mirror of
https://github.com/reactos/reactos.git
synced 2025-01-03 21:09:19 +00:00
4663 lines
162 KiB
C
4663 lines
162 KiB
C
/*
|
|
* dlls/rsaenh/rsaenh.c
|
|
* RSAENH - RSA encryption for Wine
|
|
*
|
|
* Copyright 2002 TransGaming Technologies (David Hammerton)
|
|
* Copyright 2004 Mike McCormack for CodeWeavers
|
|
* Copyright 2004, 2005 Michael Jung
|
|
* Copyright 2007 Vijay Kiran Kamuju
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#define WIN32_NO_STATUS
|
|
#define _INC_WINDOWS
|
|
#define COM_NO_WINDOWS_H
|
|
|
|
#include <config.h>
|
|
//#include "wine/port.h"
|
|
#include <wine/library.h>
|
|
#include <wine/debug.h>
|
|
|
|
//#include <stdarg.h>
|
|
//#include <stdio.h>
|
|
|
|
#include <windef.h>
|
|
//#include "winbase.h"
|
|
#include <winreg.h>
|
|
#include <wincrypt.h>
|
|
#include "handle.h"
|
|
#include "implglue.h"
|
|
#include <objbase.h>
|
|
#include <rpcproxy.h>
|
|
#include <aclapi.h>
|
|
|
|
WINE_DEFAULT_DEBUG_CHANNEL(crypt);
|
|
|
|
static HINSTANCE instance;
|
|
|
|
/******************************************************************************
|
|
* CRYPTHASH - hash objects
|
|
*/
|
|
#define RSAENH_MAGIC_HASH 0x85938417u
|
|
#define RSAENH_MAX_HASH_SIZE 104
|
|
#define RSAENH_HASHSTATE_HASHING 1
|
|
#define RSAENH_HASHSTATE_FINISHED 2
|
|
typedef struct _RSAENH_TLS1PRF_PARAMS
|
|
{
|
|
CRYPT_DATA_BLOB blobLabel;
|
|
CRYPT_DATA_BLOB blobSeed;
|
|
} RSAENH_TLS1PRF_PARAMS;
|
|
|
|
typedef struct tagCRYPTHASH
|
|
{
|
|
OBJECTHDR header;
|
|
ALG_ID aiAlgid;
|
|
HCRYPTKEY hKey;
|
|
HCRYPTPROV hProv;
|
|
DWORD dwHashSize;
|
|
DWORD dwState;
|
|
HASH_CONTEXT context;
|
|
BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
|
|
PHMAC_INFO pHMACInfo;
|
|
RSAENH_TLS1PRF_PARAMS tpPRFParams;
|
|
} CRYPTHASH;
|
|
|
|
/******************************************************************************
|
|
* CRYPTKEY - key objects
|
|
*/
|
|
#define RSAENH_MAGIC_KEY 0x73620457u
|
|
#define RSAENH_MAX_KEY_SIZE 64
|
|
#define RSAENH_MAX_BLOCK_SIZE 24
|
|
#define RSAENH_KEYSTATE_IDLE 0
|
|
#define RSAENH_KEYSTATE_ENCRYPTING 1
|
|
#define RSAENH_KEYSTATE_MASTERKEY 2
|
|
typedef struct _RSAENH_SCHANNEL_INFO
|
|
{
|
|
SCHANNEL_ALG saEncAlg;
|
|
SCHANNEL_ALG saMACAlg;
|
|
CRYPT_DATA_BLOB blobClientRandom;
|
|
CRYPT_DATA_BLOB blobServerRandom;
|
|
} RSAENH_SCHANNEL_INFO;
|
|
|
|
typedef struct tagCRYPTKEY
|
|
{
|
|
OBJECTHDR header;
|
|
ALG_ID aiAlgid;
|
|
HCRYPTPROV hProv;
|
|
DWORD dwMode;
|
|
DWORD dwModeBits;
|
|
DWORD dwPermissions;
|
|
DWORD dwKeyLen;
|
|
DWORD dwEffectiveKeyLen;
|
|
DWORD dwSaltLen;
|
|
DWORD dwBlockLen;
|
|
DWORD dwState;
|
|
KEY_CONTEXT context;
|
|
BYTE abKeyValue[RSAENH_MAX_KEY_SIZE];
|
|
BYTE abInitVector[RSAENH_MAX_BLOCK_SIZE];
|
|
BYTE abChainVector[RSAENH_MAX_BLOCK_SIZE];
|
|
RSAENH_SCHANNEL_INFO siSChannelInfo;
|
|
CRYPT_DATA_BLOB blobHmacKey;
|
|
} CRYPTKEY;
|
|
|
|
/******************************************************************************
|
|
* KEYCONTAINER - key containers
|
|
*/
|
|
#define RSAENH_PERSONALITY_BASE 0u
|
|
#define RSAENH_PERSONALITY_STRONG 1u
|
|
#define RSAENH_PERSONALITY_ENHANCED 2u
|
|
#define RSAENH_PERSONALITY_SCHANNEL 3u
|
|
#define RSAENH_PERSONALITY_AES 4u
|
|
|
|
#define RSAENH_MAGIC_CONTAINER 0x26384993u
|
|
typedef struct tagKEYCONTAINER
|
|
{
|
|
OBJECTHDR header;
|
|
DWORD dwFlags;
|
|
DWORD dwPersonality;
|
|
DWORD dwEnumAlgsCtr;
|
|
DWORD dwEnumContainersCtr;
|
|
CHAR szName[MAX_PATH];
|
|
CHAR szProvName[MAX_PATH];
|
|
HCRYPTKEY hKeyExchangeKeyPair;
|
|
HCRYPTKEY hSignatureKeyPair;
|
|
} KEYCONTAINER;
|
|
|
|
/******************************************************************************
|
|
* Some magic constants
|
|
*/
|
|
#define RSAENH_ENCRYPT 1
|
|
#define RSAENH_DECRYPT 0
|
|
#define RSAENH_HMAC_DEF_IPAD_CHAR 0x36
|
|
#define RSAENH_HMAC_DEF_OPAD_CHAR 0x5c
|
|
#define RSAENH_HMAC_DEF_PAD_LEN 64
|
|
#define RSAENH_HMAC_BLOCK_LEN 64
|
|
#define RSAENH_DES_EFFECTIVE_KEYLEN 56
|
|
#define RSAENH_DES_STORAGE_KEYLEN 64
|
|
#define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
|
|
#define RSAENH_3DES112_STORAGE_KEYLEN 128
|
|
#define RSAENH_3DES_EFFECTIVE_KEYLEN 168
|
|
#define RSAENH_3DES_STORAGE_KEYLEN 192
|
|
#define RSAENH_MAGIC_RSA2 0x32415352
|
|
#define RSAENH_MAGIC_RSA1 0x31415352
|
|
#define RSAENH_PKC_BLOCKTYPE 0x02
|
|
#define RSAENH_SSL3_VERSION_MAJOR 3
|
|
#define RSAENH_SSL3_VERSION_MINOR 0
|
|
#define RSAENH_TLS1_VERSION_MAJOR 3
|
|
#define RSAENH_TLS1_VERSION_MINOR 1
|
|
#define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
|
|
|
|
#define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
|
|
/******************************************************************************
|
|
* aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
|
|
*/
|
|
#define RSAENH_MAX_ENUMALGS 24
|
|
#define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
|
|
static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] =
|
|
{
|
|
{
|
|
{CALG_RC2, 40, 40, 56,0, 4,"RC2", 24,"RSA Data Security's RC2"},
|
|
{CALG_RC4, 40, 40, 56,0, 4,"RC4", 24,"RSA Data Security's RC4"},
|
|
{CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
|
|
{CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
|
|
{CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
|
|
{CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
|
|
{CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
|
|
{CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
|
|
{CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
|
|
{CALG_RSA_SIGN, 512,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
|
|
{CALG_RSA_KEYX, 512,384, 1024,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
|
|
{CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
|
|
{0, 0, 0, 0,0, 1,"", 1,""}
|
|
},
|
|
{
|
|
{CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
|
|
{CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
|
|
{CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
|
|
{CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
|
|
{CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
|
|
{CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
|
|
{CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
|
|
{CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
|
|
{CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
|
|
{CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
|
|
{CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
|
|
{CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
|
|
{CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
|
|
{CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
|
|
{0, 0, 0, 0,0, 1,"", 1,""}
|
|
},
|
|
{
|
|
{CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
|
|
{CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
|
|
{CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
|
|
{CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
|
|
{CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
|
|
{CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
|
|
{CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
|
|
{CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
|
|
{CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
|
|
{CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
|
|
{CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
|
|
{CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
|
|
{CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
|
|
{CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
|
|
{0, 0, 0, 0,0, 1,"", 1,""}
|
|
},
|
|
{
|
|
{CALG_RC2, 128, 40, 128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC2", 24,"RSA Data Security's RC2"},
|
|
{CALG_RC4, 128, 40, 128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC4", 24,"RSA Data Security's RC4"},
|
|
{CALG_DES, 56, 56, 56,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"DES", 31,"Data Encryption Standard (DES)"},
|
|
{CALG_3DES_112, 112,112, 112,RSAENH_PCT1_SSL2_SSL3_TLS1,13,"3DES TWO KEY",19,"Two Key Triple DES"},
|
|
{CALG_3DES, 168,168, 168,RSAENH_PCT1_SSL2_SSL3_TLS1, 5,"3DES", 21,"Three Key Triple DES"},
|
|
{CALG_SHA,160,160,160,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,6,"SHA-1",30,"Secure Hash Algorithm (SHA-1)"},
|
|
{CALG_MD5,128,128,128,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,4,"MD5",23,"Message Digest 5 (MD5)"},
|
|
{CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
|
|
{CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
|
|
{CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_SIGN",14,"RSA Signature"},
|
|
{CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_KEYX",17,"RSA Key Exchange"},
|
|
{CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
|
|
{CALG_PCT1_MASTER,128,128,128,CRYPT_FLAG_PCT1, 12,"PCT1 MASTER",12,"PCT1 Master"},
|
|
{CALG_SSL2_MASTER,40,40, 192,CRYPT_FLAG_SSL2, 12,"SSL2 MASTER",12,"SSL2 Master"},
|
|
{CALG_SSL3_MASTER,384,384,384,CRYPT_FLAG_SSL3, 12,"SSL3 MASTER",12,"SSL3 Master"},
|
|
{CALG_TLS1_MASTER,384,384,384,CRYPT_FLAG_TLS1, 12,"TLS1 MASTER",12,"TLS1 Master"},
|
|
{CALG_SCHANNEL_MASTER_HASH,0,0,-1,0, 16,"SCH MASTER HASH",21,"SChannel Master Hash"},
|
|
{CALG_SCHANNEL_MAC_KEY,0,0,-1,0, 12,"SCH MAC KEY",17,"SChannel MAC Key"},
|
|
{CALG_SCHANNEL_ENC_KEY,0,0,-1,0, 12,"SCH ENC KEY",24,"SChannel Encryption Key"},
|
|
{CALG_TLS1PRF, 0, 0, -1,0, 9,"TLS1 PRF", 28,"TLS1 Pseudo Random Function"},
|
|
{0, 0, 0, 0,0, 1,"", 1,""}
|
|
},
|
|
{
|
|
{CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
|
|
{CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
|
|
{CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
|
|
{CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
|
|
{CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
|
|
{CALG_AES, 128,128, 128,0, 4,"AES", 35,"Advanced Encryption Standard (AES)"},
|
|
{CALG_AES_128, 128,128, 128,0, 8,"AES-128", 39,"Advanced Encryption Standard (AES-128)"},
|
|
{CALG_AES_192, 192,192, 192,0, 8,"AES-192", 39,"Advanced Encryption Standard (AES-192)"},
|
|
{CALG_AES_256, 256,256, 256,0, 8,"AES-256", 39,"Advanced Encryption Standard (AES-256)"},
|
|
{CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
|
|
{CALG_SHA_256, 256,256, 256,CRYPT_FLAG_SIGNING, 6,"SHA-256", 30,"Secure Hash Algorithm (SHA-256)"},
|
|
{CALG_SHA_384, 384,384, 384,CRYPT_FLAG_SIGNING, 6,"SHA-384", 30,"Secure Hash Algorithm (SHA-384)"},
|
|
{CALG_SHA_512, 512,512, 512,CRYPT_FLAG_SIGNING, 6,"SHA-512", 30,"Secure Hash Algorithm (SHA-512)"},
|
|
{CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
|
|
{CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
|
|
{CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
|
|
{CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
|
|
{CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
|
|
{CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
|
|
{CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
|
|
{CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
|
|
{0, 0, 0, 0,0, 1,"", 1,""}
|
|
}
|
|
};
|
|
|
|
/******************************************************************************
|
|
* API forward declarations
|
|
*/
|
|
BOOL WINAPI
|
|
RSAENH_CPGetKeyParam(
|
|
HCRYPTPROV hProv,
|
|
HCRYPTKEY hKey,
|
|
DWORD dwParam,
|
|
BYTE *pbData,
|
|
DWORD *pdwDataLen,
|
|
DWORD dwFlags
|
|
);
|
|
|
|
BOOL WINAPI
|
|
RSAENH_CPEncrypt(
|
|
HCRYPTPROV hProv,
|
|
HCRYPTKEY hKey,
|
|
HCRYPTHASH hHash,
|
|
BOOL Final,
|
|
DWORD dwFlags,
|
|
BYTE *pbData,
|
|
DWORD *pdwDataLen,
|
|
DWORD dwBufLen
|
|
);
|
|
|
|
BOOL WINAPI
|
|
RSAENH_CPCreateHash(
|
|
HCRYPTPROV hProv,
|
|
ALG_ID Algid,
|
|
HCRYPTKEY hKey,
|
|
DWORD dwFlags,
|
|
HCRYPTHASH *phHash
|
|
);
|
|
|
|
BOOL WINAPI
|
|
RSAENH_CPSetHashParam(
|
|
HCRYPTPROV hProv,
|
|
HCRYPTHASH hHash,
|
|
DWORD dwParam,
|
|
BYTE *pbData, DWORD dwFlags
|
|
);
|
|
|
|
BOOL WINAPI
|
|
RSAENH_CPGetHashParam(
|
|
HCRYPTPROV hProv,
|
|
HCRYPTHASH hHash,
|
|
DWORD dwParam,
|
|
BYTE *pbData,
|
|
DWORD *pdwDataLen,
|
|
DWORD dwFlags
|
|
);
|
|
|
|
BOOL WINAPI
|
|
RSAENH_CPDestroyHash(
|
|
HCRYPTPROV hProv,
|
|
HCRYPTHASH hHash
|
|
);
|
|
|
|
static BOOL crypt_export_key(
|
|
CRYPTKEY *pCryptKey,
|
|
HCRYPTKEY hPubKey,
|
|
DWORD dwBlobType,
|
|
DWORD dwFlags,
|
|
BOOL force,
|
|
BYTE *pbData,
|
|
DWORD *pdwDataLen
|
|
);
|
|
|
|
static BOOL import_key(
|
|
HCRYPTPROV hProv,
|
|
const BYTE *pbData,
|
|
DWORD dwDataLen,
|
|
HCRYPTKEY hPubKey,
|
|
DWORD dwFlags,
|
|
BOOL fStoreKey,
|
|
HCRYPTKEY *phKey
|
|
);
|
|
|
|
BOOL WINAPI
|
|
RSAENH_CPHashData(
|
|
HCRYPTPROV hProv,
|
|
HCRYPTHASH hHash,
|
|
const BYTE *pbData,
|
|
DWORD dwDataLen,
|
|
DWORD dwFlags
|
|
);
|
|
|
|
/******************************************************************************
|
|
* CSP's handle table (used by all acquired key containers)
|
|
*/
|
|
static struct handle_table handle_table;
|
|
|
|
/******************************************************************************
|
|
* DllMain (RSAENH.@)
|
|
*
|
|
* Initializes and destroys the handle table for the CSP's handles.
|
|
*/
|
|
BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID reserved)
|
|
{
|
|
switch (fdwReason)
|
|
{
|
|
case DLL_PROCESS_ATTACH:
|
|
instance = hInstance;
|
|
DisableThreadLibraryCalls(hInstance);
|
|
init_handle_table(&handle_table);
|
|
break;
|
|
|
|
case DLL_PROCESS_DETACH:
|
|
if (reserved) break;
|
|
destroy_handle_table(&handle_table);
|
|
break;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* copy_param [Internal]
|
|
*
|
|
* Helper function that supports the standard WINAPI protocol for querying data
|
|
* of dynamic size.
|
|
*
|
|
* PARAMS
|
|
* pbBuffer [O] Buffer where the queried parameter is copied to, if it is large enough.
|
|
* May be NUL if the required buffer size is to be queried only.
|
|
* pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
|
|
* Out: Size of parameter pbParam
|
|
* pbParam [I] Parameter value.
|
|
* dwParamSize [I] Size of pbParam
|
|
*
|
|
* RETURN
|
|
* Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
|
|
* Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
|
|
*/
|
|
static inline BOOL copy_param(BYTE *pbBuffer, DWORD *pdwBufferSize, const BYTE *pbParam,
|
|
DWORD dwParamSize)
|
|
{
|
|
if (pbBuffer)
|
|
{
|
|
if (dwParamSize > *pdwBufferSize)
|
|
{
|
|
SetLastError(ERROR_MORE_DATA);
|
|
*pdwBufferSize = dwParamSize;
|
|
return FALSE;
|
|
}
|
|
memcpy(pbBuffer, pbParam, dwParamSize);
|
|
}
|
|
*pdwBufferSize = dwParamSize;
|
|
return TRUE;
|
|
}
|
|
|
|
static inline KEYCONTAINER* get_key_container(HCRYPTPROV hProv)
|
|
{
|
|
KEYCONTAINER *pKeyContainer;
|
|
|
|
if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
|
|
(OBJECTHDR**)&pKeyContainer))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return NULL;
|
|
}
|
|
return pKeyContainer;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* get_algid_info [Internal]
|
|
*
|
|
* Query CSP capabilities for a given crypto algorithm.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
|
|
* algid [I] Identifier of the crypto algorithm about which information is requested.
|
|
*
|
|
* RETURNS
|
|
* Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
|
|
* Failure: NULL (algid not supported)
|
|
*/
|
|
static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
|
|
const PROV_ENUMALGS_EX *iterator;
|
|
KEYCONTAINER *pKeyContainer;
|
|
|
|
if (!(pKeyContainer = get_key_container(hProv))) return NULL;
|
|
|
|
for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
|
|
if (iterator->aiAlgid == algid) return iterator;
|
|
}
|
|
|
|
SetLastError(NTE_BAD_ALGID);
|
|
return NULL;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* copy_data_blob [Internal]
|
|
*
|
|
* deeply copies a DATA_BLOB
|
|
*
|
|
* PARAMS
|
|
* dst [O] That's where the blob will be copied to
|
|
* src [I] Source blob
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE (GetLastError() == NTE_NO_MEMORY
|
|
*
|
|
* NOTES
|
|
* Use free_data_blob to release resources occupied by copy_data_blob.
|
|
*/
|
|
static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src)
|
|
{
|
|
dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
|
|
if (!dst->pbData) {
|
|
SetLastError(NTE_NO_MEMORY);
|
|
return FALSE;
|
|
}
|
|
dst->cbData = src->cbData;
|
|
memcpy(dst->pbData, src->pbData, src->cbData);
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* concat_data_blobs [Internal]
|
|
*
|
|
* Concatenates two blobs
|
|
*
|
|
* PARAMS
|
|
* dst [O] The new blob will be copied here
|
|
* src1 [I] Prefix blob
|
|
* src2 [I] Appendix blob
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
|
|
*
|
|
* NOTES
|
|
* Release resources occupied by concat_data_blobs with free_data_blobs
|
|
*/
|
|
static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src1,
|
|
const PCRYPT_DATA_BLOB src2)
|
|
{
|
|
dst->cbData = src1->cbData + src2->cbData;
|
|
dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
|
|
if (!dst->pbData) {
|
|
SetLastError(NTE_NO_MEMORY);
|
|
return FALSE;
|
|
}
|
|
memcpy(dst->pbData, src1->pbData, src1->cbData);
|
|
memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* free_data_blob [Internal]
|
|
*
|
|
* releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
|
|
*
|
|
* PARAMS
|
|
* pBlob [I] Heap space occupied by pBlob->pbData is released
|
|
*/
|
|
static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
|
|
HeapFree(GetProcessHeap(), 0, pBlob->pbData);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* init_data_blob [Internal]
|
|
*/
|
|
static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
|
|
pBlob->pbData = NULL;
|
|
pBlob->cbData = 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* free_hmac_info [Internal]
|
|
*
|
|
* Deeply free an HMAC_INFO struct.
|
|
*
|
|
* PARAMS
|
|
* hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
|
|
*
|
|
* NOTES
|
|
* See Internet RFC 2104 for details on the HMAC algorithm.
|
|
*/
|
|
static inline void free_hmac_info(PHMAC_INFO hmac_info) {
|
|
if (!hmac_info) return;
|
|
HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
|
|
HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
|
|
HeapFree(GetProcessHeap(), 0, hmac_info);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* copy_hmac_info [Internal]
|
|
*
|
|
* Deeply copy an HMAC_INFO struct
|
|
*
|
|
* PARAMS
|
|
* dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
|
|
* src [I] Pointer to the HMAC_INFO struct to be copied.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*
|
|
* NOTES
|
|
* See Internet RFC 2104 for details on the HMAC algorithm.
|
|
*/
|
|
static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) {
|
|
if (!src) return FALSE;
|
|
*dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
|
|
if (!*dst) return FALSE;
|
|
**dst = *src;
|
|
(*dst)->pbInnerString = NULL;
|
|
(*dst)->pbOuterString = NULL;
|
|
if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
|
|
(*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
|
|
if (!(*dst)->pbInnerString) {
|
|
free_hmac_info(*dst);
|
|
return FALSE;
|
|
}
|
|
if (src->cbInnerString)
|
|
memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
|
|
else
|
|
memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
|
|
if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
|
|
(*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
|
|
if (!(*dst)->pbOuterString) {
|
|
free_hmac_info(*dst);
|
|
return FALSE;
|
|
}
|
|
if (src->cbOuterString)
|
|
memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
|
|
else
|
|
memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* destroy_hash [Internal]
|
|
*
|
|
* Destructor for hash objects
|
|
*
|
|
* PARAMS
|
|
* pCryptHash [I] Pointer to the hash object to be destroyed.
|
|
* Will be invalid after function returns!
|
|
*/
|
|
static void destroy_hash(OBJECTHDR *pObject)
|
|
{
|
|
CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
|
|
|
|
free_hmac_info(pCryptHash->pHMACInfo);
|
|
free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
|
|
free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
|
|
HeapFree(GetProcessHeap(), 0, pCryptHash);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* init_hash [Internal]
|
|
*
|
|
* Initialize (or reset) a hash object
|
|
*
|
|
* PARAMS
|
|
* pCryptHash [I] The hash object to be initialized.
|
|
*/
|
|
static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
|
|
DWORD dwLen;
|
|
|
|
switch (pCryptHash->aiAlgid)
|
|
{
|
|
case CALG_HMAC:
|
|
if (pCryptHash->pHMACInfo) {
|
|
const PROV_ENUMALGS_EX *pAlgInfo;
|
|
|
|
pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
|
|
if (!pAlgInfo) return FALSE;
|
|
pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
|
|
init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
|
|
update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
|
|
pCryptHash->pHMACInfo->pbInnerString,
|
|
pCryptHash->pHMACInfo->cbInnerString);
|
|
}
|
|
return TRUE;
|
|
|
|
case CALG_MAC:
|
|
dwLen = sizeof(DWORD);
|
|
RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN,
|
|
(BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
|
|
pCryptHash->dwHashSize >>= 3;
|
|
return TRUE;
|
|
|
|
default:
|
|
return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* update_hash [Internal]
|
|
*
|
|
* Hashes the given data and updates the hash object's state accordingly
|
|
*
|
|
* PARAMS
|
|
* pCryptHash [I] Hash object to be updated.
|
|
* pbData [I] Pointer to data stream to be hashed.
|
|
* dwDataLen [I] Length of data stream.
|
|
*/
|
|
static inline void update_hash(CRYPTHASH *pCryptHash, const BYTE *pbData, DWORD dwDataLen)
|
|
{
|
|
BYTE *pbTemp;
|
|
|
|
switch (pCryptHash->aiAlgid)
|
|
{
|
|
case CALG_HMAC:
|
|
if (pCryptHash->pHMACInfo)
|
|
update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
|
|
pbData, dwDataLen);
|
|
break;
|
|
|
|
case CALG_MAC:
|
|
pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
|
|
if (!pbTemp) return;
|
|
memcpy(pbTemp, pbData, dwDataLen);
|
|
RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, FALSE, 0,
|
|
pbTemp, &dwDataLen, dwDataLen);
|
|
HeapFree(GetProcessHeap(), 0, pbTemp);
|
|
break;
|
|
|
|
default:
|
|
update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* finalize_hash [Internal]
|
|
*
|
|
* Finalizes the hash, after all data has been hashed with update_hash.
|
|
* No additional data can be hashed afterwards until the hash gets initialized again.
|
|
*
|
|
* PARAMS
|
|
* pCryptHash [I] Hash object to be finalized.
|
|
*/
|
|
static inline void finalize_hash(CRYPTHASH *pCryptHash) {
|
|
DWORD dwDataLen;
|
|
|
|
switch (pCryptHash->aiAlgid)
|
|
{
|
|
case CALG_HMAC:
|
|
if (pCryptHash->pHMACInfo) {
|
|
BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
|
|
|
|
finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
|
|
pCryptHash->abHashValue);
|
|
memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
|
|
init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
|
|
update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
|
|
pCryptHash->pHMACInfo->pbOuterString,
|
|
pCryptHash->pHMACInfo->cbOuterString);
|
|
update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
|
|
abHashValue, pCryptHash->dwHashSize);
|
|
finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
|
|
pCryptHash->abHashValue);
|
|
}
|
|
break;
|
|
|
|
case CALG_MAC:
|
|
dwDataLen = 0;
|
|
RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, TRUE, 0,
|
|
pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
|
|
break;
|
|
|
|
default:
|
|
finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* destroy_key [Internal]
|
|
*
|
|
* Destructor for key objects
|
|
*
|
|
* PARAMS
|
|
* pCryptKey [I] Pointer to the key object to be destroyed.
|
|
* Will be invalid after function returns!
|
|
*/
|
|
static void destroy_key(OBJECTHDR *pObject)
|
|
{
|
|
CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
|
|
|
|
free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
|
|
free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
|
|
free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
|
|
free_data_blob(&pCryptKey->blobHmacKey);
|
|
HeapFree(GetProcessHeap(), 0, pCryptKey);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* setup_key [Internal]
|
|
*
|
|
* Initialize (or reset) a key object
|
|
*
|
|
* PARAMS
|
|
* pCryptKey [I] The key object to be initialized.
|
|
*/
|
|
static inline void setup_key(CRYPTKEY *pCryptKey) {
|
|
pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
|
|
memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
|
|
setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen,
|
|
pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen,
|
|
pCryptKey->abKeyValue);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* new_key [Internal]
|
|
*
|
|
* Creates a new key object without assigning the actual binary key value.
|
|
* This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Handle to the provider to which the created key will belong.
|
|
* aiAlgid [I] The new key shall use the crypto algorithm identified by aiAlgid.
|
|
* dwFlags [I] Upper 16 bits give the key length.
|
|
* Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT,
|
|
* CRYPT_NO_SALT
|
|
* ppCryptKey [O] Pointer to the created key
|
|
*
|
|
* RETURNS
|
|
* Success: Handle to the created key.
|
|
* Failure: INVALID_HANDLE_VALUE
|
|
*/
|
|
static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
|
|
{
|
|
HCRYPTKEY hCryptKey;
|
|
CRYPTKEY *pCryptKey;
|
|
DWORD dwKeyLen = HIWORD(dwFlags), bKeyLen = dwKeyLen;
|
|
const PROV_ENUMALGS_EX *peaAlgidInfo;
|
|
|
|
*ppCryptKey = NULL;
|
|
|
|
/*
|
|
* Retrieve the CSP's capabilities for the given ALG_ID value
|
|
*/
|
|
peaAlgidInfo = get_algid_info(hProv, aiAlgid);
|
|
if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
|
|
TRACE("alg = %s, dwKeyLen = %d\n", debugstr_a(peaAlgidInfo->szName),
|
|
dwKeyLen);
|
|
/*
|
|
* Assume the default key length, if none is specified explicitly
|
|
*/
|
|
if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
|
|
|
|
/*
|
|
* Check if the requested key length is supported by the current CSP.
|
|
* Adjust key length's for DES algorithms.
|
|
*/
|
|
switch (aiAlgid) {
|
|
case CALG_DES:
|
|
if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
|
|
dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
|
|
}
|
|
if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
}
|
|
break;
|
|
|
|
case CALG_3DES_112:
|
|
if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
|
|
dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
|
|
}
|
|
if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
}
|
|
break;
|
|
|
|
case CALG_3DES:
|
|
if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
|
|
dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
|
|
}
|
|
if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
}
|
|
break;
|
|
|
|
case CALG_HMAC:
|
|
/* Avoid the key length check for HMAC keys, which have unlimited
|
|
* length.
|
|
*/
|
|
break;
|
|
|
|
case CALG_AES:
|
|
if (!bKeyLen)
|
|
{
|
|
TRACE("missing key len for CALG_AES\n");
|
|
SetLastError(NTE_BAD_ALGID);
|
|
return (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
}
|
|
/* fall through */
|
|
default:
|
|
if (dwKeyLen % 8 ||
|
|
dwKeyLen > peaAlgidInfo->dwMaxLen ||
|
|
dwKeyLen < peaAlgidInfo->dwMinLen)
|
|
{
|
|
TRACE("key len %d out of bounds (%d, %d)\n", dwKeyLen,
|
|
peaAlgidInfo->dwMinLen, peaAlgidInfo->dwMaxLen);
|
|
SetLastError(NTE_BAD_DATA);
|
|
return (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
}
|
|
}
|
|
|
|
hCryptKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY,
|
|
destroy_key, (OBJECTHDR**)&pCryptKey);
|
|
if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
|
|
{
|
|
KEYCONTAINER *pKeyContainer = get_key_container(hProv);
|
|
pCryptKey->aiAlgid = aiAlgid;
|
|
pCryptKey->hProv = hProv;
|
|
pCryptKey->dwModeBits = 0;
|
|
pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE |
|
|
CRYPT_MAC;
|
|
if (dwFlags & CRYPT_EXPORTABLE)
|
|
pCryptKey->dwPermissions |= CRYPT_EXPORT;
|
|
pCryptKey->dwKeyLen = dwKeyLen >> 3;
|
|
pCryptKey->dwEffectiveKeyLen = 0;
|
|
|
|
/*
|
|
* For compatibility reasons a 40 bit key on the Enhanced
|
|
* provider will not have salt
|
|
*/
|
|
if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_ENHANCED
|
|
&& (aiAlgid == CALG_RC2 || aiAlgid == CALG_RC4)
|
|
&& (dwFlags & CRYPT_CREATE_SALT) && dwKeyLen == 40)
|
|
pCryptKey->dwSaltLen = 0;
|
|
else if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT)))
|
|
pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
|
|
else
|
|
pCryptKey->dwSaltLen = 0;
|
|
memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
|
|
memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
|
|
memset(&pCryptKey->siSChannelInfo.saEncAlg, 0, sizeof(pCryptKey->siSChannelInfo.saEncAlg));
|
|
memset(&pCryptKey->siSChannelInfo.saMACAlg, 0, sizeof(pCryptKey->siSChannelInfo.saMACAlg));
|
|
init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
|
|
init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
|
|
init_data_blob(&pCryptKey->blobHmacKey);
|
|
|
|
switch(aiAlgid)
|
|
{
|
|
case CALG_PCT1_MASTER:
|
|
case CALG_SSL2_MASTER:
|
|
case CALG_SSL3_MASTER:
|
|
case CALG_TLS1_MASTER:
|
|
case CALG_RC4:
|
|
pCryptKey->dwBlockLen = 0;
|
|
pCryptKey->dwMode = 0;
|
|
break;
|
|
|
|
case CALG_RC2:
|
|
case CALG_DES:
|
|
case CALG_3DES_112:
|
|
case CALG_3DES:
|
|
pCryptKey->dwBlockLen = 8;
|
|
pCryptKey->dwMode = CRYPT_MODE_CBC;
|
|
break;
|
|
|
|
case CALG_AES:
|
|
case CALG_AES_128:
|
|
case CALG_AES_192:
|
|
case CALG_AES_256:
|
|
pCryptKey->dwBlockLen = 16;
|
|
pCryptKey->dwMode = CRYPT_MODE_CBC;
|
|
break;
|
|
|
|
case CALG_RSA_KEYX:
|
|
case CALG_RSA_SIGN:
|
|
pCryptKey->dwBlockLen = dwKeyLen >> 3;
|
|
pCryptKey->dwMode = 0;
|
|
break;
|
|
|
|
case CALG_HMAC:
|
|
pCryptKey->dwBlockLen = 0;
|
|
pCryptKey->dwMode = 0;
|
|
break;
|
|
}
|
|
|
|
*ppCryptKey = pCryptKey;
|
|
}
|
|
|
|
return hCryptKey;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* map_key_spec_to_key_pair_name [Internal]
|
|
*
|
|
* Returns the name of the registry value associated with a key spec.
|
|
*
|
|
* PARAMS
|
|
* dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
|
|
*
|
|
* RETURNS
|
|
* Success: Name of registry value.
|
|
* Failure: NULL
|
|
*/
|
|
static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec)
|
|
{
|
|
LPCSTR szValueName;
|
|
|
|
switch (dwKeySpec)
|
|
{
|
|
case AT_KEYEXCHANGE:
|
|
szValueName = "KeyExchangeKeyPair";
|
|
break;
|
|
case AT_SIGNATURE:
|
|
szValueName = "SignatureKeyPair";
|
|
break;
|
|
default:
|
|
WARN("invalid key spec %d\n", dwKeySpec);
|
|
szValueName = NULL;
|
|
}
|
|
return szValueName;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* store_key_pair [Internal]
|
|
*
|
|
* Stores a key pair to the registry
|
|
*
|
|
* PARAMS
|
|
* hCryptKey [I] Handle to the key to be stored
|
|
* hKey [I] Registry key where the key pair is to be stored
|
|
* dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
|
|
* dwFlags [I] Flags for protecting the key
|
|
*/
|
|
static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags)
|
|
{
|
|
LPCSTR szValueName;
|
|
DATA_BLOB blobIn, blobOut;
|
|
CRYPTKEY *pKey;
|
|
DWORD dwLen;
|
|
BYTE *pbKey;
|
|
|
|
if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
|
|
return;
|
|
if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
|
|
(OBJECTHDR**)&pKey))
|
|
{
|
|
if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen))
|
|
{
|
|
pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
|
|
if (pbKey)
|
|
{
|
|
if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey,
|
|
&dwLen))
|
|
{
|
|
blobIn.pbData = pbKey;
|
|
blobIn.cbData = dwLen;
|
|
|
|
if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL,
|
|
dwFlags, &blobOut))
|
|
{
|
|
RegSetValueExA(hKey, szValueName, 0, REG_BINARY,
|
|
blobOut.pbData, blobOut.cbData);
|
|
LocalFree(blobOut.pbData);
|
|
}
|
|
}
|
|
HeapFree(GetProcessHeap(), 0, pbKey);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* map_key_spec_to_permissions_name [Internal]
|
|
*
|
|
* Returns the name of the registry value associated with the permissions for
|
|
* a key spec.
|
|
*
|
|
* PARAMS
|
|
* dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
|
|
*
|
|
* RETURNS
|
|
* Success: Name of registry value.
|
|
* Failure: NULL
|
|
*/
|
|
static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec)
|
|
{
|
|
LPCSTR szValueName;
|
|
|
|
switch (dwKeySpec)
|
|
{
|
|
case AT_KEYEXCHANGE:
|
|
szValueName = "KeyExchangePermissions";
|
|
break;
|
|
case AT_SIGNATURE:
|
|
szValueName = "SignaturePermissions";
|
|
break;
|
|
default:
|
|
WARN("invalid key spec %d\n", dwKeySpec);
|
|
szValueName = NULL;
|
|
}
|
|
return szValueName;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* store_key_permissions [Internal]
|
|
*
|
|
* Stores a key's permissions to the registry
|
|
*
|
|
* PARAMS
|
|
* hCryptKey [I] Handle to the key whose permissions are to be stored
|
|
* hKey [I] Registry key where the key permissions are to be stored
|
|
* dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
|
|
*/
|
|
static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec)
|
|
{
|
|
LPCSTR szValueName;
|
|
CRYPTKEY *pKey;
|
|
|
|
if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
|
|
return;
|
|
if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
|
|
(OBJECTHDR**)&pKey))
|
|
RegSetValueExA(hKey, szValueName, 0, REG_DWORD,
|
|
(BYTE *)&pKey->dwPermissions,
|
|
sizeof(pKey->dwPermissions));
|
|
}
|
|
|
|
/******************************************************************************
|
|
* create_container_key [Internal]
|
|
*
|
|
* Creates the registry key for a key container's persistent storage.
|
|
*
|
|
* PARAMS
|
|
* pKeyContainer [I] Pointer to the key container
|
|
* sam [I] Desired registry access
|
|
* phKey [O] Returned key
|
|
*/
|
|
static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey)
|
|
{
|
|
CHAR szRSABase[MAX_PATH];
|
|
HKEY hRootKey;
|
|
|
|
sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
|
|
|
|
if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
|
|
hRootKey = HKEY_LOCAL_MACHINE;
|
|
else
|
|
hRootKey = HKEY_CURRENT_USER;
|
|
|
|
/* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
|
|
/* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
|
|
return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL,
|
|
REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL)
|
|
== ERROR_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* open_container_key [Internal]
|
|
*
|
|
* Opens a key container's persistent storage for reading.
|
|
*
|
|
* PARAMS
|
|
* pszContainerName [I] Name of the container to be opened. May be the empty
|
|
* string if the parent key of all containers is to be
|
|
* opened.
|
|
* dwFlags [I] Flags indicating which keyset to be opened.
|
|
* phKey [O] Returned key
|
|
*/
|
|
static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, REGSAM access, HKEY *phKey)
|
|
{
|
|
CHAR szRSABase[MAX_PATH];
|
|
HKEY hRootKey;
|
|
|
|
sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
|
|
|
|
if (dwFlags & CRYPT_MACHINE_KEYSET)
|
|
hRootKey = HKEY_LOCAL_MACHINE;
|
|
else
|
|
hRootKey = HKEY_CURRENT_USER;
|
|
|
|
/* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
|
|
/* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
|
|
return RegOpenKeyExA(hRootKey, szRSABase, 0, access, phKey) ==
|
|
ERROR_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* delete_container_key [Internal]
|
|
*
|
|
* Deletes a key container's persistent storage.
|
|
*
|
|
* PARAMS
|
|
* pszContainerName [I] Name of the container to be opened.
|
|
* dwFlags [I] Flags indicating which keyset to be opened.
|
|
*/
|
|
static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags)
|
|
{
|
|
CHAR szRegKey[MAX_PATH];
|
|
|
|
if (snprintf(szRegKey, MAX_PATH, RSAENH_REGKEY, pszContainerName) >= MAX_PATH) {
|
|
SetLastError(NTE_BAD_KEYSET_PARAM);
|
|
return FALSE;
|
|
} else {
|
|
HKEY hRootKey;
|
|
if (dwFlags & CRYPT_MACHINE_KEYSET)
|
|
hRootKey = HKEY_LOCAL_MACHINE;
|
|
else
|
|
hRootKey = HKEY_CURRENT_USER;
|
|
if (!RegDeleteKeyA(hRootKey, szRegKey)) {
|
|
SetLastError(ERROR_SUCCESS);
|
|
return TRUE;
|
|
} else {
|
|
SetLastError(NTE_BAD_KEYSET);
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* store_key_container_keys [Internal]
|
|
*
|
|
* Stores key container's keys in a persistent location.
|
|
*
|
|
* PARAMS
|
|
* pKeyContainer [I] Pointer to the key container whose keys are to be saved
|
|
*/
|
|
static void store_key_container_keys(KEYCONTAINER *pKeyContainer)
|
|
{
|
|
HKEY hKey;
|
|
DWORD dwFlags;
|
|
|
|
/* On WinXP, persistent keys are stored in a file located at:
|
|
* $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
|
|
*/
|
|
|
|
if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
|
|
dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
|
|
else
|
|
dwFlags = 0;
|
|
|
|
if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
|
|
{
|
|
store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey,
|
|
AT_KEYEXCHANGE, dwFlags);
|
|
store_key_pair(pKeyContainer->hSignatureKeyPair, hKey,
|
|
AT_SIGNATURE, dwFlags);
|
|
RegCloseKey(hKey);
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* store_key_container_permissions [Internal]
|
|
*
|
|
* Stores key container's key permissions in a persistent location.
|
|
*
|
|
* PARAMS
|
|
* pKeyContainer [I] Pointer to the key container whose key permissions are to
|
|
* be saved
|
|
*/
|
|
static void store_key_container_permissions(KEYCONTAINER *pKeyContainer)
|
|
{
|
|
HKEY hKey;
|
|
|
|
if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
|
|
{
|
|
store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey,
|
|
AT_KEYEXCHANGE);
|
|
store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey,
|
|
AT_SIGNATURE);
|
|
RegCloseKey(hKey);
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* release_key_container_keys [Internal]
|
|
*
|
|
* Releases key container's keys.
|
|
*
|
|
* PARAMS
|
|
* pKeyContainer [I] Pointer to the key container whose keys are to be released.
|
|
*/
|
|
static void release_key_container_keys(KEYCONTAINER *pKeyContainer)
|
|
{
|
|
release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair,
|
|
RSAENH_MAGIC_KEY);
|
|
release_handle(&handle_table, pKeyContainer->hSignatureKeyPair,
|
|
RSAENH_MAGIC_KEY);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* destroy_key_container [Internal]
|
|
*
|
|
* Destructor for key containers.
|
|
*
|
|
* PARAMS
|
|
* pObjectHdr [I] Pointer to the key container to be destroyed.
|
|
*/
|
|
static void destroy_key_container(OBJECTHDR *pObjectHdr)
|
|
{
|
|
KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
|
|
|
|
if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT))
|
|
{
|
|
store_key_container_keys(pKeyContainer);
|
|
store_key_container_permissions(pKeyContainer);
|
|
release_key_container_keys(pKeyContainer);
|
|
}
|
|
else
|
|
release_key_container_keys(pKeyContainer);
|
|
HeapFree( GetProcessHeap(), 0, pKeyContainer );
|
|
}
|
|
|
|
/******************************************************************************
|
|
* new_key_container [Internal]
|
|
*
|
|
* Create a new key container. The personality (RSA Base, Strong or Enhanced CP)
|
|
* of the CSP is determined via the pVTable->pszProvName string.
|
|
*
|
|
* PARAMS
|
|
* pszContainerName [I] Name of the key container.
|
|
* pVTable [I] Callback functions and context info provided by the OS
|
|
*
|
|
* RETURNS
|
|
* Success: Handle to the new key container.
|
|
* Failure: INVALID_HANDLE_VALUE
|
|
*/
|
|
static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
|
|
{
|
|
KEYCONTAINER *pKeyContainer;
|
|
HCRYPTPROV hKeyContainer;
|
|
|
|
hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
|
|
destroy_key_container, (OBJECTHDR**)&pKeyContainer);
|
|
if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
|
|
{
|
|
lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
|
|
pKeyContainer->dwFlags = dwFlags;
|
|
pKeyContainer->dwEnumAlgsCtr = 0;
|
|
pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
if (pVTable && pVTable->pszProvName) {
|
|
lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
|
|
if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
|
|
pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
|
|
} else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
|
|
pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
|
|
} else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) {
|
|
pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
|
|
} else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A) ||
|
|
!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_XP_A)) {
|
|
pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES;
|
|
} else {
|
|
pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
|
|
}
|
|
}
|
|
|
|
/* The new key container has to be inserted into the CSP immediately
|
|
* after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
|
|
if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
|
|
HKEY hKey;
|
|
|
|
if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
|
|
RegCloseKey(hKey);
|
|
}
|
|
}
|
|
|
|
return hKeyContainer;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* read_key_value [Internal]
|
|
*
|
|
* Reads a key pair value from the registry
|
|
*
|
|
* PARAMS
|
|
* hKeyContainer [I] Crypt provider to use to import the key
|
|
* hKey [I] Registry key from which to read the key pair
|
|
* dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
|
|
* dwFlags [I] Flags for unprotecting the key
|
|
* phCryptKey [O] Returned key
|
|
*/
|
|
static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey)
|
|
{
|
|
LPCSTR szValueName;
|
|
DWORD dwValueType, dwLen;
|
|
BYTE *pbKey;
|
|
DATA_BLOB blobIn, blobOut;
|
|
BOOL ret = FALSE;
|
|
|
|
if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
|
|
return FALSE;
|
|
if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) ==
|
|
ERROR_SUCCESS)
|
|
{
|
|
pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
|
|
if (pbKey)
|
|
{
|
|
if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) ==
|
|
ERROR_SUCCESS)
|
|
{
|
|
blobIn.pbData = pbKey;
|
|
blobIn.cbData = dwLen;
|
|
|
|
if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL,
|
|
dwFlags, &blobOut))
|
|
{
|
|
ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
|
|
FALSE, phCryptKey);
|
|
LocalFree(blobOut.pbData);
|
|
}
|
|
}
|
|
HeapFree(GetProcessHeap(), 0, pbKey);
|
|
}
|
|
}
|
|
if (ret)
|
|
{
|
|
CRYPTKEY *pKey;
|
|
|
|
if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY,
|
|
(OBJECTHDR**)&pKey))
|
|
{
|
|
if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
|
|
{
|
|
dwLen = sizeof(pKey->dwPermissions);
|
|
RegQueryValueExA(hKey, szValueName, 0, NULL,
|
|
(BYTE *)&pKey->dwPermissions, &dwLen);
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* read_key_container [Internal]
|
|
*
|
|
* Tries to read the persistent state of the key container (mainly the signature
|
|
* and key exchange private keys) given by pszContainerName.
|
|
*
|
|
* PARAMS
|
|
* pszContainerName [I] Name of the key container to read from the registry
|
|
* pVTable [I] Pointer to context data provided by the operating system
|
|
*
|
|
* RETURNS
|
|
* Success: Handle to the key container read from the registry
|
|
* Failure: INVALID_HANDLE_VALUE
|
|
*/
|
|
static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
|
|
{
|
|
HKEY hKey;
|
|
KEYCONTAINER *pKeyContainer;
|
|
HCRYPTPROV hKeyContainer;
|
|
HCRYPTKEY hCryptKey;
|
|
|
|
if (!open_container_key(pszContainerName, dwFlags, KEY_READ, &hKey))
|
|
{
|
|
SetLastError(NTE_BAD_KEYSET);
|
|
return (HCRYPTPROV)INVALID_HANDLE_VALUE;
|
|
}
|
|
|
|
hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
|
|
if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
|
|
{
|
|
DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ?
|
|
CRYPTPROTECT_LOCAL_MACHINE : 0;
|
|
|
|
if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER,
|
|
(OBJECTHDR**)&pKeyContainer))
|
|
return (HCRYPTPROV)INVALID_HANDLE_VALUE;
|
|
|
|
/* read_key_value calls import_key, which calls import_private_key,
|
|
* which implicitly installs the key value into the appropriate key
|
|
* container key. Thus the ref count is incremented twice, once for
|
|
* the output key value, and once for the implicit install, and needs
|
|
* to be decremented to balance the two.
|
|
*/
|
|
if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE,
|
|
dwProtectFlags, &hCryptKey))
|
|
release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
|
|
if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE,
|
|
dwProtectFlags, &hCryptKey))
|
|
release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
|
|
}
|
|
|
|
return hKeyContainer;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* build_hash_signature [Internal]
|
|
*
|
|
* Builds a padded version of a hash to match the length of the RSA key modulus.
|
|
*
|
|
* PARAMS
|
|
* pbSignature [O] The padded hash object is stored here.
|
|
* dwLen [I] Length of the pbSignature buffer.
|
|
* aiAlgid [I] Algorithm identifier of the hash to be padded.
|
|
* abHashValue [I] The value of the hash object.
|
|
* dwHashLen [I] Length of the hash value.
|
|
* dwFlags [I] Selection of padding algorithm.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE (NTE_BAD_ALGID)
|
|
*/
|
|
static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid,
|
|
const BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags)
|
|
{
|
|
/* These prefixes are meant to be concatenated with hash values of the
|
|
* respective kind to form a PKCS #7 DigestInfo. */
|
|
static const struct tagOIDDescriptor {
|
|
ALG_ID aiAlgid;
|
|
DWORD dwLen;
|
|
const BYTE abOID[19];
|
|
} aOIDDescriptor[] = {
|
|
{ CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
|
|
0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
|
|
{ CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
|
|
0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
|
|
{ CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
|
|
0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
|
|
{ CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03,
|
|
0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
|
|
{ CALG_SHA_256, 19, { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
|
|
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
|
|
0x05, 0x00, 0x04, 0x20 } },
|
|
{ CALG_SHA_384, 19, { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
|
|
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
|
|
0x05, 0x00, 0x04, 0x30 } },
|
|
{ CALG_SHA_512, 19, { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
|
|
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
|
|
0x05, 0x00, 0x04, 0x40 } },
|
|
{ CALG_SSL3_SHAMD5, 0, { 0 } },
|
|
{ 0, 0, { 0 } }
|
|
};
|
|
DWORD dwIdxOID, i, j;
|
|
|
|
for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
|
|
if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
|
|
}
|
|
|
|
if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
|
|
SetLastError(NTE_BAD_ALGID);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Build the padded signature */
|
|
if (dwFlags & CRYPT_X931_FORMAT) {
|
|
pbSignature[0] = 0x6b;
|
|
for (i=1; i < dwLen - dwHashLen - 3; i++) {
|
|
pbSignature[i] = 0xbb;
|
|
}
|
|
pbSignature[i++] = 0xba;
|
|
for (j=0; j < dwHashLen; j++, i++) {
|
|
pbSignature[i] = abHashValue[j];
|
|
}
|
|
pbSignature[i++] = 0x33;
|
|
pbSignature[i++] = 0xcc;
|
|
} else {
|
|
pbSignature[0] = 0x00;
|
|
pbSignature[1] = 0x01;
|
|
if (dwFlags & CRYPT_NOHASHOID) {
|
|
for (i=2; i < dwLen - 1 - dwHashLen; i++) {
|
|
pbSignature[i] = 0xff;
|
|
}
|
|
pbSignature[i++] = 0x00;
|
|
} else {
|
|
for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
|
|
pbSignature[i] = 0xff;
|
|
}
|
|
pbSignature[i++] = 0x00;
|
|
for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
|
|
pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
|
|
}
|
|
}
|
|
for (j=0; j < dwHashLen; j++) {
|
|
pbSignature[i++] = abHashValue[j];
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* tls1_p [Internal]
|
|
*
|
|
* This is an implementation of the 'P_hash' helper function for TLS1's PRF.
|
|
* It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
|
|
* The pseudo random stream generated by this function is exclusive or'ed with
|
|
* the data in pbBuffer.
|
|
*
|
|
* PARAMS
|
|
* hHMAC [I] HMAC object, which will be used in pseudo random generation
|
|
* pblobSeed [I] Seed value
|
|
* pbBuffer [I/O] Pseudo random stream will be xor'ed to the provided data
|
|
* dwBufferLen [I] Number of pseudo random bytes desired
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*/
|
|
static BOOL tls1_p(HCRYPTHASH hHMAC, const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer,
|
|
DWORD dwBufferLen)
|
|
{
|
|
CRYPTHASH *pHMAC;
|
|
BYTE abAi[RSAENH_MAX_HASH_SIZE];
|
|
DWORD i = 0;
|
|
|
|
if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
|
|
SetLastError(NTE_BAD_HASH);
|
|
return FALSE;
|
|
}
|
|
|
|
/* compute A_1 = HMAC(seed) */
|
|
init_hash(pHMAC);
|
|
update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
|
|
finalize_hash(pHMAC);
|
|
memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
|
|
|
|
do {
|
|
/* compute HMAC(A_i + seed) */
|
|
init_hash(pHMAC);
|
|
update_hash(pHMAC, abAi, pHMAC->dwHashSize);
|
|
update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
|
|
finalize_hash(pHMAC);
|
|
|
|
/* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
|
|
do {
|
|
if (i >= dwBufferLen) break;
|
|
pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
|
|
i++;
|
|
} while (i % pHMAC->dwHashSize);
|
|
|
|
/* compute A_{i+1} = HMAC(A_i) */
|
|
init_hash(pHMAC);
|
|
update_hash(pHMAC, abAi, pHMAC->dwHashSize);
|
|
finalize_hash(pHMAC);
|
|
memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
|
|
} while (i < dwBufferLen);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* tls1_prf [Internal]
|
|
*
|
|
* TLS1 pseudo random function as specified in RFC 2246, chapter 5
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container used to compute the pseudo random stream
|
|
* hSecret [I] Key that holds the (pre-)master secret
|
|
* pblobLabel [I] Descriptive label
|
|
* pblobSeed [I] Seed value
|
|
* pbBuffer [O] Pseudo random numbers will be stored here
|
|
* dwBufferLen [I] Number of pseudo random bytes desired
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*/
|
|
static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, const PCRYPT_DATA_BLOB pblobLabel,
|
|
const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer, DWORD dwBufferLen)
|
|
{
|
|
HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
|
|
HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
|
|
HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
CRYPTKEY *pHalfSecret, *pSecret;
|
|
DWORD dwHalfSecretLen;
|
|
BOOL result = FALSE;
|
|
CRYPT_DATA_BLOB blobLabelSeed;
|
|
|
|
TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n",
|
|
hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
|
|
|
|
if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
|
|
SetLastError(NTE_FAIL);
|
|
return FALSE;
|
|
}
|
|
|
|
dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
|
|
|
|
/* concatenation of the label and the seed */
|
|
if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
|
|
|
|
/* zero out the buffer, since two random streams will be xor'ed into it. */
|
|
memset(pbBuffer, 0, dwBufferLen);
|
|
|
|
/* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
|
|
* the biggest range of valid key lengths. */
|
|
hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
|
|
if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
|
|
|
|
/* Derive an HMAC_MD5 hash and call the helper function. */
|
|
memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
|
|
if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
|
|
hmacInfo.HashAlgid = CALG_MD5;
|
|
if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
|
|
if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
|
|
|
|
/* Reconfigure to HMAC_SHA hash and call helper function again. */
|
|
memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
|
|
hmacInfo.HashAlgid = CALG_SHA;
|
|
if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
|
|
if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
|
|
|
|
result = TRUE;
|
|
exit:
|
|
release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
|
|
if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
|
|
free_data_blob(&blobLabelSeed);
|
|
return result;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* pad_data [Internal]
|
|
*
|
|
* Helper function for data padding according to PKCS1 #2
|
|
*
|
|
* PARAMS
|
|
* abData [I] The data to be padded
|
|
* dwDataLen [I] Length of the data
|
|
* abBuffer [O] Padded data will be stored here
|
|
* dwBufferLen [I] Length of the buffer (also length of padded data)
|
|
* dwFlags [I] Padding format (CRYPT_SSL2_FALLBACK)
|
|
*
|
|
* RETURN
|
|
* Success: TRUE
|
|
* Failure: FALSE (NTE_BAD_LEN, too much data to pad)
|
|
*/
|
|
static BOOL pad_data(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen,
|
|
DWORD dwFlags)
|
|
{
|
|
DWORD i;
|
|
|
|
/* Ensure there is enough space for PKCS1 #2 padding */
|
|
if (dwDataLen > dwBufferLen-11) {
|
|
SetLastError(NTE_BAD_LEN);
|
|
return FALSE;
|
|
}
|
|
|
|
memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);
|
|
|
|
abBuffer[0] = 0x00;
|
|
abBuffer[1] = RSAENH_PKC_BLOCKTYPE;
|
|
for (i=2; i < dwBufferLen - dwDataLen - 1; i++)
|
|
do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
|
|
if (dwFlags & CRYPT_SSL2_FALLBACK)
|
|
for (i-=8; i < dwBufferLen - dwDataLen - 1; i++)
|
|
abBuffer[i] = 0x03;
|
|
abBuffer[i] = 0x00;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* unpad_data [Internal]
|
|
*
|
|
* Remove the PKCS1 padding from RSA decrypted data
|
|
*
|
|
* PARAMS
|
|
* abData [I] The padded data
|
|
* dwDataLen [I] Length of the padded data
|
|
* abBuffer [O] Data without padding will be stored here
|
|
* dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
|
|
* dwFlags [I] Currently none defined
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
|
|
*/
|
|
static BOOL unpad_data(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen,
|
|
DWORD dwFlags)
|
|
{
|
|
DWORD i;
|
|
|
|
if (dwDataLen < 3)
|
|
{
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
for (i=2; i<dwDataLen; i++)
|
|
if (!abData[i])
|
|
break;
|
|
|
|
if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
|
|
(abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
|
|
{
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
|
|
*dwBufferLen = dwDataLen - i - 1;
|
|
memmove(abBuffer, abData + i + 1, *dwBufferLen);
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPAcquireContext (RSAENH.@)
|
|
*
|
|
* Acquire a handle to the key container specified by pszContainer
|
|
*
|
|
* PARAMS
|
|
* phProv [O] Pointer to the location the acquired handle will be written to.
|
|
* pszContainer [I] Name of the desired key container. See Notes
|
|
* dwFlags [I] Flags. See Notes.
|
|
* pVTable [I] Pointer to a PVTableProvStruct containing callbacks.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*
|
|
* NOTES
|
|
* If pszContainer is NULL or points to a zero length string the user's login
|
|
* name will be used as the key container name.
|
|
*
|
|
* If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
|
|
* If a keyset with the given name already exists, the function fails and sets
|
|
* last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
|
|
* key container does not exist, function fails and sets last error to
|
|
* NTE_BAD_KEYSET.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
|
|
DWORD dwFlags, PVTableProvStruc pVTable)
|
|
{
|
|
CHAR szKeyContainerName[MAX_PATH];
|
|
|
|
TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv,
|
|
debugstr_a(pszContainer), dwFlags, pVTable);
|
|
|
|
if (pszContainer && *pszContainer)
|
|
{
|
|
lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
|
|
}
|
|
else
|
|
{
|
|
DWORD dwLen = sizeof(szKeyContainerName);
|
|
if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
|
|
}
|
|
|
|
switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET))
|
|
{
|
|
case 0:
|
|
*phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
|
|
break;
|
|
|
|
case CRYPT_DELETEKEYSET:
|
|
return delete_container_key(szKeyContainerName, dwFlags);
|
|
|
|
case CRYPT_NEWKEYSET:
|
|
*phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
|
|
if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE)
|
|
{
|
|
release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER);
|
|
TRACE("Can't create new keyset, already exists\n");
|
|
SetLastError(NTE_EXISTS);
|
|
return FALSE;
|
|
}
|
|
*phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
|
|
break;
|
|
|
|
case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET:
|
|
case CRYPT_VERIFYCONTEXT:
|
|
if (pszContainer && *pszContainer) {
|
|
TRACE("pszContainer should be empty\n");
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
*phProv = new_key_container("", dwFlags, pVTable);
|
|
break;
|
|
|
|
default:
|
|
*phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE;
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) {
|
|
SetLastError(ERROR_SUCCESS);
|
|
return TRUE;
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPCreateHash (RSAENH.@)
|
|
*
|
|
* CPCreateHash creates and initializes a new hash object.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Handle to the key container to which the new hash will belong.
|
|
* Algid [I] Identifies the hash algorithm, which will be used for the hash.
|
|
* hKey [I] Handle to a session key applied for keyed hashes.
|
|
* dwFlags [I] Currently no flags defined. Must be zero.
|
|
* phHash [O] Points to the location where a handle to the new hash will be stored.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*
|
|
* NOTES
|
|
* hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
|
|
* If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags,
|
|
HCRYPTHASH *phHash)
|
|
{
|
|
CRYPTKEY *pCryptKey;
|
|
CRYPTHASH *pCryptHash;
|
|
const PROV_ENUMALGS_EX *peaAlgidInfo;
|
|
|
|
TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey,
|
|
dwFlags, phHash);
|
|
|
|
peaAlgidInfo = get_algid_info(hProv, Algid);
|
|
if (!peaAlgidInfo) return FALSE;
|
|
|
|
if (dwFlags)
|
|
{
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH ||
|
|
Algid == CALG_TLS1PRF)
|
|
{
|
|
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) &&
|
|
(pCryptKey->aiAlgid != CALG_TLS1_MASTER))
|
|
{
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
if (Algid == CALG_SCHANNEL_MASTER_HASH &&
|
|
((!pCryptKey->siSChannelInfo.blobClientRandom.cbData) ||
|
|
(!pCryptKey->siSChannelInfo.blobServerRandom.cbData)))
|
|
{
|
|
SetLastError(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
|
|
if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
|
|
SetLastError(NTE_BAD_KEY_STATE);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
*phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
|
|
destroy_hash, (OBJECTHDR**)&pCryptHash);
|
|
if (!pCryptHash) return FALSE;
|
|
|
|
pCryptHash->aiAlgid = Algid;
|
|
pCryptHash->hKey = hKey;
|
|
pCryptHash->hProv = hProv;
|
|
pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
|
|
pCryptHash->pHMACInfo = NULL;
|
|
pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
|
|
init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
|
|
init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
|
|
|
|
if (Algid == CALG_SCHANNEL_MASTER_HASH) {
|
|
static const char keyex[] = "key expansion";
|
|
BYTE key_expansion[sizeof keyex];
|
|
CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
|
|
|
|
memcpy( key_expansion, keyex, sizeof keyex );
|
|
|
|
if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
|
|
static const char msec[] = "master secret";
|
|
BYTE master_secret[sizeof msec];
|
|
CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
|
|
BYTE abKeyValue[48];
|
|
|
|
memcpy( master_secret, msec, sizeof msec );
|
|
|
|
/* See RFC 2246, chapter 8.1 */
|
|
if (!concat_data_blobs(&blobRandom,
|
|
&pCryptKey->siSChannelInfo.blobClientRandom,
|
|
&pCryptKey->siSChannelInfo.blobServerRandom))
|
|
{
|
|
return FALSE;
|
|
}
|
|
tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
|
|
pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY;
|
|
memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
|
|
free_data_blob(&blobRandom);
|
|
}
|
|
|
|
/* See RFC 2246, chapter 6.3 */
|
|
if (!concat_data_blobs(&blobRandom,
|
|
&pCryptKey->siSChannelInfo.blobServerRandom,
|
|
&pCryptKey->siSChannelInfo.blobClientRandom))
|
|
{
|
|
return FALSE;
|
|
}
|
|
tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue,
|
|
RSAENH_MAX_HASH_SIZE);
|
|
free_data_blob(&blobRandom);
|
|
}
|
|
|
|
return init_hash(pCryptHash);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPDestroyHash (RSAENH.@)
|
|
*
|
|
* Releases the handle to a hash object. The object is destroyed if its reference
|
|
* count reaches zero.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Handle to the key container to which the hash object belongs.
|
|
* hHash [I] Handle to the hash object to be released.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*/
|
|
BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
|
|
{
|
|
TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
|
|
|
|
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH))
|
|
{
|
|
SetLastError(NTE_BAD_HASH);
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPDestroyKey (RSAENH.@)
|
|
*
|
|
* Releases the handle to a key object. The object is destroyed if its reference
|
|
* count reaches zero.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Handle to the key container to which the key object belongs.
|
|
* hKey [I] Handle to the key object to be released.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*/
|
|
BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
|
|
{
|
|
TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
|
|
|
|
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY))
|
|
{
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPDuplicateHash (RSAENH.@)
|
|
*
|
|
* Clones a hash object including its current state.
|
|
*
|
|
* PARAMS
|
|
* hUID [I] Handle to the key container the hash belongs to.
|
|
* hHash [I] Handle to the hash object to be cloned.
|
|
* pdwReserved [I] Reserved. Must be NULL.
|
|
* dwFlags [I] No flags are currently defined. Must be 0.
|
|
* phHash [O] Handle to the cloned hash object.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved,
|
|
DWORD dwFlags, HCRYPTHASH *phHash)
|
|
{
|
|
CRYPTHASH *pSrcHash, *pDestHash;
|
|
|
|
TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash,
|
|
pdwReserved, dwFlags, phHash);
|
|
|
|
if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
|
|
{
|
|
SetLastError(NTE_BAD_HASH);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!phHash || pdwReserved || dwFlags)
|
|
{
|
|
SetLastError(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
|
|
*phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
|
|
destroy_hash, (OBJECTHDR**)&pDestHash);
|
|
if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
|
|
{
|
|
*pDestHash = *pSrcHash;
|
|
duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
|
|
copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
|
|
copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
|
|
copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
|
|
}
|
|
|
|
return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPDuplicateKey (RSAENH.@)
|
|
*
|
|
* Clones a key object including its current state.
|
|
*
|
|
* PARAMS
|
|
* hUID [I] Handle to the key container the hash belongs to.
|
|
* hKey [I] Handle to the key object to be cloned.
|
|
* pdwReserved [I] Reserved. Must be NULL.
|
|
* dwFlags [I] No flags are currently defined. Must be 0.
|
|
* phHash [O] Handle to the cloned key object.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved,
|
|
DWORD dwFlags, HCRYPTKEY *phKey)
|
|
{
|
|
CRYPTKEY *pSrcKey, *pDestKey;
|
|
|
|
TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey,
|
|
pdwReserved, dwFlags, phKey);
|
|
|
|
if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
|
|
{
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!phKey || pdwReserved || dwFlags)
|
|
{
|
|
SetLastError(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
|
|
*phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key,
|
|
(OBJECTHDR**)&pDestKey);
|
|
if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
|
|
{
|
|
*pDestKey = *pSrcKey;
|
|
copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
|
|
&pSrcKey->siSChannelInfo.blobServerRandom);
|
|
copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom,
|
|
&pSrcKey->siSChannelInfo.blobClientRandom);
|
|
duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
|
|
return TRUE;
|
|
}
|
|
else
|
|
{
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPEncrypt (RSAENH.@)
|
|
*
|
|
* Encrypt data.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] The key container hKey and hHash belong to.
|
|
* hKey [I] The key used to encrypt the data.
|
|
* hHash [I] An optional hash object for parallel hashing. See notes.
|
|
* Final [I] Indicates if this is the last block of data to encrypt.
|
|
* dwFlags [I] Currently no flags defined. Must be zero.
|
|
* pbData [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there.
|
|
* pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
|
|
* dwBufLen [I] Size of the buffer at pbData.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*
|
|
* NOTES
|
|
* If a hash object handle is provided in hHash, it will be updated with the plaintext.
|
|
* This is useful for message signatures.
|
|
*
|
|
* This function uses the standard WINAPI protocol for querying data of dynamic length.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
|
|
DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
|
|
{
|
|
CRYPTKEY *pCryptKey;
|
|
BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
|
|
DWORD dwEncryptedLen, i, j, k;
|
|
|
|
TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
|
|
"pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
|
|
dwBufLen);
|
|
|
|
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (dwFlags)
|
|
{
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
|
|
{
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
|
|
pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
|
|
|
|
if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
|
|
{
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
|
|
if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
|
|
if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
|
|
}
|
|
|
|
if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
|
|
if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
|
|
dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
|
|
|
|
if (pbData == NULL) {
|
|
*pdwDataLen = dwEncryptedLen;
|
|
return TRUE;
|
|
}
|
|
else if (dwEncryptedLen > dwBufLen) {
|
|
*pdwDataLen = dwEncryptedLen;
|
|
SetLastError(ERROR_MORE_DATA);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Pad final block with length bytes */
|
|
for (i=*pdwDataLen; i<dwEncryptedLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
|
|
*pdwDataLen = dwEncryptedLen;
|
|
|
|
for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
|
|
switch (pCryptKey->dwMode) {
|
|
case CRYPT_MODE_ECB:
|
|
encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
|
|
RSAENH_ENCRYPT);
|
|
break;
|
|
|
|
case CRYPT_MODE_CBC:
|
|
for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
|
|
encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
|
|
RSAENH_ENCRYPT);
|
|
memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
|
|
break;
|
|
|
|
case CRYPT_MODE_CFB:
|
|
for (j=0; j<pCryptKey->dwBlockLen; j++) {
|
|
encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
|
|
pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
|
|
out[j] = in[j] ^ o[0];
|
|
for (k=0; k<pCryptKey->dwBlockLen-1; k++)
|
|
pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
|
|
pCryptKey->abChainVector[k] = out[j];
|
|
}
|
|
break;
|
|
|
|
default:
|
|
SetLastError(NTE_BAD_ALGID);
|
|
return FALSE;
|
|
}
|
|
memcpy(in, out, pCryptKey->dwBlockLen);
|
|
}
|
|
} else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
|
|
if (pbData == NULL) {
|
|
*pdwDataLen = dwBufLen;
|
|
return TRUE;
|
|
}
|
|
encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
|
|
} else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
|
|
if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
if (!pbData) {
|
|
*pdwDataLen = pCryptKey->dwBlockLen;
|
|
return TRUE;
|
|
}
|
|
if (dwBufLen < pCryptKey->dwBlockLen) {
|
|
SetLastError(ERROR_MORE_DATA);
|
|
return FALSE;
|
|
}
|
|
if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
|
|
encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
|
|
*pdwDataLen = pCryptKey->dwBlockLen;
|
|
Final = TRUE;
|
|
} else {
|
|
SetLastError(NTE_BAD_TYPE);
|
|
return FALSE;
|
|
}
|
|
|
|
if (Final) setup_key(pCryptKey);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPDecrypt (RSAENH.@)
|
|
*
|
|
* Decrypt data.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] The key container hKey and hHash belong to.
|
|
* hKey [I] The key used to decrypt the data.
|
|
* hHash [I] An optional hash object for parallel hashing. See notes.
|
|
* Final [I] Indicates if this is the last block of data to decrypt.
|
|
* dwFlags [I] Currently no flags defined. Must be zero.
|
|
* pbData [I/O] Pointer to the data to decrypt. Plaintext will also be stored there.
|
|
* pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*
|
|
* NOTES
|
|
* If a hash object handle is provided in hHash, it will be updated with the plaintext.
|
|
* This is useful for message signatures.
|
|
*
|
|
* This function uses the standard WINAPI protocol for querying data of dynamic length.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
|
|
DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
|
|
{
|
|
CRYPTKEY *pCryptKey;
|
|
BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
|
|
DWORD i, j, k;
|
|
DWORD dwMax;
|
|
|
|
TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
|
|
"pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
|
|
|
|
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (dwFlags)
|
|
{
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
|
|
{
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
|
|
pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
|
|
|
|
if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
|
|
{
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
|
|
dwMax=*pdwDataLen;
|
|
|
|
if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
|
|
for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
|
|
switch (pCryptKey->dwMode) {
|
|
case CRYPT_MODE_ECB:
|
|
encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
|
|
RSAENH_DECRYPT);
|
|
break;
|
|
|
|
case CRYPT_MODE_CBC:
|
|
encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
|
|
RSAENH_DECRYPT);
|
|
for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
|
|
memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
|
|
break;
|
|
|
|
case CRYPT_MODE_CFB:
|
|
for (j=0; j<pCryptKey->dwBlockLen; j++) {
|
|
encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
|
|
pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
|
|
out[j] = in[j] ^ o[0];
|
|
for (k=0; k<pCryptKey->dwBlockLen-1; k++)
|
|
pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
|
|
pCryptKey->abChainVector[k] = in[j];
|
|
}
|
|
break;
|
|
|
|
default:
|
|
SetLastError(NTE_BAD_ALGID);
|
|
return FALSE;
|
|
}
|
|
memcpy(in, out, pCryptKey->dwBlockLen);
|
|
}
|
|
if (Final) {
|
|
if (pbData[*pdwDataLen-1] &&
|
|
pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen &&
|
|
pbData[*pdwDataLen-1] <= *pdwDataLen) {
|
|
BOOL padOkay = TRUE;
|
|
|
|
/* check that every bad byte has the same value */
|
|
for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++)
|
|
if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1])
|
|
padOkay = FALSE;
|
|
if (padOkay)
|
|
*pdwDataLen -= pbData[*pdwDataLen-1];
|
|
else {
|
|
SetLastError(NTE_BAD_DATA);
|
|
setup_key(pCryptKey);
|
|
return FALSE;
|
|
}
|
|
}
|
|
else {
|
|
SetLastError(NTE_BAD_DATA);
|
|
setup_key(pCryptKey);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
} else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
|
|
encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
|
|
} else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
|
|
if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
|
|
if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
|
|
Final = TRUE;
|
|
} else {
|
|
SetLastError(NTE_BAD_TYPE);
|
|
return FALSE;
|
|
}
|
|
|
|
if (Final) setup_key(pCryptKey);
|
|
|
|
if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
|
|
if (*pdwDataLen>dwMax ||
|
|
!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey,
|
|
DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
|
|
{
|
|
BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
|
|
ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
|
|
DWORD dwDataLen;
|
|
|
|
if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
|
|
SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
|
|
return FALSE;
|
|
}
|
|
|
|
dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
|
|
if (pbData) {
|
|
if (*pdwDataLen < dwDataLen) {
|
|
SetLastError(ERROR_MORE_DATA);
|
|
*pdwDataLen = dwDataLen;
|
|
return FALSE;
|
|
}
|
|
|
|
pBlobHeader->bType = SIMPLEBLOB;
|
|
pBlobHeader->bVersion = CUR_BLOB_VERSION;
|
|
pBlobHeader->reserved = 0;
|
|
pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
|
|
|
|
*pAlgid = pPubKey->aiAlgid;
|
|
|
|
if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1),
|
|
pPubKey->dwBlockLen, dwFlags))
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1),
|
|
(BYTE*)(pAlgid+1), RSAENH_ENCRYPT);
|
|
}
|
|
*pdwDataLen = dwDataLen;
|
|
return TRUE;
|
|
}
|
|
|
|
static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData,
|
|
DWORD *pdwDataLen)
|
|
{
|
|
BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
|
|
RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
|
|
DWORD dwDataLen;
|
|
|
|
if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
|
|
if (pbData) {
|
|
if (*pdwDataLen < dwDataLen) {
|
|
SetLastError(ERROR_MORE_DATA);
|
|
*pdwDataLen = dwDataLen;
|
|
return FALSE;
|
|
}
|
|
|
|
pBlobHeader->bType = PUBLICKEYBLOB;
|
|
pBlobHeader->bVersion = CUR_BLOB_VERSION;
|
|
pBlobHeader->reserved = 0;
|
|
pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
|
|
|
|
pRSAPubKey->magic = RSAENH_MAGIC_RSA1;
|
|
pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
|
|
|
|
export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
|
|
pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
|
|
}
|
|
*pdwDataLen = dwDataLen;
|
|
return TRUE;
|
|
}
|
|
|
|
static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force,
|
|
BYTE *pbData, DWORD *pdwDataLen)
|
|
{
|
|
BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
|
|
RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
|
|
DWORD dwDataLen;
|
|
|
|
if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT))
|
|
{
|
|
SetLastError(NTE_BAD_KEY_STATE);
|
|
return FALSE;
|
|
}
|
|
|
|
dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
|
|
2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
|
|
if (pbData) {
|
|
if (*pdwDataLen < dwDataLen) {
|
|
SetLastError(ERROR_MORE_DATA);
|
|
*pdwDataLen = dwDataLen;
|
|
return FALSE;
|
|
}
|
|
|
|
pBlobHeader->bType = PRIVATEKEYBLOB;
|
|
pBlobHeader->bVersion = CUR_BLOB_VERSION;
|
|
pBlobHeader->reserved = 0;
|
|
pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
|
|
|
|
pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
|
|
pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
|
|
|
|
export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
|
|
pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
|
|
}
|
|
*pdwDataLen = dwDataLen;
|
|
return TRUE;
|
|
}
|
|
|
|
static BOOL crypt_export_plaintext_key(CRYPTKEY *pCryptKey, BYTE *pbData,
|
|
DWORD *pdwDataLen)
|
|
{
|
|
BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
|
|
DWORD *pKeyLen = (DWORD*)(pBlobHeader+1);
|
|
BYTE *pbKey = (BYTE*)(pKeyLen+1);
|
|
DWORD dwDataLen;
|
|
|
|
dwDataLen = sizeof(BLOBHEADER) + sizeof(DWORD) + pCryptKey->dwKeyLen;
|
|
if (pbData) {
|
|
if (*pdwDataLen < dwDataLen) {
|
|
SetLastError(ERROR_MORE_DATA);
|
|
*pdwDataLen = dwDataLen;
|
|
return FALSE;
|
|
}
|
|
|
|
pBlobHeader->bType = PLAINTEXTKEYBLOB;
|
|
pBlobHeader->bVersion = CUR_BLOB_VERSION;
|
|
pBlobHeader->reserved = 0;
|
|
pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
|
|
|
|
*pKeyLen = pCryptKey->dwKeyLen;
|
|
memcpy(pbKey, pCryptKey->abKeyValue, pCryptKey->dwKeyLen);
|
|
}
|
|
*pdwDataLen = dwDataLen;
|
|
return TRUE;
|
|
}
|
|
/******************************************************************************
|
|
* crypt_export_key [Internal]
|
|
*
|
|
* Export a key into a binary large object (BLOB). Called by CPExportKey and
|
|
* by store_key_pair.
|
|
*
|
|
* PARAMS
|
|
* pCryptKey [I] Key to be exported.
|
|
* hPubKey [I] Key used to encrypt sensitive BLOB data.
|
|
* dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
|
|
* dwFlags [I] Currently none defined.
|
|
* force [I] If TRUE, the key is written no matter what the key's
|
|
* permissions are. Otherwise the key's permissions are
|
|
* checked before exporting.
|
|
* pbData [O] Pointer to a buffer where the BLOB will be written to.
|
|
* pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*/
|
|
static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey,
|
|
DWORD dwBlobType, DWORD dwFlags, BOOL force,
|
|
BYTE *pbData, DWORD *pdwDataLen)
|
|
{
|
|
CRYPTKEY *pPubKey;
|
|
|
|
if (dwFlags & CRYPT_SSL2_FALLBACK) {
|
|
if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
switch ((BYTE)dwBlobType)
|
|
{
|
|
case SIMPLEBLOB:
|
|
if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
|
|
SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
|
|
return FALSE;
|
|
}
|
|
return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData,
|
|
pdwDataLen);
|
|
|
|
case PUBLICKEYBLOB:
|
|
if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
|
|
SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
|
|
return FALSE;
|
|
}
|
|
|
|
return crypt_export_public_key(pCryptKey, pbData, pdwDataLen);
|
|
|
|
case PRIVATEKEYBLOB:
|
|
return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen);
|
|
|
|
case PLAINTEXTKEYBLOB:
|
|
return crypt_export_plaintext_key(pCryptKey, pbData, pdwDataLen);
|
|
|
|
default:
|
|
SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPExportKey (RSAENH.@)
|
|
*
|
|
* Export a key into a binary large object (BLOB).
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container from which a key is to be exported.
|
|
* hKey [I] Key to be exported.
|
|
* hPubKey [I] Key used to encrypt sensitive BLOB data.
|
|
* dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
|
|
* dwFlags [I] Currently none defined.
|
|
* pbData [O] Pointer to a buffer where the BLOB will be written to.
|
|
* pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey,
|
|
DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
|
|
{
|
|
CRYPTKEY *pCryptKey;
|
|
|
|
TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p,"
|
|
"pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
|
|
|
|
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
|
|
{
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE,
|
|
pbData, pdwDataLen);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* release_and_install_key [Internal]
|
|
*
|
|
* Release an existing key, if present, and replaces it with a new one.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container into which the key is to be imported.
|
|
* src [I] Key which will replace *dest
|
|
* dest [I] Points to key to be released and replaced with src
|
|
* fStoreKey [I] If TRUE, the newly installed key is stored to the registry.
|
|
*/
|
|
static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src,
|
|
HCRYPTKEY *dest, DWORD fStoreKey)
|
|
{
|
|
RSAENH_CPDestroyKey(hProv, *dest);
|
|
copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest);
|
|
if (fStoreKey)
|
|
{
|
|
KEYCONTAINER *pKeyContainer;
|
|
|
|
if ((pKeyContainer = get_key_container(hProv)))
|
|
{
|
|
store_key_container_keys(pKeyContainer);
|
|
store_key_container_permissions(pKeyContainer);
|
|
}
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* import_private_key [Internal]
|
|
*
|
|
* Import a BLOB'ed private key into a key container.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container into which the private key is to be imported.
|
|
* pbData [I] Pointer to a buffer which holds the private key BLOB.
|
|
* dwDataLen [I] Length of data in buffer at pbData.
|
|
* dwFlags [I] One of:
|
|
* CRYPT_EXPORTABLE: the imported key is marked exportable
|
|
* fStoreKey [I] If TRUE, the imported key is stored to the registry.
|
|
* phKey [O] Handle to the imported key.
|
|
*
|
|
*
|
|
* NOTES
|
|
* Assumes the caller has already checked the BLOBHEADER at pbData to ensure
|
|
* it's a PRIVATEKEYBLOB.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*/
|
|
static BOOL import_private_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
|
|
DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
|
|
{
|
|
KEYCONTAINER *pKeyContainer;
|
|
CRYPTKEY *pCryptKey;
|
|
const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
|
|
const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1);
|
|
BOOL ret;
|
|
|
|
if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
|
|
{
|
|
FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
if (!(pKeyContainer = get_key_container(hProv)))
|
|
return FALSE;
|
|
|
|
if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)))
|
|
{
|
|
ERR("datalen %d not long enough for a BLOBHEADER + RSAPUBKEY\n",
|
|
dwDataLen);
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
if (pRSAPubKey->magic != RSAENH_MAGIC_RSA2)
|
|
{
|
|
ERR("unexpected magic %08x\n", pRSAPubKey->magic);
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
|
|
(pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4))))
|
|
{
|
|
DWORD expectedLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
|
|
(pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4));
|
|
|
|
ERR("blob too short for pub key: expect %d, got %d\n",
|
|
expectedLen, dwDataLen);
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
|
|
*phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
|
|
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
|
|
setup_key(pCryptKey);
|
|
ret = import_private_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context,
|
|
pRSAPubKey->bitlen/8, dwDataLen, pRSAPubKey->pubexp);
|
|
if (ret) {
|
|
if (dwFlags & CRYPT_EXPORTABLE)
|
|
pCryptKey->dwPermissions |= CRYPT_EXPORT;
|
|
switch (pBlobHeader->aiKeyAlg)
|
|
{
|
|
case AT_SIGNATURE:
|
|
case CALG_RSA_SIGN:
|
|
TRACE("installing signing key\n");
|
|
release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair,
|
|
fStoreKey);
|
|
break;
|
|
case AT_KEYEXCHANGE:
|
|
case CALG_RSA_KEYX:
|
|
TRACE("installing key exchange key\n");
|
|
release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
|
|
fStoreKey);
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* import_public_key [Internal]
|
|
*
|
|
* Import a BLOB'ed public key.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] A CSP.
|
|
* pbData [I] Pointer to a buffer which holds the public key BLOB.
|
|
* dwDataLen [I] Length of data in buffer at pbData.
|
|
* dwFlags [I] One of:
|
|
* CRYPT_EXPORTABLE: the imported key is marked exportable
|
|
* phKey [O] Handle to the imported key.
|
|
*
|
|
*
|
|
* NOTES
|
|
* Assumes the caller has already checked the BLOBHEADER at pbData to ensure
|
|
* it's a PUBLICKEYBLOB.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*/
|
|
static BOOL import_public_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
|
|
DWORD dwFlags, HCRYPTKEY *phKey)
|
|
{
|
|
CRYPTKEY *pCryptKey;
|
|
const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
|
|
const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1);
|
|
ALG_ID algID;
|
|
BOOL ret;
|
|
|
|
if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
|
|
{
|
|
FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
|
|
(pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
|
|
(dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3)))
|
|
{
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Since this is a public key blob, only the public key is
|
|
* available, so only signature verification is possible.
|
|
*/
|
|
algID = pBlobHeader->aiKeyAlg;
|
|
*phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
|
|
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
|
|
setup_key(pCryptKey);
|
|
ret = import_public_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context,
|
|
pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
|
|
if (ret) {
|
|
if (dwFlags & CRYPT_EXPORTABLE)
|
|
pCryptKey->dwPermissions |= CRYPT_EXPORT;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* import_symmetric_key [Internal]
|
|
*
|
|
* Import a BLOB'ed symmetric key into a key container.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container into which the symmetric key is to be imported.
|
|
* pbData [I] Pointer to a buffer which holds the symmetric key BLOB.
|
|
* dwDataLen [I] Length of data in buffer at pbData.
|
|
* hPubKey [I] Key used to decrypt sensitive BLOB data.
|
|
* dwFlags [I] One of:
|
|
* CRYPT_EXPORTABLE: the imported key is marked exportable
|
|
* phKey [O] Handle to the imported key.
|
|
*
|
|
*
|
|
* NOTES
|
|
* Assumes the caller has already checked the BLOBHEADER at pbData to ensure
|
|
* it's a SIMPLEBLOB.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*/
|
|
static BOOL import_symmetric_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
|
|
HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
|
|
{
|
|
CRYPTKEY *pCryptKey, *pPubKey;
|
|
const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
|
|
const ALG_ID *pAlgid = (const ALG_ID*)(pBlobHeader+1);
|
|
const BYTE *pbKeyStream = (const BYTE*)(pAlgid + 1);
|
|
BYTE *pbDecrypted;
|
|
DWORD dwKeyLen;
|
|
|
|
if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
|
|
{
|
|
FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
|
|
pPubKey->aiAlgid != CALG_RSA_KEYX)
|
|
{
|
|
SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
|
|
return FALSE;
|
|
}
|
|
|
|
if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen)
|
|
{
|
|
SetLastError(NTE_BAD_DATA); /* FIXME: error code */
|
|
return FALSE;
|
|
}
|
|
|
|
pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
|
|
if (!pbDecrypted) return FALSE;
|
|
encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted,
|
|
RSAENH_DECRYPT);
|
|
|
|
dwKeyLen = RSAENH_MAX_KEY_SIZE;
|
|
if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
|
|
HeapFree(GetProcessHeap(), 0, pbDecrypted);
|
|
return FALSE;
|
|
}
|
|
|
|
*phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
|
|
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
|
|
{
|
|
HeapFree(GetProcessHeap(), 0, pbDecrypted);
|
|
return FALSE;
|
|
}
|
|
memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
|
|
HeapFree(GetProcessHeap(), 0, pbDecrypted);
|
|
setup_key(pCryptKey);
|
|
if (dwFlags & CRYPT_EXPORTABLE)
|
|
pCryptKey->dwPermissions |= CRYPT_EXPORT;
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* import_plaintext_key [Internal]
|
|
*
|
|
* Import a plaintext key into a key container.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container into which the symmetric key is to be imported.
|
|
* pbData [I] Pointer to a buffer which holds the plaintext key BLOB.
|
|
* dwDataLen [I] Length of data in buffer at pbData.
|
|
* dwFlags [I] One of:
|
|
* CRYPT_EXPORTABLE: the imported key is marked exportable
|
|
* phKey [O] Handle to the imported key.
|
|
*
|
|
*
|
|
* NOTES
|
|
* Assumes the caller has already checked the BLOBHEADER at pbData to ensure
|
|
* it's a PLAINTEXTKEYBLOB.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*/
|
|
static BOOL import_plaintext_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
|
|
DWORD dwFlags, HCRYPTKEY *phKey)
|
|
{
|
|
CRYPTKEY *pCryptKey;
|
|
const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
|
|
const DWORD *pKeyLen = (const DWORD *)(pBlobHeader + 1);
|
|
const BYTE *pbKeyStream = (const BYTE*)(pKeyLen + 1);
|
|
|
|
if (dwDataLen < sizeof(BLOBHEADER)+sizeof(DWORD)+*pKeyLen)
|
|
{
|
|
SetLastError(NTE_BAD_DATA); /* FIXME: error code */
|
|
return FALSE;
|
|
}
|
|
|
|
if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
|
|
{
|
|
*phKey = new_key(hProv, CALG_HMAC, 0, &pCryptKey);
|
|
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
|
|
return FALSE;
|
|
if (*pKeyLen <= RSAENH_MIN(sizeof(pCryptKey->abKeyValue), RSAENH_HMAC_BLOCK_LEN))
|
|
{
|
|
memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
|
|
pCryptKey->dwKeyLen = *pKeyLen;
|
|
}
|
|
else
|
|
{
|
|
CRYPT_DATA_BLOB blobHmacKey = { *pKeyLen, (BYTE *)pbKeyStream };
|
|
|
|
/* In order to initialize an HMAC key, the key material is hashed,
|
|
* and the output of the hash function is used as the key material.
|
|
* Unfortunately, the way the Crypto API is designed, we don't know
|
|
* the hash algorithm yet, so we have to copy the entire key
|
|
* material.
|
|
*/
|
|
if (!copy_data_blob(&pCryptKey->blobHmacKey, &blobHmacKey))
|
|
{
|
|
release_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY);
|
|
*phKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
return FALSE;
|
|
}
|
|
}
|
|
setup_key(pCryptKey);
|
|
if (dwFlags & CRYPT_EXPORTABLE)
|
|
pCryptKey->dwPermissions |= CRYPT_EXPORT;
|
|
}
|
|
else
|
|
{
|
|
*phKey = new_key(hProv, pBlobHeader->aiKeyAlg, *pKeyLen<<19, &pCryptKey);
|
|
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
|
|
return FALSE;
|
|
memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
|
|
setup_key(pCryptKey);
|
|
if (dwFlags & CRYPT_EXPORTABLE)
|
|
pCryptKey->dwPermissions |= CRYPT_EXPORT;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* import_key [Internal]
|
|
*
|
|
* Import a BLOB'ed key into a key container, optionally storing the key's
|
|
* value to the registry.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container into which the key is to be imported.
|
|
* pbData [I] Pointer to a buffer which holds the BLOB.
|
|
* dwDataLen [I] Length of data in buffer at pbData.
|
|
* hPubKey [I] Key used to decrypt sensitive BLOB data.
|
|
* dwFlags [I] One of:
|
|
* CRYPT_EXPORTABLE: the imported key is marked exportable
|
|
* fStoreKey [I] If TRUE, the imported key is stored to the registry.
|
|
* phKey [O] Handle to the imported key.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*/
|
|
static BOOL import_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, HCRYPTKEY hPubKey,
|
|
DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
|
|
{
|
|
KEYCONTAINER *pKeyContainer;
|
|
const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
|
|
|
|
if (!(pKeyContainer = get_key_container(hProv)))
|
|
return FALSE;
|
|
|
|
if (dwDataLen < sizeof(BLOBHEADER) ||
|
|
pBlobHeader->bVersion != CUR_BLOB_VERSION ||
|
|
pBlobHeader->reserved != 0)
|
|
{
|
|
TRACE("bVersion = %d, reserved = %d\n", pBlobHeader->bVersion,
|
|
pBlobHeader->reserved);
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
|
|
/* If this is a verify-only context, the key is not persisted regardless of
|
|
* fStoreKey's original value.
|
|
*/
|
|
fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT);
|
|
TRACE("blob type: %x\n", pBlobHeader->bType);
|
|
switch (pBlobHeader->bType)
|
|
{
|
|
case PRIVATEKEYBLOB:
|
|
return import_private_key(hProv, pbData, dwDataLen, dwFlags,
|
|
fStoreKey, phKey);
|
|
|
|
case PUBLICKEYBLOB:
|
|
return import_public_key(hProv, pbData, dwDataLen, dwFlags,
|
|
phKey);
|
|
|
|
case SIMPLEBLOB:
|
|
return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey,
|
|
dwFlags, phKey);
|
|
|
|
case PLAINTEXTKEYBLOB:
|
|
return import_plaintext_key(hProv, pbData, dwDataLen, dwFlags,
|
|
phKey);
|
|
|
|
default:
|
|
SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPImportKey (RSAENH.@)
|
|
*
|
|
* Import a BLOB'ed key into a key container.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container into which the key is to be imported.
|
|
* pbData [I] Pointer to a buffer which holds the BLOB.
|
|
* dwDataLen [I] Length of data in buffer at pbData.
|
|
* hPubKey [I] Key used to decrypt sensitive BLOB data.
|
|
* dwFlags [I] One of:
|
|
* CRYPT_EXPORTABLE: the imported key is marked exportable
|
|
* phKey [O] Handle to the imported key.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
|
|
HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
|
|
{
|
|
TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n",
|
|
hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
|
|
|
|
return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPGenKey (RSAENH.@)
|
|
*
|
|
* Generate a key in the key container
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container for which a key is to be generated.
|
|
* Algid [I] Crypto algorithm identifier for the key to be generated.
|
|
* dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
|
|
* phKey [O] Handle to the generated key.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*
|
|
* FIXME
|
|
* Flags currently not considered.
|
|
*
|
|
* NOTES
|
|
* Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
|
|
* and AT_SIGNATURE values.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
|
|
{
|
|
KEYCONTAINER *pKeyContainer;
|
|
CRYPTKEY *pCryptKey;
|
|
|
|
TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
|
|
|
|
if (!(pKeyContainer = get_key_container(hProv)))
|
|
{
|
|
/* MSDN: hProv not containing valid context handle */
|
|
return FALSE;
|
|
}
|
|
|
|
switch (Algid)
|
|
{
|
|
case AT_SIGNATURE:
|
|
case CALG_RSA_SIGN:
|
|
*phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
|
|
if (pCryptKey) {
|
|
new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
|
|
setup_key(pCryptKey);
|
|
release_and_install_key(hProv, *phKey,
|
|
&pKeyContainer->hSignatureKeyPair,
|
|
FALSE);
|
|
}
|
|
break;
|
|
|
|
case AT_KEYEXCHANGE:
|
|
case CALG_RSA_KEYX:
|
|
*phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
|
|
if (pCryptKey) {
|
|
new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
|
|
setup_key(pCryptKey);
|
|
release_and_install_key(hProv, *phKey,
|
|
&pKeyContainer->hKeyExchangeKeyPair,
|
|
FALSE);
|
|
}
|
|
break;
|
|
|
|
case CALG_RC2:
|
|
case CALG_RC4:
|
|
case CALG_DES:
|
|
case CALG_3DES_112:
|
|
case CALG_3DES:
|
|
case CALG_AES:
|
|
case CALG_AES_128:
|
|
case CALG_AES_192:
|
|
case CALG_AES_256:
|
|
case CALG_PCT1_MASTER:
|
|
case CALG_SSL2_MASTER:
|
|
case CALG_SSL3_MASTER:
|
|
case CALG_TLS1_MASTER:
|
|
*phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
|
|
if (pCryptKey) {
|
|
gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
|
|
switch (Algid) {
|
|
case CALG_SSL3_MASTER:
|
|
pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
|
|
pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
|
|
break;
|
|
|
|
case CALG_TLS1_MASTER:
|
|
pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
|
|
pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
|
|
break;
|
|
}
|
|
setup_key(pCryptKey);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* MSDN: Algorithm not supported specified by Algid */
|
|
SetLastError(NTE_BAD_ALGID);
|
|
return FALSE;
|
|
}
|
|
|
|
return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPGenRandom (RSAENH.@)
|
|
*
|
|
* Generate a random byte stream.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container that is used to generate random bytes.
|
|
* dwLen [I] Specifies the number of requested random data bytes.
|
|
* pbBuffer [O] Random bytes will be stored here.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*/
|
|
BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
|
|
{
|
|
TRACE("(hProv=%08lx, dwLen=%d, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
|
|
|
|
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
/* MSDN: hProv not containing valid context handle */
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
return gen_rand_impl(pbBuffer, dwLen);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPGetHashParam (RSAENH.@)
|
|
*
|
|
* Query parameters of an hash object.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] The kea container, which the hash belongs to.
|
|
* hHash [I] The hash object that is to be queried.
|
|
* dwParam [I] Specifies the parameter that is to be queried.
|
|
* pbData [I] Pointer to the buffer where the parameter value will be stored.
|
|
* pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
|
|
* dwFlags [I] None currently defined.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*
|
|
* NOTES
|
|
* Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be
|
|
* finalized if HP_HASHVALUE is queried.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData,
|
|
DWORD *pdwDataLen, DWORD dwFlags)
|
|
{
|
|
CRYPTHASH *pCryptHash;
|
|
|
|
TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
|
|
hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags);
|
|
|
|
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (dwFlags)
|
|
{
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
|
|
(OBJECTHDR**)&pCryptHash))
|
|
{
|
|
SetLastError(NTE_BAD_HASH);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!pdwDataLen)
|
|
{
|
|
SetLastError(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
|
|
switch (dwParam)
|
|
{
|
|
case HP_ALGID:
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->aiAlgid,
|
|
sizeof(ALG_ID));
|
|
|
|
case HP_HASHSIZE:
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->dwHashSize,
|
|
sizeof(DWORD));
|
|
|
|
case HP_HASHVAL:
|
|
if (pCryptHash->aiAlgid == CALG_TLS1PRF) {
|
|
return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel,
|
|
&pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen);
|
|
}
|
|
|
|
if ( pbData == NULL ) {
|
|
*pdwDataLen = pCryptHash->dwHashSize;
|
|
return TRUE;
|
|
}
|
|
|
|
if (pbData && (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED))
|
|
{
|
|
finalize_hash(pCryptHash);
|
|
pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
|
|
}
|
|
|
|
return copy_param(pbData, pdwDataLen, pCryptHash->abHashValue,
|
|
pCryptHash->dwHashSize);
|
|
|
|
default:
|
|
SetLastError(NTE_BAD_TYPE);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPSetKeyParam (RSAENH.@)
|
|
*
|
|
* Set a parameter of a key object
|
|
*
|
|
* PARAMS
|
|
* hProv [I] The key container to which the key belongs.
|
|
* hKey [I] The key for which a parameter is to be set.
|
|
* dwParam [I] Parameter type. See Notes.
|
|
* pbData [I] Pointer to the parameter value.
|
|
* dwFlags [I] Currently none defined.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*
|
|
* NOTES:
|
|
* Defined dwParam types are:
|
|
* - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
|
|
* - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's)
|
|
* - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT,
|
|
* CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
|
|
* - KP_IV: Initialization vector
|
|
*/
|
|
BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData,
|
|
DWORD dwFlags)
|
|
{
|
|
CRYPTKEY *pCryptKey;
|
|
|
|
TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, hKey,
|
|
dwParam, pbData, dwFlags);
|
|
|
|
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (dwFlags) {
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
|
|
{
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
switch (dwParam) {
|
|
case KP_PADDING:
|
|
/* The MS providers only support PKCS5_PADDING */
|
|
if (*(DWORD *)pbData != PKCS5_PADDING) {
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
|
|
case KP_MODE:
|
|
pCryptKey->dwMode = *(DWORD*)pbData;
|
|
return TRUE;
|
|
|
|
case KP_MODE_BITS:
|
|
pCryptKey->dwModeBits = *(DWORD*)pbData;
|
|
return TRUE;
|
|
|
|
case KP_PERMISSIONS:
|
|
{
|
|
DWORD perms = *(DWORD *)pbData;
|
|
|
|
if ((perms & CRYPT_EXPORT) &&
|
|
!(pCryptKey->dwPermissions & CRYPT_EXPORT))
|
|
{
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
else if (!(perms & CRYPT_EXPORT) &&
|
|
(pCryptKey->dwPermissions & CRYPT_EXPORT))
|
|
{
|
|
/* Clearing the export permission appears to be ignored,
|
|
* see tests.
|
|
*/
|
|
perms |= CRYPT_EXPORT;
|
|
}
|
|
pCryptKey->dwPermissions = perms;
|
|
return TRUE;
|
|
}
|
|
|
|
case KP_IV:
|
|
memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen);
|
|
setup_key(pCryptKey);
|
|
return TRUE;
|
|
|
|
case KP_SALT:
|
|
switch (pCryptKey->aiAlgid) {
|
|
case CALG_RC2:
|
|
case CALG_RC4:
|
|
{
|
|
KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv);
|
|
if (!pbData)
|
|
{
|
|
SetLastError(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
/* MSDN: the base provider always sets eleven bytes of
|
|
* salt value.
|
|
*/
|
|
memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen,
|
|
pbData, 11);
|
|
pCryptKey->dwSaltLen = 11;
|
|
setup_key(pCryptKey);
|
|
/* After setting the salt value if the provider is not base or
|
|
* strong the salt length will be reset. */
|
|
if (pKeyContainer->dwPersonality != RSAENH_PERSONALITY_BASE &&
|
|
pKeyContainer->dwPersonality != RSAENH_PERSONALITY_STRONG)
|
|
pCryptKey->dwSaltLen = 0;
|
|
break;
|
|
}
|
|
default:
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
|
|
case KP_SALT_EX:
|
|
{
|
|
CRYPT_INTEGER_BLOB *blob = (CRYPT_INTEGER_BLOB *)pbData;
|
|
|
|
/* salt length can't be greater than 184 bits = 24 bytes */
|
|
if (blob->cbData > 24)
|
|
{
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, blob->pbData,
|
|
blob->cbData);
|
|
pCryptKey->dwSaltLen = blob->cbData;
|
|
setup_key(pCryptKey);
|
|
return TRUE;
|
|
}
|
|
|
|
case KP_EFFECTIVE_KEYLEN:
|
|
switch (pCryptKey->aiAlgid) {
|
|
case CALG_RC2:
|
|
{
|
|
DWORD keylen, deflen;
|
|
BOOL ret = TRUE;
|
|
KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv);
|
|
|
|
if (!pbData)
|
|
{
|
|
SetLastError(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
keylen = *(DWORD *)pbData;
|
|
if (!keylen || keylen > 1024)
|
|
{
|
|
SetLastError(NTE_BAD_DATA);
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* The Base provider will force the key length to default
|
|
* and set an error state if a key length different from
|
|
* the default is tried.
|
|
*/
|
|
deflen = aProvEnumAlgsEx[pKeyContainer->dwPersonality]->dwDefaultLen;
|
|
if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_BASE
|
|
&& keylen != deflen)
|
|
{
|
|
keylen = deflen;
|
|
SetLastError(NTE_BAD_DATA);
|
|
ret = FALSE;
|
|
}
|
|
pCryptKey->dwEffectiveKeyLen = keylen;
|
|
setup_key(pCryptKey);
|
|
return ret;
|
|
}
|
|
default:
|
|
SetLastError(NTE_BAD_TYPE);
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
|
|
case KP_SCHANNEL_ALG:
|
|
switch (((PSCHANNEL_ALG)pbData)->dwUse) {
|
|
case SCHANNEL_ENC_KEY:
|
|
memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG));
|
|
break;
|
|
|
|
case SCHANNEL_MAC_KEY:
|
|
memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG));
|
|
break;
|
|
|
|
default:
|
|
SetLastError(NTE_FAIL); /* FIXME: error code */
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
|
|
case KP_CLIENT_RANDOM:
|
|
return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData);
|
|
|
|
case KP_SERVER_RANDOM:
|
|
return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData);
|
|
|
|
default:
|
|
SetLastError(NTE_BAD_TYPE);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPGetKeyParam (RSAENH.@)
|
|
*
|
|
* Query a key parameter.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] The key container, which the key belongs to.
|
|
* hHash [I] The key object that is to be queried.
|
|
* dwParam [I] Specifies the parameter that is to be queried.
|
|
* pbData [I] Pointer to the buffer where the parameter value will be stored.
|
|
* pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
|
|
* dwFlags [I] None currently defined.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*
|
|
* NOTES
|
|
* Defined dwParam types are:
|
|
* - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
|
|
* - KP_MODE_BITS: Shift width for cipher feedback mode.
|
|
* (Currently ignored by MS CSP's - always eight)
|
|
* - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT,
|
|
* CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
|
|
* - KP_IV: Initialization vector.
|
|
* - KP_KEYLEN: Bitwidth of the key.
|
|
* - KP_BLOCKLEN: Size of a block cipher block.
|
|
* - KP_SALT: Salt value.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData,
|
|
DWORD *pdwDataLen, DWORD dwFlags)
|
|
{
|
|
CRYPTKEY *pCryptKey;
|
|
DWORD dwValue;
|
|
|
|
TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p dwFlags=%08x)\n",
|
|
hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags);
|
|
|
|
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (dwFlags) {
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
|
|
{
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
switch (dwParam)
|
|
{
|
|
case KP_IV:
|
|
return copy_param(pbData, pdwDataLen, pCryptKey->abInitVector,
|
|
pCryptKey->dwBlockLen);
|
|
|
|
case KP_SALT:
|
|
switch (pCryptKey->aiAlgid) {
|
|
case CALG_RC2:
|
|
case CALG_RC4:
|
|
return copy_param(pbData, pdwDataLen,
|
|
&pCryptKey->abKeyValue[pCryptKey->dwKeyLen],
|
|
pCryptKey->dwSaltLen);
|
|
default:
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
case KP_PADDING:
|
|
dwValue = PKCS5_PADDING;
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
|
|
|
|
case KP_KEYLEN:
|
|
dwValue = pCryptKey->dwKeyLen << 3;
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
|
|
|
|
case KP_EFFECTIVE_KEYLEN:
|
|
if (pCryptKey->dwEffectiveKeyLen)
|
|
dwValue = pCryptKey->dwEffectiveKeyLen;
|
|
else
|
|
dwValue = pCryptKey->dwKeyLen << 3;
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
|
|
|
|
case KP_BLOCKLEN:
|
|
dwValue = pCryptKey->dwBlockLen << 3;
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
|
|
|
|
case KP_MODE:
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwMode, sizeof(DWORD));
|
|
|
|
case KP_MODE_BITS:
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwModeBits,
|
|
sizeof(DWORD));
|
|
|
|
case KP_PERMISSIONS:
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwPermissions,
|
|
sizeof(DWORD));
|
|
|
|
case KP_ALGID:
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD));
|
|
|
|
default:
|
|
SetLastError(NTE_BAD_TYPE);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPGetProvParam (RSAENH.@)
|
|
*
|
|
* Query a CSP parameter.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] The key container that is to be queried.
|
|
* dwParam [I] Specifies the parameter that is to be queried.
|
|
* pbData [I] Pointer to the buffer where the parameter value will be stored.
|
|
* pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
|
|
* dwFlags [I] CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}).
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
* NOTES:
|
|
* Defined dwParam types:
|
|
* - PP_CONTAINER: Name of the key container.
|
|
* - PP_NAME: Name of the cryptographic service provider.
|
|
* - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits.
|
|
* - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits.
|
|
* - PP_ENUMALGS{_EX}: Query provider capabilities.
|
|
* - PP_KEYSET_SEC_DESCR: Retrieve security descriptor on container.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData,
|
|
DWORD *pdwDataLen, DWORD dwFlags)
|
|
{
|
|
KEYCONTAINER *pKeyContainer;
|
|
PROV_ENUMALGS provEnumalgs;
|
|
DWORD dwTemp;
|
|
HKEY hKey;
|
|
|
|
/* This is for dwParam PP_CRYPT_COUNT_KEY_USE.
|
|
* IE6 SP1 asks for it in the 'About' dialog.
|
|
* Returning this BLOB seems to satisfy IE. The marked 0x00 seem
|
|
* to be 'don't care's. If you know anything more specific about
|
|
* this provider parameter, please report to wine-devel@winehq.org */
|
|
static const BYTE abWTF[96] = {
|
|
0xb0, 0x25, 0x63, 0x86, 0x9c, 0xab, 0xb6, 0x37,
|
|
0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b,
|
|
0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82,
|
|
0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde,
|
|
0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8,
|
|
0x12, 0x1e, 0xd4, 0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01,
|
|
0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33,
|
|
0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d,
|
|
0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05,
|
|
0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa,
|
|
0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03,
|
|
0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca
|
|
};
|
|
|
|
TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
|
|
hProv, dwParam, pbData, pdwDataLen, dwFlags);
|
|
|
|
if (!pdwDataLen) {
|
|
SetLastError(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!(pKeyContainer = get_key_container(hProv)))
|
|
{
|
|
/* MSDN: hProv not containing valid context handle */
|
|
return FALSE;
|
|
}
|
|
|
|
switch (dwParam)
|
|
{
|
|
case PP_CONTAINER:
|
|
case PP_UNIQUE_CONTAINER:/* MSDN says we can return the same value as PP_CONTAINER */
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szName,
|
|
strlen(pKeyContainer->szName)+1);
|
|
|
|
case PP_NAME:
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szProvName,
|
|
strlen(pKeyContainer->szProvName)+1);
|
|
|
|
case PP_PROVTYPE:
|
|
dwTemp = PROV_RSA_FULL;
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
|
|
|
|
case PP_KEYSPEC:
|
|
dwTemp = AT_SIGNATURE | AT_KEYEXCHANGE;
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
|
|
|
|
case PP_KEYSET_TYPE:
|
|
dwTemp = pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET;
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
|
|
|
|
case PP_KEYSTORAGE:
|
|
dwTemp = CRYPT_SEC_DESCR;
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
|
|
|
|
case PP_SIG_KEYSIZE_INC:
|
|
case PP_KEYX_KEYSIZE_INC:
|
|
dwTemp = 8;
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
|
|
|
|
case PP_IMPTYPE:
|
|
dwTemp = CRYPT_IMPL_SOFTWARE;
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
|
|
|
|
case PP_VERSION:
|
|
dwTemp = 0x00000200;
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
|
|
|
|
case PP_ENUMCONTAINERS:
|
|
if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0;
|
|
|
|
if (!pbData) {
|
|
*pdwDataLen = (DWORD)MAX_PATH + 1;
|
|
return TRUE;
|
|
}
|
|
|
|
if (!open_container_key("", dwFlags, KEY_READ, &hKey))
|
|
{
|
|
SetLastError(ERROR_NO_MORE_ITEMS);
|
|
return FALSE;
|
|
}
|
|
|
|
dwTemp = *pdwDataLen;
|
|
switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp,
|
|
NULL, NULL, NULL, NULL))
|
|
{
|
|
case ERROR_MORE_DATA:
|
|
*pdwDataLen = (DWORD)MAX_PATH + 1;
|
|
|
|
case ERROR_SUCCESS:
|
|
pKeyContainer->dwEnumContainersCtr++;
|
|
RegCloseKey(hKey);
|
|
return TRUE;
|
|
|
|
case ERROR_NO_MORE_ITEMS:
|
|
default:
|
|
SetLastError(ERROR_NO_MORE_ITEMS);
|
|
RegCloseKey(hKey);
|
|
return FALSE;
|
|
}
|
|
|
|
case PP_ENUMALGS:
|
|
case PP_ENUMALGS_EX:
|
|
if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) ||
|
|
(!aProvEnumAlgsEx[pKeyContainer->dwPersonality]
|
|
[pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) &&
|
|
((dwFlags & CRYPT_FIRST) != CRYPT_FIRST))
|
|
{
|
|
SetLastError(ERROR_NO_MORE_ITEMS);
|
|
return FALSE;
|
|
}
|
|
|
|
if (dwParam == PP_ENUMALGS) {
|
|
if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS)))
|
|
pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ?
|
|
0 : pKeyContainer->dwEnumAlgsCtr+1;
|
|
|
|
provEnumalgs.aiAlgid = aProvEnumAlgsEx
|
|
[pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid;
|
|
provEnumalgs.dwBitLen = aProvEnumAlgsEx
|
|
[pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen;
|
|
provEnumalgs.dwNameLen = aProvEnumAlgsEx
|
|
[pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen;
|
|
memcpy(provEnumalgs.szName, aProvEnumAlgsEx
|
|
[pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName,
|
|
20*sizeof(CHAR));
|
|
|
|
return copy_param(pbData, pdwDataLen, (const BYTE*)&provEnumalgs,
|
|
sizeof(PROV_ENUMALGS));
|
|
} else {
|
|
if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX)))
|
|
pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ?
|
|
0 : pKeyContainer->dwEnumAlgsCtr+1;
|
|
|
|
return copy_param(pbData, pdwDataLen,
|
|
(const BYTE*)&aProvEnumAlgsEx
|
|
[pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr],
|
|
sizeof(PROV_ENUMALGS_EX));
|
|
}
|
|
|
|
case PP_CRYPT_COUNT_KEY_USE: /* Asked for by IE About dialog */
|
|
return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF));
|
|
|
|
case PP_KEYSET_SEC_DESCR:
|
|
{
|
|
SECURITY_DESCRIPTOR *sd;
|
|
DWORD err, len, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET);
|
|
|
|
if (!open_container_key(pKeyContainer->szName, flags, KEY_READ, &hKey))
|
|
{
|
|
SetLastError(NTE_BAD_KEYSET);
|
|
return FALSE;
|
|
}
|
|
|
|
err = GetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, NULL, NULL, NULL, NULL, (void **)&sd);
|
|
RegCloseKey(hKey);
|
|
if (err)
|
|
{
|
|
SetLastError(err);
|
|
return FALSE;
|
|
}
|
|
|
|
len = GetSecurityDescriptorLength(sd);
|
|
if (*pdwDataLen >= len) memcpy(pbData, sd, len);
|
|
else SetLastError(ERROR_INSUFFICIENT_BUFFER);
|
|
*pdwDataLen = len;
|
|
|
|
LocalFree(sd);
|
|
return TRUE;
|
|
}
|
|
|
|
default:
|
|
/* MSDN: Unknown parameter number in dwParam */
|
|
SetLastError(NTE_BAD_TYPE);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPDeriveKey (RSAENH.@)
|
|
*
|
|
* Derives a key from a hash value.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container for which a key is to be generated.
|
|
* Algid [I] Crypto algorithm identifier for the key to be generated.
|
|
* hBaseData [I] Hash from whose value the key will be derived.
|
|
* dwFlags [I] See Notes.
|
|
* phKey [O] The generated key.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*
|
|
* NOTES
|
|
* Defined flags:
|
|
* - CRYPT_EXPORTABLE: Key can be exported.
|
|
* - CRYPT_NO_SALT: No salt is used for 40 bit keys.
|
|
* - CRYPT_CREATE_SALT: Use remaining bits as salt value.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData,
|
|
DWORD dwFlags, HCRYPTKEY *phKey)
|
|
{
|
|
CRYPTKEY *pCryptKey, *pMasterKey;
|
|
CRYPTHASH *pCryptHash;
|
|
BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2];
|
|
DWORD dwLen;
|
|
|
|
TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08x phKey=%p)\n", hProv, Algid,
|
|
hBaseData, dwFlags, phKey);
|
|
|
|
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!lookup_handle(&handle_table, hBaseData, RSAENH_MAGIC_HASH,
|
|
(OBJECTHDR**)&pCryptHash))
|
|
{
|
|
SetLastError(NTE_BAD_HASH);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!phKey)
|
|
{
|
|
SetLastError(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
|
|
switch (GET_ALG_CLASS(Algid))
|
|
{
|
|
case ALG_CLASS_DATA_ENCRYPT:
|
|
{
|
|
int need_padding, copy_len;
|
|
*phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
|
|
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
|
|
|
|
/*
|
|
* We derive the key material from the hash.
|
|
* If the hash value is not large enough for the claimed key, we have to construct
|
|
* a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey.
|
|
*/
|
|
dwLen = RSAENH_MAX_HASH_SIZE;
|
|
RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0);
|
|
|
|
/*
|
|
* The usage of padding seems to vary from algorithm to algorithm.
|
|
* For now the only different case found was for AES with 128 bit key.
|
|
*/
|
|
switch(Algid)
|
|
{
|
|
case CALG_AES_128:
|
|
/* To reduce the chance of regressions we will only deviate
|
|
* from the old behavior for the tested hash lengths */
|
|
if (dwLen == 16 || dwLen == 20)
|
|
{
|
|
need_padding = 1;
|
|
break;
|
|
}
|
|
default:
|
|
need_padding = dwLen < pCryptKey->dwKeyLen;
|
|
}
|
|
|
|
copy_len = pCryptKey->dwKeyLen;
|
|
if (need_padding)
|
|
{
|
|
BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN];
|
|
BYTE old_hashval[RSAENH_MAX_HASH_SIZE];
|
|
DWORD i;
|
|
|
|
memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE);
|
|
|
|
for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) {
|
|
pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
|
|
pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
|
|
}
|
|
|
|
init_hash(pCryptHash);
|
|
update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN);
|
|
finalize_hash(pCryptHash);
|
|
memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
|
|
|
|
init_hash(pCryptHash);
|
|
update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN);
|
|
finalize_hash(pCryptHash);
|
|
memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue,
|
|
pCryptHash->dwHashSize);
|
|
|
|
memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE);
|
|
}
|
|
/*
|
|
* Padding was not required, we have more hash than needed.
|
|
* Do we need to use the remaining hash as salt?
|
|
*/
|
|
else if((dwFlags & CRYPT_CREATE_SALT) &&
|
|
(Algid == CALG_RC2 || Algid == CALG_RC4))
|
|
{
|
|
copy_len += pCryptKey->dwSaltLen;
|
|
}
|
|
|
|
memcpy(pCryptKey->abKeyValue, abHashValue,
|
|
RSAENH_MIN(copy_len, sizeof(pCryptKey->abKeyValue)));
|
|
break;
|
|
}
|
|
case ALG_CLASS_MSG_ENCRYPT:
|
|
if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
|
|
(OBJECTHDR**)&pMasterKey))
|
|
{
|
|
SetLastError(NTE_FAIL); /* FIXME error code */
|
|
return FALSE;
|
|
}
|
|
|
|
switch (Algid)
|
|
{
|
|
/* See RFC 2246, chapter 6.3 Key calculation */
|
|
case CALG_SCHANNEL_ENC_KEY:
|
|
if (!pMasterKey->siSChannelInfo.saEncAlg.Algid ||
|
|
!pMasterKey->siSChannelInfo.saEncAlg.cBits)
|
|
{
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
*phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid,
|
|
MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits),
|
|
&pCryptKey);
|
|
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
|
|
memcpy(pCryptKey->abKeyValue,
|
|
pCryptHash->abHashValue + (
|
|
2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
|
|
((dwFlags & CRYPT_SERVER) ?
|
|
(pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)),
|
|
pMasterKey->siSChannelInfo.saEncAlg.cBits / 8);
|
|
memcpy(pCryptKey->abInitVector,
|
|
pCryptHash->abHashValue + (
|
|
2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
|
|
2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) +
|
|
((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)),
|
|
pCryptKey->dwBlockLen);
|
|
break;
|
|
|
|
case CALG_SCHANNEL_MAC_KEY:
|
|
*phKey = new_key(hProv, Algid,
|
|
MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits),
|
|
&pCryptKey);
|
|
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
|
|
memcpy(pCryptKey->abKeyValue,
|
|
pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ?
|
|
pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0),
|
|
pMasterKey->siSChannelInfo.saMACAlg.cBits / 8);
|
|
break;
|
|
|
|
default:
|
|
SetLastError(NTE_BAD_ALGID);
|
|
return FALSE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
SetLastError(NTE_BAD_ALGID);
|
|
return FALSE;
|
|
}
|
|
|
|
setup_key(pCryptKey);
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPGetUserKey (RSAENH.@)
|
|
*
|
|
* Returns a handle to the user's private key-exchange- or signature-key.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] The key container from which a user key is requested.
|
|
* dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
|
|
* phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*
|
|
* NOTE
|
|
* A newly created key container does not contain private user key. Create them with CPGenKey.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey)
|
|
{
|
|
KEYCONTAINER *pKeyContainer;
|
|
|
|
TRACE("(hProv=%08lx, dwKeySpec=%08x, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey);
|
|
|
|
if (!(pKeyContainer = get_key_container(hProv)))
|
|
{
|
|
/* MSDN: hProv not containing valid context handle */
|
|
return FALSE;
|
|
}
|
|
|
|
switch (dwKeySpec)
|
|
{
|
|
case AT_KEYEXCHANGE:
|
|
copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY,
|
|
phUserKey);
|
|
break;
|
|
|
|
case AT_SIGNATURE:
|
|
copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY,
|
|
phUserKey);
|
|
break;
|
|
|
|
default:
|
|
*phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
}
|
|
|
|
if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
|
|
{
|
|
/* MSDN: dwKeySpec parameter specifies nonexistent key */
|
|
SetLastError(NTE_NO_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPHashData (RSAENH.@)
|
|
*
|
|
* Updates a hash object with the given data.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container to which the hash object belongs.
|
|
* hHash [I] Hash object which is to be updated.
|
|
* pbData [I] Pointer to data with which the hash object is to be updated.
|
|
* dwDataLen [I] Length of the data.
|
|
* dwFlags [I] Currently none defined.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*
|
|
* NOTES
|
|
* The actual hash value is queried with CPGetHashParam, which will finalize
|
|
* the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbData,
|
|
DWORD dwDataLen, DWORD dwFlags)
|
|
{
|
|
CRYPTHASH *pCryptHash;
|
|
|
|
TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%d, dwFlags=%08x)\n",
|
|
hProv, hHash, pbData, dwDataLen, dwFlags);
|
|
|
|
if (dwFlags & ~CRYPT_USERDATA)
|
|
{
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
|
|
(OBJECTHDR**)&pCryptHash))
|
|
{
|
|
SetLastError(NTE_BAD_HASH);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5)
|
|
{
|
|
SetLastError(NTE_BAD_ALGID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING)
|
|
{
|
|
SetLastError(NTE_BAD_HASH_STATE);
|
|
return FALSE;
|
|
}
|
|
|
|
update_hash(pCryptHash, pbData, dwDataLen);
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPHashSessionKey (RSAENH.@)
|
|
*
|
|
* Updates a hash object with the binary representation of a symmetric key.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container to which the hash object belongs.
|
|
* hHash [I] Hash object which is to be updated.
|
|
* hKey [I] The symmetric key, whose binary value will be added to the hash.
|
|
* dwFlags [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey,
|
|
DWORD dwFlags)
|
|
{
|
|
BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp;
|
|
CRYPTKEY *pKey;
|
|
DWORD i;
|
|
|
|
TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08x)\n", hProv, hHash, hKey, dwFlags);
|
|
|
|
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) ||
|
|
(GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT))
|
|
{
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
if (dwFlags & ~CRYPT_LITTLE_ENDIAN) {
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen);
|
|
if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) {
|
|
for (i=0; i<pKey->dwKeyLen/2; i++) {
|
|
bTemp = abKeyValue[i];
|
|
abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1];
|
|
abKeyValue[pKey->dwKeyLen-i-1] = bTemp;
|
|
}
|
|
}
|
|
|
|
return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPReleaseContext (RSAENH.@)
|
|
*
|
|
* Release a key container.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] Key container to be released.
|
|
* dwFlags [I] Currently none defined.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*/
|
|
BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags)
|
|
{
|
|
TRACE("(hProv=%08lx, dwFlags=%08x)\n", hProv, dwFlags);
|
|
|
|
if (!release_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
/* MSDN: hProv not containing valid context handle */
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (dwFlags) {
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPSetHashParam (RSAENH.@)
|
|
*
|
|
* Set a parameter of a hash object
|
|
*
|
|
* PARAMS
|
|
* hProv [I] The key container to which the key belongs.
|
|
* hHash [I] The hash object for which a parameter is to be set.
|
|
* dwParam [I] Parameter type. See Notes.
|
|
* pbData [I] Pointer to the parameter value.
|
|
* dwFlags [I] Currently none defined.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE.
|
|
* Failure: FALSE.
|
|
*
|
|
* NOTES
|
|
* Currently only the HP_HMAC_INFO dwParam type is defined.
|
|
* The HMAC_INFO struct will be deep copied into the hash object.
|
|
* See Internet RFC 2104 for details on the HMAC algorithm.
|
|
*/
|
|
BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam,
|
|
BYTE *pbData, DWORD dwFlags)
|
|
{
|
|
CRYPTHASH *pCryptHash;
|
|
CRYPTKEY *pCryptKey;
|
|
DWORD i;
|
|
|
|
TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n",
|
|
hProv, hHash, dwParam, pbData, dwFlags);
|
|
|
|
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (dwFlags) {
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
|
|
(OBJECTHDR**)&pCryptHash))
|
|
{
|
|
SetLastError(NTE_BAD_HASH);
|
|
return FALSE;
|
|
}
|
|
|
|
switch (dwParam) {
|
|
case HP_HMAC_INFO:
|
|
free_hmac_info(pCryptHash->pHMACInfo);
|
|
if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE;
|
|
|
|
if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
|
|
(OBJECTHDR**)&pCryptKey))
|
|
{
|
|
SetLastError(NTE_FAIL); /* FIXME: correct error code? */
|
|
return FALSE;
|
|
}
|
|
|
|
if (pCryptKey->aiAlgid == CALG_HMAC && !pCryptKey->dwKeyLen) {
|
|
HCRYPTHASH hKeyHash;
|
|
DWORD keyLen;
|
|
|
|
if (!RSAENH_CPCreateHash(hProv, ((PHMAC_INFO)pbData)->HashAlgid, 0, 0,
|
|
&hKeyHash))
|
|
return FALSE;
|
|
if (!RSAENH_CPHashData(hProv, hKeyHash, pCryptKey->blobHmacKey.pbData,
|
|
pCryptKey->blobHmacKey.cbData, 0))
|
|
{
|
|
RSAENH_CPDestroyHash(hProv, hKeyHash);
|
|
return FALSE;
|
|
}
|
|
keyLen = sizeof(pCryptKey->abKeyValue);
|
|
if (!RSAENH_CPGetHashParam(hProv, hKeyHash, HP_HASHVAL, pCryptKey->abKeyValue,
|
|
&keyLen, 0))
|
|
{
|
|
RSAENH_CPDestroyHash(hProv, hKeyHash);
|
|
return FALSE;
|
|
}
|
|
pCryptKey->dwKeyLen = keyLen;
|
|
RSAENH_CPDestroyHash(hProv, hKeyHash);
|
|
}
|
|
for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) {
|
|
pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i];
|
|
}
|
|
for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) {
|
|
pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i];
|
|
}
|
|
|
|
init_hash(pCryptHash);
|
|
return TRUE;
|
|
|
|
case HP_HASHVAL:
|
|
memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize);
|
|
pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
|
|
return TRUE;
|
|
|
|
case HP_TLS1PRF_SEED:
|
|
return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData);
|
|
|
|
case HP_TLS1PRF_LABEL:
|
|
return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData);
|
|
|
|
default:
|
|
SetLastError(NTE_BAD_TYPE);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPSetProvParam (RSAENH.@)
|
|
*/
|
|
BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags)
|
|
{
|
|
KEYCONTAINER *pKeyContainer;
|
|
HKEY hKey;
|
|
|
|
TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, dwParam, pbData, dwFlags);
|
|
|
|
if (!(pKeyContainer = get_key_container(hProv)))
|
|
return FALSE;
|
|
|
|
switch (dwParam)
|
|
{
|
|
case PP_KEYSET_SEC_DESCR:
|
|
{
|
|
SECURITY_DESCRIPTOR *sd = (SECURITY_DESCRIPTOR *)pbData;
|
|
DWORD err, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET);
|
|
BOOL def, present;
|
|
REGSAM access = WRITE_DAC | WRITE_OWNER | ACCESS_SYSTEM_SECURITY;
|
|
PSID owner = NULL, group = NULL;
|
|
PACL dacl = NULL, sacl = NULL;
|
|
|
|
if (!open_container_key(pKeyContainer->szName, flags, access, &hKey))
|
|
{
|
|
SetLastError(NTE_BAD_KEYSET);
|
|
return FALSE;
|
|
}
|
|
|
|
if ((dwFlags & OWNER_SECURITY_INFORMATION && !GetSecurityDescriptorOwner(sd, &owner, &def)) ||
|
|
(dwFlags & GROUP_SECURITY_INFORMATION && !GetSecurityDescriptorGroup(sd, &group, &def)) ||
|
|
(dwFlags & DACL_SECURITY_INFORMATION && !GetSecurityDescriptorDacl(sd, &present, &dacl, &def)) ||
|
|
(dwFlags & SACL_SECURITY_INFORMATION && !GetSecurityDescriptorSacl(sd, &present, &sacl, &def)))
|
|
{
|
|
RegCloseKey(hKey);
|
|
return FALSE;
|
|
}
|
|
|
|
err = SetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, owner, group, dacl, sacl);
|
|
RegCloseKey(hKey);
|
|
if (err)
|
|
{
|
|
SetLastError(err);
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
default:
|
|
FIXME("unimplemented parameter %08x\n", dwParam);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPSignHash (RSAENH.@)
|
|
*
|
|
* Sign a hash object
|
|
*
|
|
* PARAMS
|
|
* hProv [I] The key container, to which the hash object belongs.
|
|
* hHash [I] The hash object to be signed.
|
|
* dwKeySpec [I] AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature.
|
|
* sDescription [I] Should be NULL for security reasons.
|
|
* dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
|
|
* pbSignature [O] Buffer, to which the signature will be stored. May be NULL to query SigLen.
|
|
* pdwSigLen [I/O] Size of the buffer (in), Length of the signature (out)
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*/
|
|
BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec,
|
|
LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature,
|
|
DWORD *pdwSigLen)
|
|
{
|
|
HCRYPTKEY hCryptKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
|
|
CRYPTKEY *pCryptKey;
|
|
DWORD dwHashLen;
|
|
BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
|
|
ALG_ID aiAlgid;
|
|
BOOL ret = FALSE;
|
|
|
|
TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08x, sDescription=%s, dwFlags=%08x, "
|
|
"pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription),
|
|
dwFlags, pbSignature, pdwSigLen);
|
|
|
|
if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE;
|
|
|
|
if (!lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
|
|
(OBJECTHDR**)&pCryptKey))
|
|
{
|
|
SetLastError(NTE_NO_KEY);
|
|
goto out;
|
|
}
|
|
|
|
if (!pbSignature) {
|
|
*pdwSigLen = pCryptKey->dwKeyLen;
|
|
ret = TRUE;
|
|
goto out;
|
|
}
|
|
if (pCryptKey->dwKeyLen > *pdwSigLen)
|
|
{
|
|
SetLastError(ERROR_MORE_DATA);
|
|
*pdwSigLen = pCryptKey->dwKeyLen;
|
|
goto out;
|
|
}
|
|
*pdwSigLen = pCryptKey->dwKeyLen;
|
|
|
|
if (sDescription) {
|
|
if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription,
|
|
(DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
|
|
{
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
dwHashLen = sizeof(DWORD);
|
|
if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) goto out;
|
|
|
|
dwHashLen = RSAENH_MAX_HASH_SIZE;
|
|
if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) goto out;
|
|
|
|
|
|
if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
|
|
goto out;
|
|
}
|
|
|
|
ret = encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT);
|
|
out:
|
|
RSAENH_CPDestroyKey(hProv, hCryptKey);
|
|
return ret;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CPVerifySignature (RSAENH.@)
|
|
*
|
|
* Verify the signature of a hash object.
|
|
*
|
|
* PARAMS
|
|
* hProv [I] The key container, to which the hash belongs.
|
|
* hHash [I] The hash for which the signature is verified.
|
|
* pbSignature [I] The binary signature.
|
|
* dwSigLen [I] Length of the signature BLOB.
|
|
* hPubKey [I] Public key used to verify the signature.
|
|
* sDescription [I] Should be NULL for security reasons.
|
|
* dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE (Signature is valid)
|
|
* Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid)
|
|
*/
|
|
BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbSignature,
|
|
DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription,
|
|
DWORD dwFlags)
|
|
{
|
|
BYTE *pbConstructed = NULL, *pbDecrypted = NULL;
|
|
CRYPTKEY *pCryptKey;
|
|
DWORD dwHashLen;
|
|
ALG_ID aiAlgid;
|
|
BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
|
|
BOOL res = FALSE;
|
|
|
|
TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%d, hPubKey=%08lx, sDescription=%s, "
|
|
"dwFlags=%08x)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription),
|
|
dwFlags);
|
|
|
|
if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
|
|
SetLastError(NTE_BAD_FLAGS);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
|
|
{
|
|
SetLastError(NTE_BAD_UID);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY,
|
|
(OBJECTHDR**)&pCryptKey))
|
|
{
|
|
SetLastError(NTE_BAD_KEY);
|
|
return FALSE;
|
|
}
|
|
|
|
/* in Microsoft implementation, the signature length is checked before
|
|
* the signature pointer.
|
|
*/
|
|
if (dwSigLen != pCryptKey->dwKeyLen)
|
|
{
|
|
SetLastError(NTE_BAD_SIGNATURE);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!hHash || !pbSignature)
|
|
{
|
|
SetLastError(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
|
|
if (sDescription) {
|
|
if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription,
|
|
(DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
|
|
{
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
dwHashLen = sizeof(DWORD);
|
|
if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
|
|
|
|
dwHashLen = RSAENH_MAX_HASH_SIZE;
|
|
if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
|
|
|
|
pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
|
|
if (!pbConstructed) {
|
|
SetLastError(NTE_NO_MEMORY);
|
|
goto cleanup;
|
|
}
|
|
|
|
pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
|
|
if (!pbDecrypted) {
|
|
SetLastError(NTE_NO_MEMORY);
|
|
goto cleanup;
|
|
}
|
|
|
|
if (!encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbSignature, pbDecrypted,
|
|
RSAENH_DECRYPT))
|
|
{
|
|
goto cleanup;
|
|
}
|
|
|
|
if (build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags) &&
|
|
!memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
|
|
res = TRUE;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (!(dwFlags & CRYPT_NOHASHOID) &&
|
|
build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags|CRYPT_NOHASHOID) &&
|
|
!memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
|
|
res = TRUE;
|
|
goto cleanup;
|
|
}
|
|
|
|
SetLastError(NTE_BAD_SIGNATURE);
|
|
|
|
cleanup:
|
|
HeapFree(GetProcessHeap(), 0, pbConstructed);
|
|
HeapFree(GetProcessHeap(), 0, pbDecrypted);
|
|
return res;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* DllRegisterServer (RSAENH.@)
|
|
*/
|
|
HRESULT WINAPI DllRegisterServer(void)
|
|
{
|
|
return __wine_register_resources( instance );
|
|
}
|
|
|
|
/******************************************************************************
|
|
* DllUnregisterServer (RSAENH.@)
|
|
*/
|
|
HRESULT WINAPI DllUnregisterServer(void)
|
|
{
|
|
return __wine_unregister_resources( instance );
|
|
}
|