen_opt;
|
|
|
|
if (lopt->qlen++ == 0)
|
|
tcp_reset_keepalive_timer(sk, TCP_TIMEOUT_INIT);
|
|
lopt->qlen_young++;
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_synq_len(struct sock *sk)
|
|
{
|
|
#if 0
|
|
return sk->tp_pinfo.af_tcp.listen_opt->qlen;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_synq_young(struct sock *sk)
|
|
{
|
|
#if 0
|
|
return sk->tp_pinfo.af_tcp.listen_opt->qlen_young;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_synq_is_full(struct sock *sk)
|
|
{
|
|
#if 0
|
|
return tcp_synq_len(sk)>>sk->tp_pinfo.af_tcp.listen_opt->max_qlen_log;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_synq_unlink(struct tcp_opt *tp, struct open_request *req,
|
|
struct open_request **prev)
|
|
{
|
|
#if 0
|
|
write_lock(&tp->syn_wait_lock);
|
|
*prev = req->dl_next;
|
|
write_unlock(&tp->syn_wait_lock);
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_synq_drop(struct sock *sk, struct open_request *req,
|
|
struct open_request **prev)
|
|
{
|
|
#if 0
|
|
tcp_synq_unlink(&sk->tp_pinfo.af_tcp, req, prev);
|
|
tcp_synq_removed(sk, req);
|
|
tcp_openreq_free(req);
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_openreq_init(struct open_request *req,
|
|
struct tcp_opt *tp,
|
|
struct sk_buff *skb)
|
|
{
|
|
#if 0
|
|
req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
|
|
req->rcv_isn = TCP_SKB_CB(skb)->seq;
|
|
req->mss = tp->mss_clamp;
|
|
req->ts_recent = tp->saw_tstamp ? tp->rcv_tsval : 0;
|
|
req->tstamp_ok = tp->tstamp_ok;
|
|
req->sack_ok = tp->sack_ok;
|
|
req->snd_wscale = tp->snd_wscale;
|
|
req->wscale_ok = tp->wscale_ok;
|
|
req->acked = 0;
|
|
req->ecn_ok = 0;
|
|
req->rmt_port = skb->h.th->source;
|
|
#endif
|
|
}
|
|
|
|
#define TCP_MEM_QUANTUM ((int)PAGE_SIZE)
|
|
|
|
static __inline void tcp_free_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
#if 0
|
|
sk->tp_pinfo.af_tcp.queue_shrunk = 1;
|
|
sk->wmem_queued -= skb->truesize;
|
|
sk->forward_alloc += skb->truesize;
|
|
__kfree_skb(skb);
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_charge_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
#if 0
|
|
sk->wmem_queued += skb->truesize;
|
|
sk->forward_alloc -= skb->truesize;
|
|
#endif
|
|
}
|
|
|
|
extern void __tcp_mem_reclaim(struct sock *sk);
|
|
extern int tcp_mem_schedule(struct sock *sk, int size, int kind);
|
|
|
|
static __inline void tcp_mem_reclaim(struct sock *sk)
|
|
{
|
|
#if 0
|
|
if (sk->forward_alloc >= TCP_MEM_QUANTUM)
|
|
__tcp_mem_reclaim(sk);
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_enter_memory_pressure(void)
|
|
{
|
|
#if 0
|
|
if (!tcp_memory_pressure) {
|
|
NET_INC_STATS(TCPMemoryPressures);
|
|
tcp_memory_pressure = 1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_moderate_sndbuf(struct sock *sk)
|
|
{
|
|
#if 0
|
|
if (!(sk->userlocks&SOCK_SNDBUF_LOCK)) {
|
|
sk->sndbuf = min(sk->sndbuf, sk->wmem_queued/2);
|
|
sk->sndbuf = max(sk->sndbuf, SOCK_MIN_SNDBUF);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static __inline struct sk_buff *tcp_alloc_pskb(struct sock *sk, int size, int mem, int gfp)
|
|
{
|
|
#if 0
|
|
struct sk_buff *skb = alloc_skb(size+MAX_TCP_HEADER, gfp);
|
|
|
|
if (skb) {
|
|
skb->truesize += mem;
|
|
if (sk->forward_alloc >= (int)skb->truesize ||
|
|
tcp_mem_schedule(sk, skb->truesize, 0)) {
|
|
skb_reserve(skb, MAX_TCP_HEADER);
|
|
return skb;
|
|
}
|
|
__kfree_skb(skb);
|
|
} else {
|
|
tcp_enter_memory_pressure();
|
|
tcp_moderate_sndbuf(sk);
|
|
}
|
|
return NULL;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
static __inline struct sk_buff *tcp_alloc_skb(struct sock *sk, int size, int gfp)
|
|
{
|
|
#if 0
|
|
return tcp_alloc_pskb(sk, size, 0, gfp);
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
static __inline struct page * tcp_alloc_page(struct sock *sk)
|
|
{
|
|
#if 0
|
|
if (sk->forward_alloc >= (int)PAGE_SIZE ||
|
|
tcp_mem_schedule(sk, PAGE_SIZE, 0)) {
|
|
struct page *page = alloc_pages(sk->allocation, 0);
|
|
if (page)
|
|
return page;
|
|
}
|
|
tcp_enter_memory_pressure();
|
|
tcp_moderate_sndbuf(sk);
|
|
return NULL;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_writequeue_purge(struct sock *sk)
|
|
{
|
|
#if 0
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = __skb_dequeue(&sk->write_queue)) != NULL)
|
|
tcp_free_skb(sk, skb);
|
|
tcp_mem_reclaim(sk);
|
|
#endif
|
|
}
|
|
|
|
extern void tcp_rfree(struct sk_buff *skb);
|
|
|
|
static __inline void tcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
|
|
{
|
|
#if 0
|
|
skb->sk = sk;
|
|
skb->destructor = tcp_rfree;
|
|
atomic_add(skb->truesize, &sk->rmem_alloc);
|
|
sk->forward_alloc -= skb->truesize;
|
|
#endif
|
|
}
|
|
|
|
extern void tcp_listen_wlock(void);
|
|
|
|
/* - We may sleep inside this lock.
|
|
* - If sleeping is not required (or called from BH),
|
|
* use plain read_(un)lock(&tcp_lhash_lock).
|
|
*/
|
|
|
|
static __inline void tcp_listen_lock(void)
|
|
{
|
|
#if 0
|
|
/* read_lock synchronizes to candidates to writers */
|
|
read_lock(&tcp_lhash_lock);
|
|
atomic_inc(&tcp_lhash_users);
|
|
read_unlock(&tcp_lhash_lock);
|
|
#endif
|
|
}
|
|
|
|
static __inline void tcp_listen_unlock(void)
|
|
{
|
|
#if 0
|
|
if (atomic_dec_and_test(&tcp_lhash_users))
|
|
wake_up(&tcp_lhash_wait);
|
|
#endif
|
|
}
|
|
|
|
static __inline int keepalive_intvl_when(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline int keepalive_time_when(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_fin_time(struct tcp_opt *tp)
|
|
{
|
|
#if 0
|
|
int fin_timeout = tp->linger2 ? : sysctl_tcp_fin_timeout;
|
|
|
|
if (fin_timeout < (tp->rto<<2) - (tp->rto>>1))
|
|
fin_timeout = (tp->rto<<2) - (tp->rto>>1);
|
|
|
|
return fin_timeout;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __inline int tcp_paws_check(struct tcp_opt *tp, int rst)
|
|
{
|
|
#if 0
|
|
if ((s32)(tp->rcv_tsval - tp->ts_recent) >= 0)
|
|
return 0;
|
|
if (xtime.tv_sec >= tp->ts_recent_stamp + TCP_PAWS_24DAYS)
|
|
return 0;
|
|
|
|
/* RST segments are not recommended to carry timestamp,
|
|
and, if they do, it is recommended to ignore PAWS because
|
|
"their cleanup function should take precedence over timestamps."
|
|
Certainly, it is mistake. It is necessary to understand the reasons
|
|
of this constraint to relax it: if peer reboots, clock may go
|
|
out-of-sync and half-open connections will not be reset.
|
|
Actually, the problem would be not existing if all
|
|
the implementations followed draft about maintaining clock
|
|
via reboots. Linux-2.2 DOES NOT!
|
|
|
|
However, we can relax time bounds for RST segments to MSL.
|
|
*/
|
|
if (rst && xtime.tv_sec >= tp->ts_recent_stamp + TCP_PAWS_MSL)
|
|
return 0;
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#define TCP_CHECK_TIMER(sk) do { } while (0)
|
|
|
|
#endif /* __TCPCORE_H */
|
|
|
|
|
|
//
|
|
#endif
|