reactos/rosapps/sysutils/ctm/ctm.c
Hartmut Birr acb1dd91c6 - Made cmt unicode compatible.
- Enabled time counting.
- Improved the waiting of key input events.

svn path=/trunk/; revision=11150
2004-10-02 10:26:48 +00:00

625 lines
17 KiB
C

/* Console Task Manager
ctm.c - main program file
Written by: Aleksey Bragin (aleksey@studiocerebral.com)
Most of the code dealing with getting system parameters is taken from
ReactOS Task Manager written by Brian Palmer (brianp@reactos.org)
History:
09 April 2003 - v0.1, fixed bugs, added features, ported to mingw
20 March 2003 - v0.03, works good under ReactOS, and allows process
killing
18 March 2003 - Initial version 0.01, doesn't work under RectOS
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
//#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows //headers
#include <windows.h>
#include <stdlib.h>
#include <malloc.h>
#include <memory.h>
#include <tchar.h>
#include <process.h>
#include <stdio.h>
#include <ddk/ntddk.h>
#include <epsapi.h>
#include <ntos/zwtypes.h>
#include "ctm.h"
#define MAX_PROC 17
#define TIMES
HANDLE hStdin;
HANDLE hStdout;
DWORD inConMode;
DWORD outConMode;
//PROCNTQSI NtQuerySystemInformation= NULL;
const int ProcPerScreen = 17; // 17 processess are displayed on one page
ULONG ProcessCountOld = 0;
ULONG ProcessCount = 0;
double dbIdleTime;
double dbKernelTime;
double dbSystemTime;
LARGE_INTEGER liOldIdleTime = {{0,0}};
double OldKernelTime = 0;
LARGE_INTEGER liOldSystemTime = {{0,0}};
PPERFDATA pPerfDataOld = NULL; // Older perf data (saved to establish delta values)
PPERFDATA pPerfData = NULL; // Most recent copy of perf data
int selection=0;
int scrolled=0; // offset from which process start showing
#define NEW_CONSOLE
void *PsaiMalloc(SIZE_T size) { return malloc(size); }
void *PsaiRealloc(void *ptr, SIZE_T size) { return realloc(ptr, size); }
void PsaiFree(void *ptr) { free(ptr); }
// Prototypes
unsigned int GetKeyPressed();
void GetInputOutputHandles()
{
#ifdef NEW_CONSOLE
HANDLE console = CreateConsoleScreenBuffer(GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
0, CONSOLE_TEXTMODE_BUFFER, 0);
if (SetConsoleActiveScreenBuffer(console) == FALSE)
{
hStdin = GetStdHandle(STD_INPUT_HANDLE);
hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
}
else
{
hStdin = GetStdHandle(STD_INPUT_HANDLE);//console;
hStdout = console;
}
#else
hStdin = GetStdHandle(STD_INPUT_HANDLE);
hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
#endif
}
void RestoreConsole()
{
SetConsoleMode(hStdin, inConMode);
SetConsoleMode(hStdout, outConMode);
#ifdef NEW_CONSOLE
SetConsoleActiveScreenBuffer(GetStdHandle(STD_OUTPUT_HANDLE));
#endif
}
void DisplayScreen()
{
COORD pos;
TCHAR lpStr[80];
int posStr;
DWORD numChars;
int lines;
int idx;
static int first = 0;
if (first == 0)
{
// Header
pos.X = 2; pos.Y = 2;
_tcscpy(lpStr, _T("Console TaskManager v0.1 by Aleksey Bragin <aleksey@studiocerebral.com>"));
WriteConsoleOutputCharacter(hStdout, lpStr, _tcslen(lpStr), pos, &numChars);
pos.X = 2; pos.Y = 3;
_tcscpy(lpStr, _T("+-------------------------------+-------+-----+-----------+-------------+"));
WriteConsoleOutputCharacter(hStdout, lpStr, _tcslen(lpStr), pos, &numChars);
pos.X = 2; pos.Y = 4;
_tcscpy(lpStr, _T("| Image name | PID | CPU | Mem Usage | Page Faults |"));
WriteConsoleOutputCharacter(hStdout, lpStr, _tcslen(lpStr), pos, &numChars);
pos.X = 2; pos.Y = 5;
_tcscpy(lpStr, _T("+-------------------------------+-------+-----+-----------+-------------+"));
WriteConsoleOutputCharacter(hStdout, lpStr, _tcslen(lpStr), pos, &numChars);
// Footer
pos.X = 2; pos.Y = 23;
_tcscpy(lpStr, _T("+-------------------------------+-------+-----+-----------+-------------+"));
WriteConsoleOutputCharacter(hStdout, lpStr, _tcslen(lpStr), pos, &numChars);
// Menu
pos.X = 2; pos.Y = 24;
_tcscpy(lpStr, _T("Press: q - quit, k - kill process "));
WriteConsoleOutputCharacter(hStdout, lpStr, _tcslen(lpStr), pos, &numChars);
first = 1;
}
// Processess
lines = ProcessCount;
if (lines > MAX_PROC)
lines = MAX_PROC;
for (idx=0; idx<MAX_PROC; idx++)
{
int len, i;
TCHAR imgName[MAX_PATH];
TCHAR lpPid[8];
TCHAR lpCpu[6];
TCHAR lpMemUsg[12];
TCHAR lpPageFaults[15];
WORD wColor;
// data
// image name
if (idx < lines && scrolled + idx < ProcessCount)
{
#ifdef _UNICODE
len = wcslen(pPerfData[scrolled+idx].ImageName);
#else
WideCharToMultiByte(CP_ACP, 0, pPerfData[scrolled+idx].ImageName, -1,
imgName, MAX_PATH, NULL, NULL);
len = strlen(imgName);
#endif
if (len > 31)
{
len = 31;
}
#ifdef _UNICODE
wcsncpy(&lpStr[2], pPerfData[scrolled+idx].ImageName, len);
#else
strncpy(&lpStr[2], imgName, len);
#endif
}
else
{
len = 0;
}
if (len < 31)
{
_tcsncpy(&lpStr[2 + len], _T(" "), 31 - len);
}
// PID
if (idx < lines && scrolled + idx < ProcessCount)
{
_stprintf(lpPid, _T("%6ld "), pPerfData[scrolled+idx].ProcessId);
_tcsncpy(&lpStr[34], lpPid, 7);
}
else
{
_tcsncpy(&lpStr[34], _T(" "), 7);
}
// CPU
if (idx < lines && scrolled + idx < ProcessCount)
{
_stprintf(lpCpu, _T("%3d%% "), pPerfData[scrolled+idx].CPUUsage);
_tcsncpy(&lpStr[42], lpCpu, 5);
}
else
{
_tcsncpy(&lpStr[42], _T(" "), 5);
}
// Mem usage
if (idx < lines && scrolled + idx < ProcessCount)
{
_stprintf(lpMemUsg, _T("%6ld "), pPerfData[scrolled+idx].WorkingSetSizeBytes / 1024);
_tcsncpy(&lpStr[48], lpMemUsg, 11);
}
else
{
_tcsncpy(&lpStr[48], _T(" "), 11);
}
// Page Fault
if (idx < lines && scrolled + idx < ProcessCount)
{
_stprintf(lpPageFaults, _T("%12ld "), pPerfData[scrolled+idx].PageFaultCount);
_tcsncpy(&lpStr[60], lpPageFaults, 13);
}
else
{
_tcsncpy(&lpStr[60], _T(" "), 13);
}
// columns
lpStr[0] = _T(' ');
lpStr[1] = _T('|');
lpStr[33] = _T('|');
lpStr[41] = _T('|');
lpStr[47] = _T('|');
lpStr[59] = _T('|');
lpStr[73] = _T('|');
pos.X = 1; pos.Y = 6+idx;
WriteConsoleOutputCharacter(hStdout, lpStr, 74, pos, &numChars);
// Attributes now...
pos.X = 3; pos.Y = 6+idx;
if (selection == idx)
{
wColor = BACKGROUND_GREEN |
FOREGROUND_RED |
FOREGROUND_GREEN |
FOREGROUND_BLUE;
}
else
{
wColor = BACKGROUND_BLUE |
FOREGROUND_RED |
FOREGROUND_GREEN |
FOREGROUND_BLUE;
}
FillConsoleOutputAttribute(
hStdout, // screen buffer handle
wColor, // color to fill with
31, // number of cells to fill
pos, // first cell to write to
&numChars); // actual number written
}
return;
}
// returns TRUE if exiting
int ProcessKeys(int numEvents)
{
if ((ProcessCount-scrolled < 17) && (ProcessCount > 17))
scrolled = ProcessCount-17;
TCHAR key = GetKeyPressed(numEvents);
if (key == VK_Q)
return TRUE;
else if (key == VK_K)
{
// user wants to kill some process, get his acknowledgement
DWORD pId;
COORD pos;
TCHAR lpStr[100];
pos.X = 2; pos.Y = 24;
_tcscpy(lpStr, _T("Are you sure you want to kill this process? (y/n)"));
WriteConsoleOutputCharacter(hStdout, lpStr, _tcslen(lpStr), pos, &pId);
do {
GetNumberOfConsoleInputEvents(hStdin, &pId);
key = GetKeyPressed(pId);
} while (key == 0);
if (key == VK_Y)
{
HANDLE hProcess;
pId = pPerfData[selection+scrolled].ProcessId;
hProcess = OpenProcess(PROCESS_TERMINATE, FALSE, pId);
if (hProcess)
{
if (!TerminateProcess(hProcess, 0))
{
_tcscpy(lpStr, _T("Unable to terminate this process... "));
WriteConsoleOutputCharacter(hStdout, lpStr, _tcslen(lpStr), pos, &pId);
Sleep(1000);
}
CloseHandle(hProcess);
}
else
{
_stprintf(lpStr, _T("Unable to terminate process %3d (unable to OpenProcess) "), pId);
WriteConsoleOutputCharacter(hStdout, lpStr, _tcslen(lpStr), pos, &pId);
Sleep(1000);
}
}
}
else if (key == VK_UP)
{
if (selection > 0)
selection--;
else if ((selection == 0) && (scrolled > 0))
scrolled--;
}
else if (key == VK_DOWN)
{
if ((selection < MAX_PROC-1) && (selection < ProcessCount-1))
selection++;
else if ((selection == MAX_PROC-1) && (selection+scrolled < ProcessCount-1))
scrolled++;
}
return FALSE;
}
void PerfInit()
{
// NtQuerySystemInformation = //(PROCNTQSI)GetProcAddress(GetModuleHandle(_T("ntdll.dll")), //"NtQuerySystemInformation");
}
void PerfDataRefresh()
{
LONG status;
ULONG ulSize;
LPBYTE pBuffer;
ULONG BufferSize;
ULONG Idx, Idx2;
HANDLE hProcess;
HANDLE hProcessToken;
PSYSTEM_PROCESSES pSPI;
PPERFDATA pPDOld;
TCHAR szTemp[MAX_PATH];
DWORD dwSize;
double CurrentKernelTime;
PSYSTEM_PROCESSORTIME_INFO SysProcessorTimeInfo;
SYSTEM_PERFORMANCE_INFORMATION SysPerfInfo;
SYSTEM_TIMEOFDAY_INFORMATION SysTimeInfo;
#ifdef TIMES
// Get new system time
status = NtQuerySystemInformation(SystemTimeInformation, &SysTimeInfo, sizeof(SysTimeInfo), 0);
if (status != NO_ERROR)
return;
// Get new CPU's idle time
status = NtQuerySystemInformation(SystemPerformanceInformation, &SysPerfInfo, sizeof(SysPerfInfo), NULL);
if (status != NO_ERROR)
return;
#endif
// Get processor information
SysProcessorTimeInfo = (PSYSTEM_PROCESSORTIME_INFO)malloc(sizeof(SYSTEM_PROCESSORTIME_INFO) * 1/*SystemBasicInfo.bKeNumberProcessors*/);
status = NtQuerySystemInformation(SystemProcessorTimes, SysProcessorTimeInfo, sizeof(SYSTEM_PROCESSORTIME_INFO) * 1/*SystemBasicInfo.bKeNumberProcessors*/, &ulSize);
// Get process information
PsaCaptureProcessesAndThreads((PSYSTEM_PROCESSES *)&pBuffer);
#ifdef TIMES
for (CurrentKernelTime=0, Idx=0; Idx<1/*SystemBasicInfo.bKeNumberProcessors*/; Idx++) {
CurrentKernelTime += Li2Double(SysProcessorTimeInfo[Idx].TotalProcessorTime);
CurrentKernelTime += Li2Double(SysProcessorTimeInfo[Idx].TotalDPCTime);
CurrentKernelTime += Li2Double(SysProcessorTimeInfo[Idx].TotalInterruptTime);
}
// If it's a first call - skip idle time calcs
if (liOldIdleTime.QuadPart != 0) {
// CurrentValue = NewValue - OldValue
dbIdleTime = Li2Double(SysPerfInfo.IdleTime) - Li2Double(liOldIdleTime);
dbKernelTime = CurrentKernelTime - OldKernelTime;
dbSystemTime = Li2Double(SysTimeInfo.CurrentTime) - Li2Double(liOldSystemTime);
// CurrentCpuIdle = IdleTime / SystemTime
dbIdleTime = dbIdleTime / dbSystemTime;
dbKernelTime = dbKernelTime / dbSystemTime;
// CurrentCpuUsage% = 100 - (CurrentCpuIdle * 100) / NumberOfProcessors
dbIdleTime = 100.0 - dbIdleTime * 100.0; /* / (double)SystemBasicInfo.bKeNumberProcessors;// + 0.5; */
dbKernelTime = 100.0 - dbKernelTime * 100.0; /* / (double)SystemBasicInfo.bKeNumberProcessors;// + 0.5; */
}
// Store new CPU's idle and system time
liOldIdleTime = SysPerfInfo.IdleTime;
liOldSystemTime = SysTimeInfo.CurrentTime;
OldKernelTime = CurrentKernelTime;
#endif
// Determine the process count
// We loop through the data we got from PsaCaptureProcessesAndThreads
// and count how many structures there are (until PsaWalkNextProcess
// returns NULL)
ProcessCountOld = ProcessCount;
ProcessCount = 0;
pSPI = PsaWalkFirstProcess((PSYSTEM_PROCESSES)pBuffer);
while (pSPI) {
ProcessCount++;
pSPI = PsaWalkNextProcess(pSPI);
}
// Now alloc a new PERFDATA array and fill in the data
if (pPerfDataOld) {
//delete[] pPerfDataOld;
free(pPerfDataOld);
}
pPerfDataOld = pPerfData;
//pPerfData = new PERFDATA[ProcessCount];
pPerfData = (PPERFDATA)malloc(sizeof(PERFDATA) * ProcessCount);
pSPI = PsaWalkFirstProcess((PSYSTEM_PROCESSES)pBuffer);
for (Idx=0; Idx<ProcessCount; Idx++) {
// Get the old perf data for this process (if any)
// so that we can establish delta values
pPDOld = NULL;
for (Idx2=0; Idx2<ProcessCountOld; Idx2++) {
if (pPerfDataOld[Idx2].ProcessId == pSPI->ProcessId) {
pPDOld = &pPerfDataOld[Idx2];
break;
}
}
// Clear out process perf data structure
memset(&pPerfData[Idx], 0, sizeof(PERFDATA));
if (pSPI->ProcessName.Buffer) {
wcsncpy(pPerfData[Idx].ImageName, pSPI->ProcessName.Buffer, pSPI->ProcessName.Length / sizeof(WCHAR));
pPerfData[Idx].ImageName[pSPI->ProcessName.Length / sizeof(WCHAR)] = 0;
}
else
wcscpy(pPerfData[Idx].ImageName, L"System Idle Process");
pPerfData[Idx].ProcessId = pSPI->ProcessId;
if (pPDOld) {
#ifdef TIMES
double CurTime = Li2Double(pSPI->KernelTime) + Li2Double(pSPI->UserTime);
double OldTime = Li2Double(pPDOld->KernelTime) + Li2Double(pPDOld->UserTime);
double CpuTime = (CurTime - OldTime) / dbSystemTime;
CpuTime = CpuTime * 100.0; /* / (double)SystemBasicInfo.bKeNumberProcessors;// + 0.5;*/
pPerfData[Idx].CPUUsage = (ULONG)CpuTime;
#else
pPerfData[Idx].CPUUsage = 0;
#endif
}
pPerfData[Idx].CPUTime.QuadPart = pSPI->UserTime.QuadPart + pSPI->KernelTime.QuadPart;
pPerfData[Idx].WorkingSetSizeBytes = pSPI->VmCounters.WorkingSetSize;
pPerfData[Idx].PeakWorkingSetSizeBytes = pSPI->VmCounters.PeakWorkingSetSize;
if (pPDOld)
pPerfData[Idx].WorkingSetSizeDelta = labs((LONG)pSPI->VmCounters.WorkingSetSize - (LONG)pPDOld->WorkingSetSizeBytes);
else
pPerfData[Idx].WorkingSetSizeDelta = 0;
pPerfData[Idx].PageFaultCount = pSPI->VmCounters.PageFaultCount;
if (pPDOld)
pPerfData[Idx].PageFaultCountDelta = labs((LONG)pSPI->VmCounters.PageFaultCount - (LONG)pPDOld->PageFaultCount);
else
pPerfData[Idx].PageFaultCountDelta = 0;
pPerfData[Idx].VirtualMemorySizeBytes = pSPI->VmCounters.VirtualSize;
pPerfData[Idx].PagedPoolUsagePages = pSPI->VmCounters.QuotaPagedPoolUsage;
pPerfData[Idx].NonPagedPoolUsagePages = pSPI->VmCounters.QuotaNonPagedPoolUsage;
pPerfData[Idx].BasePriority = pSPI->BasePriority;
pPerfData[Idx].HandleCount = pSPI->HandleCount;
pPerfData[Idx].ThreadCount = pSPI->ThreadCount;
//pPerfData[Idx].SessionId = pSPI->SessionId;
#ifdef EXTRA_INFO
hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pSPI->ProcessId);
if (hProcess) {
if (OpenProcessToken(hProcess, TOKEN_QUERY|TOKEN_DUPLICATE|TOKEN_IMPERSONATE, &hProcessToken)) {
ImpersonateLoggedOnUser(hProcessToken);
memset(szTemp, 0, sizeof(TCHAR[MAX_PATH]));
dwSize = MAX_PATH;
GetUserName(szTemp, &dwSize);
#ifndef UNICODE
MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, szTemp, -1, pPerfData[Idx].UserName, MAX_PATH);
/*
int MultiByteToWideChar(
UINT CodePage, // code page
DWORD dwFlags, // character-type options
LPCSTR lpMultiByteStr, // string to map
int cbMultiByte, // number of bytes in string
LPWSTR lpWideCharStr, // wide-character buffer
int cchWideChar // size of buffer
);
*/
#endif
RevertToSelf();
CloseHandle(hProcessToken);
}
CloseHandle(hProcess);
}
#endif
#ifdef TIMES
pPerfData[Idx].UserTime.QuadPart = pSPI->UserTime.QuadPart;
pPerfData[Idx].KernelTime.QuadPart = pSPI->KernelTime.QuadPart;
#endif
pSPI = PsaWalkNextProcess(pSPI);
}
//delete[] pBuffer;
PsaFreeCapture(pBuffer);
free(SysProcessorTimeInfo);
}
// Code partly taken from slw32tty.c from mc/slang
unsigned int GetKeyPressed(int events)
{
long key;
DWORD bytesRead;
INPUT_RECORD record;
int i;
for (i=0; i<events; i++)
{
if (!ReadConsoleInput(hStdin, &record, 0, &bytesRead)) {
return 0;
}
if (!ReadConsoleInput(hStdin, &record, 1, &bytesRead)) {
return 0;
}
if (record.EventType == KEY_EVENT && record.Event.KeyEvent.bKeyDown)
return record.Event.KeyEvent.wVirtualKeyCode;//.uChar.AsciiChar;
}
return 0;
}
int main(int *argc, char **argv)
{
GetInputOutputHandles();
if (hStdin == INVALID_HANDLE_VALUE || hStdout == INVALID_HANDLE_VALUE)
{
printf("ctm: can't use console.");
return -1;
}
if (GetConsoleMode(hStdin, &inConMode) == 0)
{
printf("ctm: can't GetConsoleMode() for input console.");
return -1;
}
if (GetConsoleMode(hStdout, &outConMode) == 0)
{
printf("ctm: can't GetConsoleMode() for output console.");
return -1;
}
SetConsoleMode(hStdin, 0); //FIXME: Should check for error!
SetConsoleMode(hStdout, 0); //FIXME: Should check for error!
PerfInit();
while (1)
{
DWORD numEvents;
PerfDataRefresh();
DisplayScreen();
//WriteConsole(hStdin, " ", 1, &numEvents, NULL); // TODO: Make another way (this is ugly, I know)
#if 1
/* WaitForSingleObject for console handles is not implemented in ROS */
WaitForSingleObject(hStdin, 1000);
#endif
GetNumberOfConsoleInputEvents(hStdin, &numEvents);
if (numEvents > 0)
{
if (ProcessKeys(numEvents) == TRUE)
break;
}
#if 0
else
{
/* Should be removed, if WaitForSingleObject is implemented for console handles */
Sleep(40); // TODO: Should be done more efficient (might be another thread handling input/etc)*/
}
#endif
}
RestoreConsole();
return 0;
}