mirror of
https://github.com/reactos/reactos.git
synced 2025-01-10 00:00:20 +00:00
c424146e2c
svn path=/branches/cmake-bringup/; revision=48236
397 lines
14 KiB
C
397 lines
14 KiB
C
/*
|
|
* PROJECT: ReactOS Runtime Library
|
|
* LICENSE: BSD - See COPYING.ARM in the top level directory
|
|
* FILE: lib/rtl/avlsupp.c
|
|
* PURPOSE: AVL Tree Internal Support Routines/Main Algorithms
|
|
* PROGRAMMERS: ReactOS Portable Systems Group
|
|
*/
|
|
|
|
/* INCLUDES ******************************************************************/
|
|
|
|
/* Internal header for table entries */
|
|
typedef struct _TABLE_ENTRY_HEADER
|
|
{
|
|
RTL_BALANCED_LINKS BalancedLinks;
|
|
LIST_ENTRY ListEntry;
|
|
LONGLONG UserData;
|
|
} TABLE_ENTRY_HEADER, *PTABLE_ENTRY_HEADER;
|
|
|
|
typedef enum _RTL_AVL_BALANCE_FACTOR
|
|
{
|
|
RtlUnbalancedAvlTree = -2,
|
|
RtlLeftHeavyAvlTree,
|
|
RtlBalancedAvlTree,
|
|
RtlRightHeavyAvlTree,
|
|
} RTL_AVL_BALANCE_FACTOR;
|
|
|
|
C_ASSERT(RtlBalancedAvlTree == 0);
|
|
|
|
/* FUNCTIONS ******************************************************************/
|
|
|
|
TABLE_SEARCH_RESULT
|
|
FORCEINLINE
|
|
RtlpFindAvlTableNodeOrParent(IN PRTL_AVL_TABLE Table,
|
|
IN PVOID Buffer,
|
|
OUT PRTL_BALANCED_LINKS *NodeOrParent)
|
|
{
|
|
PRTL_BALANCED_LINKS CurrentNode, ChildNode;
|
|
RTL_GENERIC_COMPARE_RESULTS Result;
|
|
|
|
/* Quick check to see if the table is empty */
|
|
if (!Table->NumberGenericTableElements) return TableEmptyTree;
|
|
|
|
/* Set the current node */
|
|
CurrentNode = RtlRightChildAvl(&Table->BalancedRoot);
|
|
|
|
/* Start compare loop */
|
|
while (TRUE)
|
|
{
|
|
/* Compare which side is greater */
|
|
Result = RtlpAvlCompareRoutine(Table,
|
|
Buffer,
|
|
&((PTABLE_ENTRY_HEADER)CurrentNode)->
|
|
UserData);
|
|
if (Result == GenericLessThan)
|
|
{
|
|
/* We're less, check if this is the left child */
|
|
ChildNode = RtlLeftChildAvl(CurrentNode);
|
|
if (ChildNode)
|
|
{
|
|
/* Continue searching from this node */
|
|
CurrentNode = ChildNode;
|
|
}
|
|
else
|
|
{
|
|
/* Otherwise, the element isn't in this tree */
|
|
*NodeOrParent = CurrentNode;
|
|
return TableInsertAsLeft;
|
|
}
|
|
}
|
|
else if (Result == GenericGreaterThan)
|
|
{
|
|
/* We're more, check if this is the right child */
|
|
ChildNode = RtlRightChildAvl(CurrentNode);
|
|
if (ChildNode)
|
|
{
|
|
/* Continue searching from this node */
|
|
CurrentNode = ChildNode;
|
|
}
|
|
else
|
|
{
|
|
/* Otherwise, the element isn't in this tree */
|
|
*NodeOrParent = CurrentNode;
|
|
return TableInsertAsRight;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We should've found the node */
|
|
ASSERT(Result == GenericEqual);
|
|
|
|
/* Return node found */
|
|
*NodeOrParent = CurrentNode;
|
|
return TableFoundNode;
|
|
}
|
|
}
|
|
}
|
|
|
|
VOID
|
|
FORCEINLINE
|
|
RtlPromoteAvlTreeNode(IN PRTL_BALANCED_LINKS Node)
|
|
{
|
|
PRTL_BALANCED_LINKS ParentNode, SuperParentNode;
|
|
PRTL_BALANCED_LINKS *SwapNode1, *SwapNode2;
|
|
|
|
/* Grab parents up to 2 levels high */
|
|
ParentNode = RtlParentAvl(Node);
|
|
SuperParentNode = RtlParentAvl(ParentNode);
|
|
|
|
/* Pick which nodes will be rotated */
|
|
SwapNode1 = RtlIsLeftChildAvl(Node) ? &ParentNode->LeftChild : &ParentNode->RightChild;
|
|
SwapNode2 = RtlIsLeftChildAvl(Node) ? &Node->RightChild : &Node->LeftChild;
|
|
|
|
/* Do the rotate, and update the parent and super-parent as needed */
|
|
*SwapNode1 = *SwapNode2;
|
|
if (*SwapNode1) RtlSetParent(*SwapNode1, ParentNode);
|
|
*SwapNode2 = ParentNode;
|
|
RtlSetParent(ParentNode, Node);
|
|
|
|
/* Now update the super-parent child link, and make it parent of the node*/
|
|
SwapNode1 = (RtlLeftChildAvl(SuperParentNode) == ParentNode) ?
|
|
&SuperParentNode->LeftChild: &SuperParentNode->RightChild;
|
|
*SwapNode1 = Node;
|
|
RtlSetParent(Node, SuperParentNode);
|
|
}
|
|
|
|
BOOLEAN
|
|
FORCEINLINE
|
|
RtlpRebalanceAvlTreeNode(IN PRTL_BALANCED_LINKS Node)
|
|
{
|
|
PRTL_BALANCED_LINKS ChildNode, SubChildNode;
|
|
CHAR Balance;
|
|
ASSERT(RtlParentAvl(Node) != Node);
|
|
|
|
/* Get the balance, and figure out which child node to go down on */
|
|
Balance = RtlBalance(Node);
|
|
ChildNode = (Balance == RtlRightHeavyAvlTree) ?
|
|
RtlRightChildAvl(Node) : RtlLeftChildAvl(Node);
|
|
|
|
/* The child and node have the same balance, promote the child upwards */
|
|
if (RtlBalance(ChildNode) == Balance)
|
|
{
|
|
/* This performs the rotation described in Knuth A8-A10 for Case 1 */
|
|
RtlPromoteAvlTreeNode(ChildNode);
|
|
|
|
/* The nodes are now balanced */
|
|
RtlSetBalance(ChildNode, RtlBalancedAvlTree);
|
|
RtlSetBalance(Node, RtlBalancedAvlTree);
|
|
return FALSE;
|
|
}
|
|
|
|
/* The child has the opposite balance, a double promotion of the child's child must happen */
|
|
if (RtlBalance(ChildNode) == -Balance)
|
|
{
|
|
/* Pick which sub-child to use based on the balance */
|
|
SubChildNode = (Balance == RtlRightHeavyAvlTree) ?
|
|
RtlLeftChildAvl(ChildNode) : RtlRightChildAvl(ChildNode);
|
|
|
|
/* Do the double-rotation described in Knuth A8-A10 for Case 2 */
|
|
RtlPromoteAvlTreeNode(SubChildNode);
|
|
RtlPromoteAvlTreeNode(SubChildNode);
|
|
|
|
/* Was the sub-child sharing the same balance as the node? */
|
|
if (RtlBalance(SubChildNode) == Balance)
|
|
{
|
|
/* Then the subchild is now balanced, and the node's weight is inversed */
|
|
RtlSetBalance(ChildNode, RtlBalancedAvlTree);
|
|
RtlSetBalance(Node, -Balance);
|
|
}
|
|
else if (RtlBalance(SubChildNode) == -Balance)
|
|
{
|
|
/*
|
|
* In this case, the sub-child weight was the inverse of the node, so
|
|
* the child now shares the node's balance original weight, while the
|
|
* node becomes balanced.
|
|
*/
|
|
RtlSetBalance(ChildNode, Balance);
|
|
RtlSetBalance(Node, RtlBalancedAvlTree);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Otherwise, the sub-child was unbalanced, so both the child and node
|
|
* now become balanced.
|
|
*/
|
|
RtlSetBalance(ChildNode, RtlBalancedAvlTree);
|
|
RtlSetBalance(Node, RtlBalancedAvlTree);
|
|
}
|
|
|
|
/* In all cases, the sub-child is now balanced */
|
|
RtlSetBalance(SubChildNode, RtlBalancedAvlTree);
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* The case that remains is that the child was already balanced, so this is
|
|
* This is the rotation required for Case 3 in Knuth A8-A10
|
|
*/
|
|
RtlPromoteAvlTreeNode(ChildNode);
|
|
|
|
/* Now the child has the opposite weight of the node */
|
|
RtlSetBalance(ChildNode, -Balance);
|
|
|
|
/* This only happens on deletion, so we return TRUE to terminate the delete */
|
|
return TRUE;
|
|
}
|
|
|
|
VOID
|
|
FORCEINLINE
|
|
RtlpInsertAvlTreeNode(IN PRTL_AVL_TABLE Table,
|
|
IN PRTL_BALANCED_LINKS NewNode,
|
|
IN OUT PVOID NodeOrParent,
|
|
IN OUT TABLE_SEARCH_RESULT SearchResult)
|
|
{
|
|
CHAR Balance;
|
|
|
|
/* Initialize the new inserted element */
|
|
MI_ASSERT(SearchResult != TableFoundNode);
|
|
NewNode->LeftChild = NewNode->RightChild = NULL;
|
|
|
|
/* Increase element count */
|
|
Table->NumberGenericTableElements++;
|
|
|
|
/* Check where we should insert the entry */
|
|
if (SearchResult == TableEmptyTree)
|
|
{
|
|
/* This is the new root node */
|
|
RtlInsertAsRightChildAvl(&Table->BalancedRoot, NewNode);
|
|
MI_ASSERT(RtlBalance(NewNode) == RtlBalancedAvlTree);
|
|
|
|
/* On AVL trees, we also update the depth */
|
|
ASSERT(Table->DepthOfTree == 0);
|
|
Table->DepthOfTree = 1;
|
|
return;
|
|
}
|
|
else if (SearchResult == TableInsertAsLeft)
|
|
{
|
|
/* Insert it left */
|
|
RtlInsertAsLeftChildAvl(NodeOrParent, NewNode);
|
|
}
|
|
else
|
|
{
|
|
/* Right node */
|
|
RtlInsertAsRightChildAvl(NodeOrParent, NewNode);
|
|
}
|
|
|
|
/* Little cheat to save on loop processing, taken from Timo */
|
|
MI_ASSERT(RtlBalance(NewNode) == RtlBalancedAvlTree);
|
|
RtlSetBalance(&Table->BalancedRoot, RtlLeftHeavyAvlTree);
|
|
|
|
/*
|
|
* This implements A6-A7 from Knuth based on http://coding.derkeiler.com
|
|
* /pdf/Archive/C_CPP/comp.lang.c/2004-01/1812.pdf, however the algorithm
|
|
* is slightly modified to follow the tree based on the Parent Node such
|
|
* as the Windows algorithm does it, instead of following the nodes down.
|
|
*/
|
|
while (TRUE)
|
|
{
|
|
/* Calculate which side to balance on */
|
|
Balance = RtlIsLeftChildAvl(NewNode) ? RtlLeftHeavyAvlTree : RtlRightHeavyAvlTree;
|
|
|
|
/* Check if the parent node was balanced */
|
|
if (RtlBalance(NodeOrParent) == RtlBalancedAvlTree)
|
|
{
|
|
/* It's not balanced anymore (heavy on one side) */
|
|
RtlSetBalance(NodeOrParent, Balance);
|
|
|
|
/* Move up */
|
|
NewNode = NodeOrParent;
|
|
NodeOrParent = RtlParentAvl(NodeOrParent);
|
|
}
|
|
else if (RtlBalance(NodeOrParent) != Balance)
|
|
{
|
|
/* The parent's balance is opposite, so the tree is balanced now */
|
|
RtlSetBalance(NodeOrParent, RtlBalancedAvlTree);
|
|
|
|
/* Check if this is the root (the cheat applied earlier gets us here) */
|
|
if (RtlBalance(&Table->BalancedRoot) == RtlBalancedAvlTree)
|
|
{
|
|
/* The depth has thus increased */
|
|
Table->DepthOfTree++;
|
|
}
|
|
|
|
/* We reached the root or a balanced node, so we're done */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* The tree is now unbalanced, so AVL rebalancing must happen */
|
|
RtlpRebalanceAvlTreeNode(NodeOrParent);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
VOID
|
|
FORCEINLINE
|
|
RtlpDeleteAvlTreeNode(IN PRTL_AVL_TABLE Table,
|
|
IN PRTL_BALANCED_LINKS Node)
|
|
{
|
|
PRTL_BALANCED_LINKS DeleteNode = NULL, ParentNode;
|
|
PRTL_BALANCED_LINKS *Node1, *Node2;
|
|
CHAR Balance;
|
|
|
|
/* Take one of the children if possible */
|
|
if (!(RtlLeftChildAvl(Node)) || !(RtlRightChildAvl(Node))) DeleteNode = Node;
|
|
|
|
/* Otherwise, check if one side is longer */
|
|
if (!(DeleteNode) && (RtlBalance(Node) >= RtlBalancedAvlTree))
|
|
{
|
|
/* Pick the successor which will be the longest side in this case */
|
|
DeleteNode = RtlRightChildAvl(Node);
|
|
while (RtlLeftChildAvl(DeleteNode)) DeleteNode = RtlLeftChildAvl(DeleteNode);
|
|
}
|
|
else if (!DeleteNode)
|
|
{
|
|
/* Pick the predecessor which will be the longest side in this case */
|
|
DeleteNode = RtlLeftChildAvl(Node);
|
|
while (RtlRightChildAvl(DeleteNode)) DeleteNode = RtlRightChildAvl(DeleteNode);
|
|
}
|
|
|
|
/* Get the parent node */
|
|
ParentNode = RtlParentAvl(DeleteNode);
|
|
DPRINT("Parent: %p\n", ParentNode);
|
|
|
|
/* Pick which now to use based on whether or not we have a left child */
|
|
Node1 = RtlLeftChildAvl(DeleteNode) ? &DeleteNode->LeftChild : &DeleteNode->RightChild;
|
|
DPRINT("Node 1: %p %p\n", Node1, *Node1);
|
|
|
|
/* Pick which node to swap based on if we're already a left child or not */
|
|
Node2 = RtlIsLeftChildAvl(DeleteNode) ? &ParentNode->LeftChild : &ParentNode->RightChild;
|
|
DPRINT("Node 2: %p %p\n", Node2, *Node2);
|
|
|
|
/* Pick the correct balance depending on which side will get heavier */
|
|
Balance = RtlIsLeftChildAvl(DeleteNode) ? RtlLeftHeavyAvlTree : RtlRightHeavyAvlTree;
|
|
DPRINT("Balance: %lx\n", Balance);
|
|
|
|
/* Swap the children nodes, making one side heavier */
|
|
*Node2 = *Node1;
|
|
|
|
/* If the node has a child now, update its parent */
|
|
if (*Node1) RtlSetParent(*Node1, ParentNode);
|
|
|
|
/* Assume balanced root for loop optimization */
|
|
RtlSetBalance(&Table->BalancedRoot, RtlBalancedAvlTree);
|
|
|
|
/* Loop up the tree by parents */
|
|
while (TRUE)
|
|
{
|
|
/* Check if the tree's balance increased */
|
|
if (RtlBalance(ParentNode) == Balance)
|
|
{
|
|
/* Now the tree is balanced */
|
|
RtlSetBalance(ParentNode, RtlBalancedAvlTree);
|
|
}
|
|
else if (RtlBalance(ParentNode) == RtlBalancedAvlTree)
|
|
{
|
|
/* The tree has now become less balanced, since it was balanced */
|
|
RtlSetBalance(ParentNode, -Balance);
|
|
|
|
/* Deal with the loop optimization to detect loss of a tree level */
|
|
if (RtlBalance(&Table->BalancedRoot) != RtlBalancedAvlTree) Table->DepthOfTree--;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* The tree has become unbalanced, so a rebalance is needed */
|
|
if (RtlpRebalanceAvlTreeNode(ParentNode)) break;
|
|
|
|
/* Get the new parent after the balance */
|
|
ParentNode = RtlParentAvl(ParentNode);
|
|
}
|
|
|
|
/* Choose which balance factor to use based on which side we're on */
|
|
Balance = RtlIsRightChild(ParentNode) ?
|
|
RtlRightHeavyAvlTree : RtlLeftHeavyAvlTree;
|
|
|
|
/* Iterate up the tree */
|
|
ParentNode = RtlParentAvl(ParentNode);
|
|
}
|
|
|
|
/* Check if this isn't the node we ended up deleting directly */
|
|
if (Node == DeleteNode) return;
|
|
|
|
/* Copy the deleted node itself */
|
|
RtlpCopyAvlNodeData(DeleteNode, Node);
|
|
|
|
/* Pick the right node to unlink */
|
|
Node1 = RtlIsLeftChildAvl(Node) ?
|
|
&(RtlParentAvl(DeleteNode))->LeftChild : &(RtlParentAvl(DeleteNode))->RightChild;
|
|
*Node1 = DeleteNode;
|
|
|
|
/* Reparent as appropriate */
|
|
if (RtlLeftChildAvl(DeleteNode)) RtlSetParent(RtlLeftChildAvl(DeleteNode), DeleteNode);
|
|
if (RtlRightChildAvl(DeleteNode)) RtlSetParent(RtlRightChildAvl(DeleteNode), DeleteNode);
|
|
}
|
|
|
|
/* EOF */
|