reactos/dll/opengl/mesa/matrix.c
Jérôme Gardou 5f2bebf7a5 [OPENGL32][MESA] Downgrade Mesa library to version 2.6
With this commit, we now use a forked version of MESA which only supports OpenGL 1.1, like the windows implementation does.
It exposes :
  - The same pixel formats
  - The same set of extensions
  - Nothing more
All of this without taking 10% of your build time.
If you need a more modern option, look at the MESA package from Rapps, which is (and must be) maintained outside of this code tree.
CORE-7499
2019-01-19 14:23:54 +01:00

1048 lines
30 KiB
C

/* $Id: matrix.c,v 1.23 1997/12/29 23:48:53 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 2.6
* Copyright (C) 1995-1997 Brian Paul
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* $Log: matrix.c,v $
* Revision 1.23 1997/12/29 23:48:53 brianp
* call Driver.NearFar() in gl_LoadMatrixf() for projection matrix
*
* Revision 1.22 1997/10/16 23:37:23 brianp
* fixed scotter's email address
*
* Revision 1.21 1997/08/13 01:54:34 brianp
* new matrix invert code from Scott McCaskill
*
* Revision 1.20 1997/07/24 01:23:16 brianp
* changed precompiled header symbol from PCH to PC_HEADER
*
* Revision 1.19 1997/05/30 02:21:43 brianp
* gl_PopMatrix() set ctx->New*Matrix flag incorrectly
*
* Revision 1.18 1997/05/28 04:06:03 brianp
* implemented projection near/far value stack for Driver.NearFar() function
*
* Revision 1.17 1997/05/28 03:25:43 brianp
* added precompiled header (PCH) support
*
* Revision 1.16 1997/05/01 01:39:40 brianp
* replace sqrt() with GL_SQRT()
*
* Revision 1.15 1997/04/21 01:20:41 brianp
* added MATRIX_2D_NO_ROT
*
* Revision 1.14 1997/04/20 20:28:49 brianp
* replaced abort() with gl_problem()
*
* Revision 1.13 1997/04/20 16:31:08 brianp
* added NearFar device driver function
*
* Revision 1.12 1997/04/20 16:18:15 brianp
* added glOrtho and glFrustum API pointers
*
* Revision 1.11 1997/04/01 04:23:53 brianp
* added gl_analyze_*_matrix() functions
*
* Revision 1.10 1997/02/10 19:47:53 brianp
* moved buffer resize code out of gl_Viewport() into gl_ResizeBuffersMESA()
*
* Revision 1.9 1997/01/31 23:32:40 brianp
* now clear depth buffer after reallocation due to window resize
*
* Revision 1.8 1997/01/29 19:06:04 brianp
* removed extra, local definition of Identity[] matrix
*
* Revision 1.7 1997/01/28 22:19:17 brianp
* new matrix inversion code from Stephane Rehel
*
* Revision 1.6 1996/12/22 17:53:11 brianp
* faster invert_matrix() function from scotter@iname.com
*
* Revision 1.5 1996/12/02 18:58:34 brianp
* gl_rotation_matrix() now returns identity matrix if given a 0 rotation axis
*
* Revision 1.4 1996/09/27 01:29:05 brianp
* added missing default cases to switches
*
* Revision 1.3 1996/09/15 14:18:37 brianp
* now use GLframebuffer and GLvisual
*
* Revision 1.2 1996/09/14 06:46:04 brianp
* better matmul() from Jacques Leroy
*
* Revision 1.1 1996/09/13 01:38:16 brianp
* Initial revision
*
*/
/*
* Matrix operations
*
*
* NOTES:
* 1. 4x4 transformation matrices are stored in memory in column major order.
* 2. Points/vertices are to be thought of as column vectors.
* 3. Transformation of a point p by a matrix M is: p' = M * p
*
*/
#ifdef PC_HEADER
#include "all.h"
#else
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "context.h"
#include "dlist.h"
#include "macros.h"
#include "matrix.h"
#include "mmath.h"
#include "types.h"
#endif
static GLfloat Identity[16] = {
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0
};
#if 0
static void print_matrix( const GLfloat m[16] )
{
int i;
for (i=0;i<4;i++) {
printf("%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
}
}
#endif
/*
* Perform a 4x4 matrix multiplication (product = a x b).
* Input: a, b - matrices to multiply
* Output: product - product of a and b
* WARNING: (product != b) assumed
* NOTE: (product == a) allowed
*/
static void matmul( GLfloat *product, const GLfloat *a, const GLfloat *b )
{
/* This matmul was contributed by Thomas Malik */
GLint i;
#define A(row,col) a[(col<<2)+row]
#define B(row,col) b[(col<<2)+row]
#define P(row,col) product[(col<<2)+row]
/* i-te Zeile */
for (i = 0; i < 4; i++) {
GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
}
#undef A
#undef B
#undef P
}
/*
* Compute the inverse of a 4x4 matrix.
*
* From an algorithm by V. Strassen, 1969, _Numerishe Mathematik_, vol. 13,
* pp. 354-356.
* 60 multiplies, 24 additions, 10 subtractions, 8 negations, 2 divisions,
* 48 assignments, _0_ branches
*
* This implementation by Scott McCaskill
*/
typedef GLfloat Mat2[2][2];
enum {
M00 = 0, M01 = 4, M02 = 8, M03 = 12,
M10 = 1, M11 = 5, M12 = 9, M13 = 13,
M20 = 2, M21 = 6, M22 = 10,M23 = 14,
M30 = 3, M31 = 7, M32 = 11,M33 = 15
};
static void invert_matrix_general( const GLfloat *m, GLfloat *out )
{
Mat2 r1, r2, r3, r4, r5, r6, r7;
const GLfloat * A = m;
GLfloat * C = out;
GLfloat one_over_det;
/*
* A is the 4x4 source matrix (to be inverted).
* C is the 4x4 destination matrix
* a11 is the 2x2 matrix in the upper left quadrant of A
* a12 is the 2x2 matrix in the upper right quadrant of A
* a21 is the 2x2 matrix in the lower left quadrant of A
* a22 is the 2x2 matrix in the lower right quadrant of A
* similarly, cXX are the 2x2 quadrants of the destination matrix
*/
/* R1 = inverse( a11 ) */
one_over_det = 1.0f / ( ( A[M00] * A[M11] ) - ( A[M10] * A[M01] ) );
r1[0][0] = one_over_det * A[M11];
r1[0][1] = one_over_det * -A[M01];
r1[1][0] = one_over_det * -A[M10];
r1[1][1] = one_over_det * A[M00];
/* R2 = a21 x R1 */
r2[0][0] = A[M20] * r1[0][0] + A[M21] * r1[1][0];
r2[0][1] = A[M20] * r1[0][1] + A[M21] * r1[1][1];
r2[1][0] = A[M30] * r1[0][0] + A[M31] * r1[1][0];
r2[1][1] = A[M30] * r1[0][1] + A[M31] * r1[1][1];
/* R3 = R1 x a12 */
r3[0][0] = r1[0][0] * A[M02] + r1[0][1] * A[M12];
r3[0][1] = r1[0][0] * A[M03] + r1[0][1] * A[M13];
r3[1][0] = r1[1][0] * A[M02] + r1[1][1] * A[M12];
r3[1][1] = r1[1][0] * A[M03] + r1[1][1] * A[M13];
/* R4 = a21 x R3 */
r4[0][0] = A[M20] * r3[0][0] + A[M21] * r3[1][0];
r4[0][1] = A[M20] * r3[0][1] + A[M21] * r3[1][1];
r4[1][0] = A[M30] * r3[0][0] + A[M31] * r3[1][0];
r4[1][1] = A[M30] * r3[0][1] + A[M31] * r3[1][1];
/* R5 = R4 - a22 */
r5[0][0] = r4[0][0] - A[M22];
r5[0][1] = r4[0][1] - A[M23];
r5[1][0] = r4[1][0] - A[M32];
r5[1][1] = r4[1][1] - A[M33];
/* R6 = inverse( R5 ) */
one_over_det = 1.0f / ( ( r5[0][0] * r5[1][1] ) - ( r5[1][0] * r5[0][1] ) );
r6[0][0] = one_over_det * r5[1][1];
r6[0][1] = one_over_det * -r5[0][1];
r6[1][0] = one_over_det * -r5[1][0];
r6[1][1] = one_over_det * r5[0][0];
/* c12 = R3 x R6 */
C[M02] = r3[0][0] * r6[0][0] + r3[0][1] * r6[1][0];
C[M03] = r3[0][0] * r6[0][1] + r3[0][1] * r6[1][1];
C[M12] = r3[1][0] * r6[0][0] + r3[1][1] * r6[1][0];
C[M13] = r3[1][0] * r6[0][1] + r3[1][1] * r6[1][1];
/* c21 = R6 x R2 */
C[M20] = r6[0][0] * r2[0][0] + r6[0][1] * r2[1][0];
C[M21] = r6[0][0] * r2[0][1] + r6[0][1] * r2[1][1];
C[M30] = r6[1][0] * r2[0][0] + r6[1][1] * r2[1][0];
C[M31] = r6[1][0] * r2[0][1] + r6[1][1] * r2[1][1];
/* R7 = R3 x c21 */
r7[0][0] = r3[0][0] * C[M20] + r3[0][1] * C[M30];
r7[0][1] = r3[0][0] * C[M21] + r3[0][1] * C[M31];
r7[1][0] = r3[1][0] * C[M20] + r3[1][1] * C[M30];
r7[1][1] = r3[1][0] * C[M21] + r3[1][1] * C[M31];
/* c11 = R1 - R7 */
C[M00] = r1[0][0] - r7[0][0];
C[M01] = r1[0][1] - r7[0][1];
C[M10] = r1[1][0] - r7[1][0];
C[M11] = r1[1][1] - r7[1][1];
/* c22 = -R6 */
C[M22] = -r6[0][0];
C[M23] = -r6[0][1];
C[M32] = -r6[1][0];
C[M33] = -r6[1][1];
}
/*
* Invert matrix m. This algorithm contributed by Stephane Rehel
* <rehel@worldnet.fr>
*/
static void invert_matrix( const GLfloat *m, GLfloat *out )
{
/* NB. OpenGL Matrices are COLUMN major. */
#define MAT(m,r,c) (m)[(c)*4+(r)]
/* Here's some shorthand converting standard (row,column) to index. */
#define m11 MAT(m,0,0)
#define m12 MAT(m,0,1)
#define m13 MAT(m,0,2)
#define m14 MAT(m,0,3)
#define m21 MAT(m,1,0)
#define m22 MAT(m,1,1)
#define m23 MAT(m,1,2)
#define m24 MAT(m,1,3)
#define m31 MAT(m,2,0)
#define m32 MAT(m,2,1)
#define m33 MAT(m,2,2)
#define m34 MAT(m,2,3)
#define m41 MAT(m,3,0)
#define m42 MAT(m,3,1)
#define m43 MAT(m,3,2)
#define m44 MAT(m,3,3)
register GLfloat det;
GLfloat tmp[16]; /* Allow out == in. */
if( m41 != 0. || m42 != 0. || m43 != 0. || m44 != 1. ) {
invert_matrix_general(m, out);
return;
}
/* Inverse = adjoint / det. (See linear algebra texts.)*/
tmp[0]= m22 * m33 - m23 * m32;
tmp[1]= m23 * m31 - m21 * m33;
tmp[2]= m21 * m32 - m22 * m31;
/* Compute determinant as early as possible using these cofactors. */
det= m11 * tmp[0] + m12 * tmp[1] + m13 * tmp[2];
/* Run singularity test. */
if (det == 0.0F) {
/* printf("invert_matrix: Warning: Singular matrix.\n"); */
MEMCPY( out, Identity, 16*sizeof(GLfloat) );
}
else {
GLfloat d12, d13, d23, d24, d34, d41;
register GLfloat im11, im12, im13, im14;
det= 1. / det;
/* Compute rest of inverse. */
tmp[0] *= det;
tmp[1] *= det;
tmp[2] *= det;
tmp[3] = 0.;
im11= m11 * det;
im12= m12 * det;
im13= m13 * det;
im14= m14 * det;
tmp[4] = im13 * m32 - im12 * m33;
tmp[5] = im11 * m33 - im13 * m31;
tmp[6] = im12 * m31 - im11 * m32;
tmp[7] = 0.;
/* Pre-compute 2x2 dets for first two rows when computing */
/* cofactors of last two rows. */
d12 = im11*m22 - m21*im12;
d13 = im11*m23 - m21*im13;
d23 = im12*m23 - m22*im13;
d24 = im12*m24 - m22*im14;
d34 = im13*m24 - m23*im14;
d41 = im14*m21 - m24*im11;
tmp[8] = d23;
tmp[9] = -d13;
tmp[10] = d12;
tmp[11] = 0.;
tmp[12] = -(m32 * d34 - m33 * d24 + m34 * d23);
tmp[13] = (m31 * d34 + m33 * d41 + m34 * d13);
tmp[14] = -(m31 * d24 + m32 * d41 + m34 * d12);
tmp[15] = 1.;
MEMCPY(out, tmp, 16*sizeof(GLfloat));
}
#undef m11
#undef m12
#undef m13
#undef m14
#undef m21
#undef m22
#undef m23
#undef m24
#undef m31
#undef m32
#undef m33
#undef m34
#undef m41
#undef m42
#undef m43
#undef m44
#undef MAT
}
/*
* Determine if the given matrix is the identity matrix.
*/
static GLboolean is_identity( const GLfloat m[16] )
{
if ( m[0]==1.0F && m[4]==0.0F && m[ 8]==0.0F && m[12]==0.0F
&& m[1]==0.0F && m[5]==1.0F && m[ 9]==0.0F && m[13]==0.0F
&& m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F
&& m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
return GL_TRUE;
}
else {
return GL_FALSE;
}
}
/*
* Examine the current modelview matrix to determine its type.
* Later we use the matrix type to optimize vertex transformations.
*/
void gl_analyze_modelview_matrix( GLcontext *ctx )
{
const GLfloat *m = ctx->ModelViewMatrix;
if (is_identity(m)) {
ctx->ModelViewMatrixType = MATRIX_IDENTITY;
}
else if ( m[4]==0.0F && m[ 8]==0.0F
&& m[1]==0.0F && m[ 9]==0.0F
&& m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F
&& m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
ctx->ModelViewMatrixType = MATRIX_2D_NO_ROT;
}
else if ( m[ 8]==0.0F
&& m[ 9]==0.0F
&& m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F
&& m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
ctx->ModelViewMatrixType = MATRIX_2D;
}
else if (m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
ctx->ModelViewMatrixType = MATRIX_3D;
}
else {
ctx->ModelViewMatrixType = MATRIX_GENERAL;
}
invert_matrix( ctx->ModelViewMatrix, ctx->ModelViewInv );
ctx->NewModelViewMatrix = GL_FALSE;
}
/*
* Examine the current projection matrix to determine its type.
* Later we use the matrix type to optimize vertex transformations.
*/
void gl_analyze_projection_matrix( GLcontext *ctx )
{
/* look for common-case ortho and perspective matrices */
const GLfloat *m = ctx->ProjectionMatrix;
if (is_identity(m)) {
ctx->ProjectionMatrixType = MATRIX_IDENTITY;
}
else if ( m[4]==0.0F && m[8] ==0.0F
&& m[1]==0.0F && m[9] ==0.0F
&& m[2]==0.0F && m[6]==0.0F
&& m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
ctx->ProjectionMatrixType = MATRIX_ORTHO;
}
else if ( m[4]==0.0F && m[12]==0.0F
&& m[1]==0.0F && m[13]==0.0F
&& m[2]==0.0F && m[6]==0.0F
&& m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
ctx->ProjectionMatrixType = MATRIX_PERSPECTIVE;
}
else {
ctx->ProjectionMatrixType = MATRIX_GENERAL;
}
ctx->NewProjectionMatrix = GL_FALSE;
}
/*
* Examine the current texture matrix to determine its type.
* Later we use the matrix type to optimize texture coordinate transformations.
*/
void gl_analyze_texture_matrix( GLcontext *ctx )
{
const GLfloat *m = ctx->TextureMatrix;
if (is_identity(m)) {
ctx->TextureMatrixType = MATRIX_IDENTITY;
}
else if ( m[ 8]==0.0F
&& m[ 9]==0.0F
&& m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F
&& m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
ctx->TextureMatrixType = MATRIX_2D;
}
else if (m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
ctx->TextureMatrixType = MATRIX_3D;
}
else {
ctx->TextureMatrixType = MATRIX_GENERAL;
}
ctx->NewTextureMatrix = GL_FALSE;
}
void gl_Frustum( GLcontext *ctx,
GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble nearval, GLdouble farval )
{
GLfloat x, y, a, b, c, d;
GLfloat m[16];
if (nearval<=0.0 || farval<=0.0) {
gl_error( ctx, GL_INVALID_VALUE, "glFrustum(near or far)" );
}
x = (2.0*nearval) / (right-left);
y = (2.0*nearval) / (top-bottom);
a = (right+left) / (right-left);
b = (top+bottom) / (top-bottom);
c = -(farval+nearval) / ( farval-nearval);
d = -(2.0*farval*nearval) / (farval-nearval); /* error? */
#define M(row,col) m[col*4+row]
M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
#undef M
gl_MultMatrixf( ctx, m );
/* Need to keep a stack of near/far values in case the user push/pops
* the projection matrix stack so that we can call Driver.NearFar()
* after a pop.
*/
ctx->NearFarStack[ctx->ProjectionStackDepth][0] = nearval;
ctx->NearFarStack[ctx->ProjectionStackDepth][1] = farval;
if (ctx->Driver.NearFar) {
(*ctx->Driver.NearFar)( ctx, nearval, farval );
}
}
void gl_Ortho( GLcontext *ctx,
GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble nearval, GLdouble farval )
{
GLfloat x, y, z;
GLfloat tx, ty, tz;
GLfloat m[16];
x = 2.0 / (right-left);
y = 2.0 / (top-bottom);
z = -2.0 / (farval-nearval);
tx = -(right+left) / (right-left);
ty = -(top+bottom) / (top-bottom);
tz = -(farval+nearval) / (farval-nearval);
#define M(row,col) m[col*4+row]
M(0,0) = x; M(0,1) = 0.0F; M(0,2) = 0.0F; M(0,3) = tx;
M(1,0) = 0.0F; M(1,1) = y; M(1,2) = 0.0F; M(1,3) = ty;
M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = z; M(2,3) = tz;
M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = 0.0F; M(3,3) = 1.0F;
#undef M
gl_MultMatrixf( ctx, m );
if (ctx->Driver.NearFar) {
(*ctx->Driver.NearFar)( ctx, nearval, farval );
}
}
void gl_MatrixMode( GLcontext *ctx, GLenum mode )
{
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glMatrixMode" );
return;
}
switch (mode) {
case GL_MODELVIEW:
case GL_PROJECTION:
case GL_TEXTURE:
ctx->Transform.MatrixMode = mode;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glMatrixMode" );
}
}
void gl_PushMatrix( GLcontext *ctx )
{
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glPushMatrix" );
return;
}
switch (ctx->Transform.MatrixMode) {
case GL_MODELVIEW:
if (ctx->ModelViewStackDepth>=MAX_MODELVIEW_STACK_DEPTH-1) {
gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
return;
}
MEMCPY( ctx->ModelViewStack[ctx->ModelViewStackDepth],
ctx->ModelViewMatrix,
16*sizeof(GLfloat) );
ctx->ModelViewStackDepth++;
break;
case GL_PROJECTION:
if (ctx->ProjectionStackDepth>=MAX_PROJECTION_STACK_DEPTH) {
gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
return;
}
MEMCPY( ctx->ProjectionStack[ctx->ProjectionStackDepth],
ctx->ProjectionMatrix,
16*sizeof(GLfloat) );
ctx->ProjectionStackDepth++;
/* Save near and far projection values */
ctx->NearFarStack[ctx->ProjectionStackDepth][0]
= ctx->NearFarStack[ctx->ProjectionStackDepth-1][0];
ctx->NearFarStack[ctx->ProjectionStackDepth][1]
= ctx->NearFarStack[ctx->ProjectionStackDepth-1][1];
break;
case GL_TEXTURE:
if (ctx->TextureStackDepth>=MAX_TEXTURE_STACK_DEPTH) {
gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
return;
}
MEMCPY( ctx->TextureStack[ctx->TextureStackDepth],
ctx->TextureMatrix,
16*sizeof(GLfloat) );
ctx->TextureStackDepth++;
break;
default:
gl_problem(ctx, "Bad matrix mode in gl_PushMatrix");
}
}
void gl_PopMatrix( GLcontext *ctx )
{
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glPopMatrix" );
return;
}
switch (ctx->Transform.MatrixMode) {
case GL_MODELVIEW:
if (ctx->ModelViewStackDepth==0) {
gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
return;
}
ctx->ModelViewStackDepth--;
MEMCPY( ctx->ModelViewMatrix,
ctx->ModelViewStack[ctx->ModelViewStackDepth],
16*sizeof(GLfloat) );
ctx->NewModelViewMatrix = GL_TRUE;
break;
case GL_PROJECTION:
if (ctx->ProjectionStackDepth==0) {
gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
return;
}
ctx->ProjectionStackDepth--;
MEMCPY( ctx->ProjectionMatrix,
ctx->ProjectionStack[ctx->ProjectionStackDepth],
16*sizeof(GLfloat) );
ctx->NewProjectionMatrix = GL_TRUE;
/* Device driver near/far values */
{
GLfloat nearVal = ctx->NearFarStack[ctx->ProjectionStackDepth][0];
GLfloat farVal = ctx->NearFarStack[ctx->ProjectionStackDepth][1];
if (ctx->Driver.NearFar) {
(*ctx->Driver.NearFar)( ctx, nearVal, farVal );
}
}
break;
case GL_TEXTURE:
if (ctx->TextureStackDepth==0) {
gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
return;
}
ctx->TextureStackDepth--;
MEMCPY( ctx->TextureMatrix,
ctx->TextureStack[ctx->TextureStackDepth],
16*sizeof(GLfloat) );
ctx->NewTextureMatrix = GL_TRUE;
break;
default:
gl_problem(ctx, "Bad matrix mode in gl_PopMatrix");
}
}
void gl_LoadIdentity( GLcontext *ctx )
{
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glLoadIdentity" );
return;
}
switch (ctx->Transform.MatrixMode) {
case GL_MODELVIEW:
MEMCPY( ctx->ModelViewMatrix, Identity, 16*sizeof(GLfloat) );
MEMCPY( ctx->ModelViewInv, Identity, 16*sizeof(GLfloat) );
ctx->ModelViewMatrixType = MATRIX_IDENTITY;
ctx->NewModelViewMatrix = GL_FALSE;
break;
case GL_PROJECTION:
MEMCPY( ctx->ProjectionMatrix, Identity, 16*sizeof(GLfloat) );
ctx->ProjectionMatrixType = MATRIX_IDENTITY;
ctx->NewProjectionMatrix = GL_FALSE;
break;
case GL_TEXTURE:
MEMCPY( ctx->TextureMatrix, Identity, 16*sizeof(GLfloat) );
ctx->TextureMatrixType = MATRIX_IDENTITY;
ctx->NewTextureMatrix = GL_FALSE;
break;
default:
gl_problem(ctx, "Bad matrix mode in gl_LoadIdentity");
}
}
void gl_LoadMatrixf( GLcontext *ctx, const GLfloat *m )
{
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glLoadMatrix" );
return;
}
switch (ctx->Transform.MatrixMode) {
case GL_MODELVIEW:
MEMCPY( ctx->ModelViewMatrix, m, 16*sizeof(GLfloat) );
ctx->NewModelViewMatrix = GL_TRUE;
break;
case GL_PROJECTION:
MEMCPY( ctx->ProjectionMatrix, m, 16*sizeof(GLfloat) );
ctx->NewProjectionMatrix = GL_TRUE;
{
float n,f,c,d;
#define M(row,col) m[col*4+row]
c = M(2,2);
d = M(2,3);
#undef M
n = d / (c-1);
f = d / (c+1);
/* Need to keep a stack of near/far values in case the user
* push/pops the projection matrix stack so that we can call
* Driver.NearFar() after a pop.
*/
ctx->NearFarStack[ctx->ProjectionStackDepth][0] = n;
ctx->NearFarStack[ctx->ProjectionStackDepth][1] = f;
if (ctx->Driver.NearFar) {
(*ctx->Driver.NearFar)( ctx, n, f );
}
}
break;
case GL_TEXTURE:
MEMCPY( ctx->TextureMatrix, m, 16*sizeof(GLfloat) );
ctx->NewTextureMatrix = GL_TRUE;
break;
default:
gl_problem(ctx, "Bad matrix mode in gl_LoadMatrixf");
}
}
void gl_MultMatrixf( GLcontext *ctx, const GLfloat *m )
{
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glMultMatrix" );
return;
}
switch (ctx->Transform.MatrixMode) {
case GL_MODELVIEW:
matmul( ctx->ModelViewMatrix, ctx->ModelViewMatrix, m );
ctx->NewModelViewMatrix = GL_TRUE;
break;
case GL_PROJECTION:
matmul( ctx->ProjectionMatrix, ctx->ProjectionMatrix, m );
ctx->NewProjectionMatrix = GL_TRUE;
break;
case GL_TEXTURE:
matmul( ctx->TextureMatrix, ctx->TextureMatrix, m );
ctx->NewTextureMatrix = GL_TRUE;
break;
default:
gl_problem(ctx, "Bad matrix mode in gl_MultMatrixf");
}
}
/*
* Generate a 4x4 transformation matrix from glRotate parameters.
*/
void gl_rotation_matrix( GLfloat angle, GLfloat x, GLfloat y, GLfloat z,
GLfloat m[] )
{
/* This function contributed by Erich Boleyn (erich@uruk.org) */
GLfloat mag, s, c;
GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c;
s = sin( angle * DEG2RAD );
c = cos( angle * DEG2RAD );
mag = GL_SQRT( x*x + y*y + z*z );
if (mag == 0.0) {
/* generate an identity matrix and return */
MEMCPY(m, Identity, sizeof(GLfloat)*16);
return;
}
x /= mag;
y /= mag;
z /= mag;
#define M(row,col) m[col*4+row]
/*
* Arbitrary axis rotation matrix.
*
* This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
* like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
* (which is about the X-axis), and the two composite transforms
* Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
* from the arbitrary axis to the X-axis then back. They are
* all elementary rotations.
*
* Rz' is a rotation about the Z-axis, to bring the axis vector
* into the x-z plane. Then Ry' is applied, rotating about the
* Y-axis to bring the axis vector parallel with the X-axis. The
* rotation about the X-axis is then performed. Ry and Rz are
* simply the respective inverse transforms to bring the arbitrary
* axis back to it's original orientation. The first transforms
* Rz' and Ry' are considered inverses, since the data from the
* arbitrary axis gives you info on how to get to it, not how
* to get away from it, and an inverse must be applied.
*
* The basic calculation used is to recognize that the arbitrary
* axis vector (x, y, z), since it is of unit length, actually
* represents the sines and cosines of the angles to rotate the
* X-axis to the same orientation, with theta being the angle about
* Z and phi the angle about Y (in the order described above)
* as follows:
*
* cos ( theta ) = x / sqrt ( 1 - z^2 )
* sin ( theta ) = y / sqrt ( 1 - z^2 )
*
* cos ( phi ) = sqrt ( 1 - z^2 )
* sin ( phi ) = z
*
* Note that cos ( phi ) can further be inserted to the above
* formulas:
*
* cos ( theta ) = x / cos ( phi )
* sin ( theta ) = y / sin ( phi )
*
* ...etc. Because of those relations and the standard trigonometric
* relations, it is pssible to reduce the transforms down to what
* is used below. It may be that any primary axis chosen will give the
* same results (modulo a sign convention) using thie method.
*
* Particularly nice is to notice that all divisions that might
* have caused trouble when parallel to certain planes or
* axis go away with care paid to reducing the expressions.
* After checking, it does perform correctly under all cases, since
* in all the cases of division where the denominator would have
* been zero, the numerator would have been zero as well, giving
* the expected result.
*/
xx = x * x;
yy = y * y;
zz = z * z;
xy = x * y;
yz = y * z;
zx = z * x;
xs = x * s;
ys = y * s;
zs = z * s;
one_c = 1.0F - c;
M(0,0) = (one_c * xx) + c;
M(0,1) = (one_c * xy) - zs;
M(0,2) = (one_c * zx) + ys;
M(0,3) = 0.0F;
M(1,0) = (one_c * xy) + zs;
M(1,1) = (one_c * yy) + c;
M(1,2) = (one_c * yz) - xs;
M(1,3) = 0.0F;
M(2,0) = (one_c * zx) - ys;
M(2,1) = (one_c * yz) + xs;
M(2,2) = (one_c * zz) + c;
M(2,3) = 0.0F;
M(3,0) = 0.0F;
M(3,1) = 0.0F;
M(3,2) = 0.0F;
M(3,3) = 1.0F;
#undef M
}
void gl_Rotatef( GLcontext *ctx,
GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
{
GLfloat m[16];
gl_rotation_matrix( angle, x, y, z, m );
gl_MultMatrixf( ctx, m );
}
/*
* Execute a glScale call
*/
void gl_Scalef( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z )
{
GLfloat *m;
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glScale" );
return;
}
switch (ctx->Transform.MatrixMode) {
case GL_MODELVIEW:
m = ctx->ModelViewMatrix;
ctx->NewModelViewMatrix = GL_TRUE;
break;
case GL_PROJECTION:
m = ctx->ProjectionMatrix;
ctx->NewProjectionMatrix = GL_TRUE;
break;
case GL_TEXTURE:
m = ctx->TextureMatrix;
ctx->NewTextureMatrix = GL_TRUE;
break;
default:
gl_problem(ctx, "Bad matrix mode in gl_Scalef");
return;
}
m[0] *= x; m[4] *= y; m[8] *= z;
m[1] *= x; m[5] *= y; m[9] *= z;
m[2] *= x; m[6] *= y; m[10] *= z;
m[3] *= x; m[7] *= y; m[11] *= z;
}
/*
* Execute a glTranslate call
*/
void gl_Translatef( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z )
{
GLfloat *m;
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glTranslate" );
return;
}
switch (ctx->Transform.MatrixMode) {
case GL_MODELVIEW:
m = ctx->ModelViewMatrix;
ctx->NewModelViewMatrix = GL_TRUE;
break;
case GL_PROJECTION:
m = ctx->ProjectionMatrix;
ctx->NewProjectionMatrix = GL_TRUE;
break;
case GL_TEXTURE:
m = ctx->TextureMatrix;
ctx->NewTextureMatrix = GL_TRUE;
break;
default:
gl_problem(ctx, "Bad matrix mode in gl_Translatef");
return;
}
m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
}
/*
* Define a new viewport and reallocate auxillary buffers if the size of
* the window (color buffer) has changed.
*/
void gl_Viewport( GLcontext *ctx,
GLint x, GLint y, GLsizei width, GLsizei height )
{
if (width<0 || height<0) {
gl_error( ctx, GL_INVALID_VALUE, "glViewport" );
return;
}
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glViewport" );
return;
}
/* clamp width, and height to implementation dependent range */
width = CLAMP( width, 1, MAX_WIDTH );
height = CLAMP( height, 1, MAX_HEIGHT );
/* Save viewport */
ctx->Viewport.X = x;
ctx->Viewport.Width = width;
ctx->Viewport.Y = y;
ctx->Viewport.Height = height;
/* compute scale and bias values */
ctx->Viewport.Sx = (GLfloat) width / 2.0F;
ctx->Viewport.Tx = ctx->Viewport.Sx + x;
ctx->Viewport.Sy = (GLfloat) height / 2.0F;
ctx->Viewport.Ty = ctx->Viewport.Sy + y;
ctx->NewState |= NEW_ALL; /* just to be safe */
/* Check if window/buffer has been resized and if so, reallocate the
* ancillary buffers.
*/
gl_ResizeBuffersMESA(ctx);
}