reactos/base/applications/calc/fun_ieee.c
Carlo-Bramini 295eaf4e32
[CALC] Improve multi-precision support, and powers/roots. CORE-8486
- Added support for average of squares and mean of squares into statistical functions.
- pop() and push() functions in RPN engines now work with nodes instead of stack units.
- Moved the POW and SQR operations near the operators.
CORE-12766

- Fix number of digits for IEEE-754 constants.
- Show all available digits in exp notation.
CORE-14871

- Update help correspondingly.
2019-03-18 01:34:00 +01:00

608 lines
11 KiB
C

/*
* ReactOS Calc (Math functions, IEEE-754 engine)
*
* Copyright 2007-2017, Carlo Bramini
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "calc.h"
static double validate_rad2angle(double a);
static double validate_angle2rad(calc_number_t *c);
void apply_int_mask(calc_number_t *r)
{
unsigned __int64 mask;
switch (calc.size) {
case IDC_RADIO_QWORD:
mask = _UI64_MAX;
break;
case IDC_RADIO_DWORD:
mask = ULONG_MAX;
break;
case IDC_RADIO_WORD:
mask = USHRT_MAX;
break;
case IDC_RADIO_BYTE:
mask = UCHAR_MAX;
break;
default:
mask = (unsigned __int64)-1;
}
r->i &= mask;
}
double asinh(double x)
{
return log(x+sqrt(x*x+1));
}
double acosh(double x)
{
// must be x>=1, if not return Nan (Not a Number)
if(!(x>=1.0)) return sqrt(-1.0);
// return only the positive result (as sqrt does).
return log(x+sqrt(x*x-1.0));
}
double atanh(double x)
{
// must be x>-1, x<1, if not return Nan (Not a Number)
if(!(x>-1.0 && x<1.0)) return sqrt(-1.0);
return log((1.0+x)/(1.0-x))/2.0;
}
static double validate_rad2angle(double a)
{
switch (calc.degr) {
case IDC_RADIO_DEG:
a = a * (180.0/CALC_PI);
break;
case IDC_RADIO_RAD:
break;
case IDC_RADIO_GRAD:
a = a * (200.0/CALC_PI);
break;
}
return a;
}
static double validate_angle2rad(calc_number_t *c)
{
switch (calc.degr) {
case IDC_RADIO_DEG:
c->f = c->f * (CALC_PI/180.0);
break;
case IDC_RADIO_RAD:
break;
case IDC_RADIO_GRAD:
c->f = c->f * (CALC_PI/200.0);
break;
}
return c->f;
}
void rpn_sin(calc_number_t *c)
{
double angle = validate_angle2rad(c);
if (angle == 0 || angle == CALC_PI)
c->f = 0;
else
if (angle == CALC_3_PI_2)
c->f = -1;
else
if (angle == CALC_2_PI)
c->f = 1;
else
c->f = sin(angle);
}
void rpn_cos(calc_number_t *c)
{
double angle = validate_angle2rad(c);
if (angle == CALC_PI_2 || angle == CALC_3_PI_2)
c->f = 0;
else
if (angle == CALC_PI)
c->f = -1;
else
if (angle == CALC_2_PI)
c->f = 1;
else
c->f = cos(angle);
}
void rpn_tan(calc_number_t *c)
{
double angle = validate_angle2rad(c);
if (angle == CALC_PI_2 || angle == CALC_3_PI_2)
calc.is_nan = TRUE;
else
if (angle == CALC_PI || angle == CALC_2_PI)
c->f = 0;
else
c->f = tan(angle);
}
void rpn_asin(calc_number_t *c)
{
c->f = validate_rad2angle(asin(c->f));
if (_isnan(c->f))
calc.is_nan = TRUE;
}
void rpn_acos(calc_number_t *c)
{
c->f = validate_rad2angle(acos(c->f));
if (_isnan(c->f))
calc.is_nan = TRUE;
}
void rpn_atan(calc_number_t *c)
{
c->f = validate_rad2angle(atan(c->f));
if (_isnan(c->f))
calc.is_nan = TRUE;
}
void rpn_sinh(calc_number_t *c)
{
c->f = sinh(c->f);
if (_isnan(c->f))
calc.is_nan = TRUE;
}
void rpn_cosh(calc_number_t *c)
{
c->f = cosh(c->f);
if (_isnan(c->f))
calc.is_nan = TRUE;
}
void rpn_tanh(calc_number_t *c)
{
c->f = tanh(c->f);
if (_isnan(c->f))
calc.is_nan = TRUE;
}
void rpn_asinh(calc_number_t *c)
{
c->f = asinh(c->f);
if (_isnan(c->f))
calc.is_nan = TRUE;
}
void rpn_acosh(calc_number_t *c)
{
c->f = acosh(c->f);
if (_isnan(c->f))
calc.is_nan = TRUE;
}
void rpn_atanh(calc_number_t *c)
{
c->f = atanh(c->f);
if (_isnan(c->f))
calc.is_nan = TRUE;
}
void rpn_int(calc_number_t *c)
{
double int_part;
modf(calc.code.f, &int_part);
c->f = int_part;
}
void rpn_frac(calc_number_t *c)
{
double int_part;
c->f = modf(calc.code.f, &int_part);
}
void rpn_reci(calc_number_t *c)
{
if (c->f == 0)
calc.is_nan = TRUE;
else
c->f = 1./c->f;
}
void rpn_fact(calc_number_t *c)
{
double fact, mult, num;
if (calc.base == IDC_RADIO_DEC)
num = c->f;
else
num = (double)c->i;
if (num > 1000) {
calc.is_nan = TRUE;
return;
}
if (num < 0) {
calc.is_nan = TRUE;
return;
} else
if (num == 0)
fact = 1;
else {
rpn_int(c);
fact = 1;
mult = 2;
while (mult <= num) {
fact *= mult;
mult++;
}
c->f = fact;
}
if (_finite(fact) == 0)
calc.is_nan = TRUE;
else
if (calc.base == IDC_RADIO_DEC)
c->f = fact;
else
c->i = (__int64)fact;
}
__int64 logic_dbl2int(calc_number_t *a)
{
double int_part;
int width;
modf(a->f, &int_part);
width = (int_part==0) ? 1 : (int)log10(fabs(int_part))+1;
if (width > 63) {
calc.is_nan = TRUE;
return 0;
}
return (__int64)int_part;
}
double logic_int2dbl(calc_number_t *a)
{
return (double)a->i;
}
void rpn_not(calc_number_t *c)
{
if (calc.base == IDC_RADIO_DEC) {
calc_number_t n;
n.i = logic_dbl2int(c);
c->f = (long double)(~n.i);
} else
c->i = ~c->i;
}
void rpn_pi(calc_number_t *c)
{
c->f = CALC_PI;
}
void rpn_2pi(calc_number_t *c)
{
c->f = CALC_PI*2;
}
void rpn_sign(calc_number_t *c)
{
if (calc.base == IDC_RADIO_DEC)
c->f = 0-c->f;
else
c->i = 0-c->i;
}
void rpn_exp2(calc_number_t *c)
{
if (calc.base == IDC_RADIO_DEC) {
c->f *= c->f;
if (_finite(c->f) == 0)
calc.is_nan = TRUE;
} else
c->i *= c->i;
}
void rpn_exp3(calc_number_t *c)
{
if (calc.base == IDC_RADIO_DEC) {
c->f = pow(c->f, 3.);
if (_finite(c->f) == 0)
calc.is_nan = TRUE;
} else
c->i *= (c->i*c->i);
}
static __int64 myabs64(__int64 number)
{
return (number < 0) ? 0-number : number;
}
static unsigned __int64 sqrti(unsigned __int64 number)
{
/* modified form of Newton's method for approximating roots */
#define NEXT(n, i) (((n) + (i)/(n)) >> 1)
unsigned __int64 n, n1;
#ifdef __GNUC__
if (number == 0xffffffffffffffffULL)
#else
if (number == 0xffffffffffffffffUI64)
#endif
return 0xffffffff;
n = 1;
n1 = NEXT(n, number);
while (myabs64(n1 - n) > 1) {
n = n1;
n1 = NEXT(n, number);
}
while((n1*n1) > number)
n1--;
return n1;
#undef NEXT
}
void rpn_sqrt(calc_number_t *c)
{
if (calc.base == IDC_RADIO_DEC) {
if (c->f < 0)
calc.is_nan = TRUE;
else
c->f = sqrt(c->f);
} else {
c->i = sqrti(c->i);
}
}
static __int64 cbrti(__int64 x) {
__int64 s, y, b;
s = 60;
y = 0;
while(s >= 0) {
y = 2*y;
b = (3*y*(y + 1) + 1) << s;
s = s - 3;
if (x >= b) {
x = x - b;
y = y + 1;
}
}
return y;
}
void rpn_cbrt(calc_number_t *c)
{
if (calc.base == IDC_RADIO_DEC)
#if defined(__GNUC__) && !defined(__REACTOS__)
c->f = cbrt(c->f);
#else
c->f = pow(c->f,1./3.);
#endif
else {
c->i = cbrti(c->i);
}
}
void rpn_exp(calc_number_t *c)
{
c->f = exp(c->f);
if (_finite(c->f) == 0)
calc.is_nan = TRUE;
}
void rpn_exp10(calc_number_t *c)
{
double int_part;
modf(c->f, &int_part);
if (fmod(int_part, 2.) == 0.)
calc.is_nan = TRUE;
else {
c->f = pow(10., c->f);
if (_finite(c->f) == 0)
calc.is_nan = TRUE;
}
}
void rpn_ln(calc_number_t *c)
{
if (c->f <= 0)
calc.is_nan = TRUE;
else
c->f = log(c->f);
}
void rpn_log(calc_number_t *c)
{
if (c->f <= 0)
calc.is_nan = TRUE;
else
c->f = log10(c->f);
}
static double stat_sum(void)
{
double sum = 0;
statistic_t *p = calc.stat;
while (p != NULL) {
if (p->base == IDC_RADIO_DEC)
sum += p->num.f;
else
sum += p->num.i;
p = (statistic_t *)(p->next);
}
return sum;
}
static double stat_sum2(void)
{
double sum = 0;
statistic_t *p = calc.stat;
while (p != NULL) {
if (p->base == IDC_RADIO_DEC)
sum += p->num.f * p->num.f;
else
sum += (double)p->num.i * (double)p->num.i;
p = (statistic_t *)(p->next);
}
return sum;
}
void rpn_ave(calc_number_t *c)
{
double ave = 0;
int n;
ave = stat_sum();
n = SendDlgItemMessage(calc.hStatWnd, IDC_LIST_STAT, LB_GETCOUNT, 0, 0);
if (n)
ave = ave / (double)n;
if (calc.base == IDC_RADIO_DEC)
c->f = ave;
else
c->i = (__int64)ave;
}
void rpn_ave2(calc_number_t *c)
{
double ave = 0;
int n;
ave = stat_sum2();
n = SendDlgItemMessage(calc.hStatWnd, IDC_LIST_STAT, LB_GETCOUNT, 0, 0);
if (n)
ave = ave / (double)n;
if (calc.base == IDC_RADIO_DEC)
c->f = ave;
else
c->i = (__int64)ave;
}
void rpn_sum(calc_number_t *c)
{
double sum = stat_sum();
if (calc.base == IDC_RADIO_DEC)
c->f = sum;
else
c->i = (__int64)sum;
}
void rpn_sum2(calc_number_t *c)
{
double sum = stat_sum2();
if (calc.base == IDC_RADIO_DEC)
c->f = sum;
else
c->i = (__int64)sum;
}
static void rpn_s_ex(calc_number_t *c, int pop_type)
{
double ave = 0;
double n = 0;
double dev = 0;
double num = 0;
statistic_t *p = calc.stat;
ave = stat_sum();
n = (double)SendDlgItemMessage(calc.hStatWnd, IDC_LIST_STAT, LB_GETCOUNT, 0, 0);
if (n == 0) {
c->f = 0;
return;
}
ave = ave / n;
dev = 0;
p = calc.stat;
while (p != NULL) {
if (p->base == IDC_RADIO_DEC)
num = p->num.f;
else
num = (double)p->num.i;
dev += pow(num-ave, 2.);
p = (statistic_t *)(p->next);
}
dev = sqrt(dev/(pop_type ? n-1 : n));
if (calc.base == IDC_RADIO_DEC)
c->f = dev;
else
c->i = (__int64)dev;
}
void rpn_s(calc_number_t *c)
{
rpn_s_ex(c, 0);
}
void rpn_s_m1(calc_number_t *c)
{
rpn_s_ex(c, 1);
}
void rpn_dms2dec(calc_number_t *c)
{
double d, m, s;
m = modf(c->f, &d) * 100;
s = (modf(m, &m) * 100)+.5;
modf(s, &s);
m = m/60;
s = s/3600;
c->f = d + m + s;
}
void rpn_dec2dms(calc_number_t *c)
{
double d, m, s;
m = modf(c->f, &d) * 60;
s = ceil(modf(m, &m) * 60);
c->f = d + m/100. + s/10000.;
}
void rpn_zero(calc_number_t *c)
{
c->f = 0;
}
void rpn_copy(calc_number_t *dst, calc_number_t *src)
{
*dst = *src;
}
int rpn_is_zero(calc_number_t *c)
{
return (c->f == 0);
}
void rpn_alloc(calc_number_t *c)
{
}
void rpn_free(calc_number_t *c)
{
}