reactos/drivers/bus/pcix/utils.c

1788 lines
60 KiB
C

/*
* PROJECT: ReactOS PCI Bus Driver
* LICENSE: BSD - See COPYING.ARM in the top level directory
* FILE: drivers/bus/pci/utils.c
* PURPOSE: Utility/Helper Support Code
* PROGRAMMERS: ReactOS Portable Systems Group
*/
/* INCLUDES *******************************************************************/
#include <pci.h>
#define NDEBUG
#include <debug.h>
/* GLOBALS ********************************************************************/
ULONG PciDebugPortsCount;
RTL_RANGE_LIST PciIsaBitExclusionList;
RTL_RANGE_LIST PciVgaAndIsaBitExclusionList;
/* FUNCTIONS ******************************************************************/
BOOLEAN
NTAPI
PciUnicodeStringStrStr(IN PUNICODE_STRING InputString,
IN PCUNICODE_STRING EqualString,
IN BOOLEAN CaseInSensitive)
{
UNICODE_STRING PartialString;
LONG EqualChars, TotalChars;
/* Build a partial string with the smaller substring */
PartialString.Length = EqualString->Length;
PartialString.MaximumLength = InputString->MaximumLength;
PartialString.Buffer = InputString->Buffer;
/* Check how many characters that need comparing */
EqualChars = 0;
TotalChars = (InputString->Length - EqualString->Length) / sizeof(WCHAR);
/* If the substring is bigger, just fail immediately */
if (TotalChars < 0) return FALSE;
/* Keep checking each character */
while (!RtlEqualUnicodeString(EqualString, &PartialString, CaseInSensitive))
{
/* Continue checking until all the required characters are equal */
PartialString.Buffer++;
PartialString.MaximumLength -= sizeof(WCHAR);
if (++EqualChars > TotalChars) return FALSE;
}
/* The string is equal */
return TRUE;
}
BOOLEAN
NTAPI
PciStringToUSHORT(IN PWCHAR String,
OUT PUSHORT Value)
{
USHORT Short;
ULONG Low, High, Length;
WCHAR Char;
/* Initialize everything to zero */
Short = 0;
Length = 0;
while (TRUE)
{
/* Get the character and set the high byte based on the previous one */
Char = *String++;
High = 16 * Short;
/* Check for numbers */
if ( Char >= '0' && Char <= '9' )
{
/* Convert them to a byte */
Low = Char - '0';
}
else if ( Char >= 'A' && Char <= 'F' )
{
/* Convert upper-case hex letters into a byte */
Low = Char - '7';
}
else if ( Char >= 'a' && Char <= 'f' )
{
/* Convert lower-case hex letters into a byte */
Low = Char - 'W';
}
else
{
/* Invalid string, fail the conversion */
return FALSE;
}
/* Combine the high and low byte */
Short = High | Low;
/* If 4 letters have been reached, the 16-bit integer should exist */
if (++Length >= 4)
{
/* Return it to the caller */
*Value = Short;
return TRUE;
}
}
}
BOOLEAN
NTAPI
PciIsSuiteVersion(IN USHORT SuiteMask)
{
ULONGLONG Mask = 0;
RTL_OSVERSIONINFOEXW VersionInfo;
/* Initialize the version information */
RtlZeroMemory(&VersionInfo, sizeof(RTL_OSVERSIONINFOEXW));
VersionInfo.dwOSVersionInfoSize = sizeof(RTL_OSVERSIONINFOEXW);
VersionInfo.wSuiteMask = SuiteMask;
/* Set the comparison mask and return if the passed suite mask matches */
VER_SET_CONDITION(Mask, VER_SUITENAME, VER_AND);
return NT_SUCCESS(RtlVerifyVersionInfo(&VersionInfo, VER_SUITENAME, Mask));
}
BOOLEAN
NTAPI
PciIsDatacenter(VOID)
{
BOOLEAN Result;
PVOID Value;
ULONG ResultLength;
NTSTATUS Status;
/* Assume this isn't Datacenter */
Result = FALSE;
/* First, try opening the setup key */
Status = PciGetRegistryValue(L"",
L"\\REGISTRY\\MACHINE\\SYSTEM\\CurrentControlSet\\Services\\setupdd",
0,
REG_BINARY,
&Value,
&ResultLength);
if (!NT_SUCCESS(Status))
{
/* This is not an in-progress Setup boot, so query the suite version */
Result = PciIsSuiteVersion(VER_SUITE_DATACENTER);
}
else
{
/* This scenario shouldn't happen yet, since SetupDD isn't used */
UNIMPLEMENTED_FATAL("ReactOS doesn't use SetupDD for its installation program. Therefore this scenario must not happen!\n");
}
/* Return if this is Datacenter or not */
return Result;
}
BOOLEAN
NTAPI
PciOpenKey(IN PWCHAR KeyName,
IN HANDLE RootKey,
IN ACCESS_MASK DesiredAccess,
OUT PHANDLE KeyHandle,
OUT PNTSTATUS KeyStatus)
{
NTSTATUS Status;
OBJECT_ATTRIBUTES ObjectAttributes;
UNICODE_STRING KeyString;
PAGED_CODE();
/* Initialize the object attributes */
RtlInitUnicodeString(&KeyString, KeyName);
InitializeObjectAttributes(&ObjectAttributes,
&KeyString,
OBJ_CASE_INSENSITIVE,
RootKey,
NULL);
/* Open the key, returning a boolean, and the status, if requested */
Status = ZwOpenKey(KeyHandle, DesiredAccess, &ObjectAttributes);
if (KeyStatus) *KeyStatus = Status;
return NT_SUCCESS(Status);
}
NTSTATUS
NTAPI
PciGetRegistryValue(IN PWCHAR ValueName,
IN PWCHAR KeyName,
IN HANDLE RootHandle,
IN ULONG Type,
OUT PVOID *OutputBuffer,
OUT PULONG OutputLength)
{
NTSTATUS Status;
PKEY_VALUE_PARTIAL_INFORMATION PartialInfo;
ULONG NeededLength, ActualLength;
UNICODE_STRING ValueString;
HANDLE KeyHandle;
BOOLEAN Result;
/* So we know what to free at the end of the body */
PartialInfo = NULL;
KeyHandle = NULL;
do
{
/* Open the key by name, rooted off the handle passed */
Result = PciOpenKey(KeyName,
RootHandle,
KEY_QUERY_VALUE,
&KeyHandle,
&Status);
if (!Result) break;
/* Query for the size that's needed for the value that was passed in */
RtlInitUnicodeString(&ValueString, ValueName);
Status = ZwQueryValueKey(KeyHandle,
&ValueString,
KeyValuePartialInformation,
NULL,
0,
&NeededLength);
ASSERT(!NT_SUCCESS(Status));
if (Status != STATUS_BUFFER_TOO_SMALL) break;
/* Allocate an appropriate buffer for the size that was returned */
ASSERT(NeededLength != 0);
Status = STATUS_INSUFFICIENT_RESOURCES;
PartialInfo = ExAllocatePoolWithTag(PagedPool,
NeededLength,
PCI_POOL_TAG);
if (!PartialInfo) break;
/* Query the actual value information now that the size is known */
Status = ZwQueryValueKey(KeyHandle,
&ValueString,
KeyValuePartialInformation,
PartialInfo,
NeededLength,
&ActualLength);
if (!NT_SUCCESS(Status)) break;
/* Make sure it's of the type that the caller expects */
Status = STATUS_INVALID_PARAMETER;
if (PartialInfo->Type != Type) break;
/* Subtract the registry-specific header, to get the data size */
ASSERT(NeededLength == ActualLength);
NeededLength -= sizeof(KEY_VALUE_PARTIAL_INFORMATION);
/* Allocate a buffer to hold the data and return it to the caller */
Status = STATUS_INSUFFICIENT_RESOURCES;
*OutputBuffer = ExAllocatePoolWithTag(PagedPool,
NeededLength,
PCI_POOL_TAG);
if (!*OutputBuffer) break;
/* Copy the data into the buffer and return its length to the caller */
RtlCopyMemory(*OutputBuffer, PartialInfo->Data, NeededLength);
if (OutputLength) *OutputLength = NeededLength;
Status = STATUS_SUCCESS;
} while (0);
/* Close any opened keys and free temporary allocations */
if (KeyHandle) ZwClose(KeyHandle);
if (PartialInfo) ExFreePoolWithTag(PartialInfo, 0);
return Status;
}
NTSTATUS
NTAPI
PciBuildDefaultExclusionLists(VOID)
{
ULONG Start;
NTSTATUS Status;
ASSERT(PciIsaBitExclusionList.Count == 0);
ASSERT(PciVgaAndIsaBitExclusionList.Count == 0);
/* Initialize the range lists */
RtlInitializeRangeList(&PciIsaBitExclusionList);
RtlInitializeRangeList(&PciVgaAndIsaBitExclusionList);
/* Loop x86 I/O ranges */
for (Start = 0x100; Start <= 0xFEFF; Start += 0x400)
{
/* Add the ISA I/O ranges */
Status = RtlAddRange(&PciIsaBitExclusionList,
Start,
Start + 0x2FF,
0,
RTL_RANGE_LIST_ADD_IF_CONFLICT,
NULL,
NULL);
if (!NT_SUCCESS(Status)) break;
/* Add the ISA I/O ranges */
Status = RtlAddRange(&PciVgaAndIsaBitExclusionList,
Start,
Start + 0x2AF,
0,
RTL_RANGE_LIST_ADD_IF_CONFLICT,
NULL,
NULL);
if (!NT_SUCCESS(Status)) break;
/* Add the VGA I/O range for Monochrome Video */
Status = RtlAddRange(&PciVgaAndIsaBitExclusionList,
Start + 0x2BC,
Start + 0x2BF,
0,
RTL_RANGE_LIST_ADD_IF_CONFLICT,
NULL,
NULL);
if (!NT_SUCCESS(Status)) break;
/* Add the VGA I/O range for certain CGA adapters */
Status = RtlAddRange(&PciVgaAndIsaBitExclusionList,
Start + 0x2E0,
Start + 0x2FF,
0,
RTL_RANGE_LIST_ADD_IF_CONFLICT,
NULL,
NULL);
if (!NT_SUCCESS(Status)) break;
/* Success, ranges added done */
};
RtlFreeRangeList(&PciIsaBitExclusionList);
RtlFreeRangeList(&PciVgaAndIsaBitExclusionList);
return Status;
}
PPCI_FDO_EXTENSION
NTAPI
PciFindParentPciFdoExtension(IN PDEVICE_OBJECT DeviceObject,
IN PKEVENT Lock)
{
PPCI_FDO_EXTENSION DeviceExtension;
PPCI_PDO_EXTENSION SearchExtension, FoundExtension;
/* Assume we'll find nothing */
SearchExtension = DeviceObject->DeviceExtension;
FoundExtension = NULL;
/* Check if a lock was specified */
if (Lock)
{
/* Wait for the lock to be released */
KeEnterCriticalRegion();
KeWaitForSingleObject(Lock, Executive, KernelMode, FALSE, NULL);
}
/* Now search for the extension */
DeviceExtension = (PPCI_FDO_EXTENSION)PciFdoExtensionListHead.Next;
while (DeviceExtension)
{
/* Acquire this device's lock */
KeEnterCriticalRegion();
KeWaitForSingleObject(&DeviceExtension->ChildListLock,
Executive,
KernelMode,
FALSE,
NULL);
/* Scan all children PDO, stop when no more PDOs, or found it */
for (FoundExtension = DeviceExtension->ChildPdoList;
((FoundExtension) && (FoundExtension != SearchExtension));
FoundExtension = FoundExtension->Next);
/* Release this device's lock */
KeSetEvent(&DeviceExtension->ChildListLock, IO_NO_INCREMENT, FALSE);
KeLeaveCriticalRegion();
/* If we found it, break out */
if (FoundExtension) break;
/* Move to the next device */
DeviceExtension = (PPCI_FDO_EXTENSION)DeviceExtension->List.Next;
}
/* Check if we had acquired a lock previously */
if (Lock)
{
/* Release it */
KeSetEvent(Lock, IO_NO_INCREMENT, FALSE);
KeLeaveCriticalRegion();
}
/* Return which extension was found, if any */
return DeviceExtension;
}
VOID
NTAPI
PciInsertEntryAtTail(IN PSINGLE_LIST_ENTRY ListHead,
IN PPCI_FDO_EXTENSION DeviceExtension,
IN PKEVENT Lock)
{
PSINGLE_LIST_ENTRY NextEntry;
PAGED_CODE();
/* Check if a lock was specified */
if (Lock)
{
/* Wait for the lock to be released */
KeEnterCriticalRegion();
KeWaitForSingleObject(Lock, Executive, KernelMode, FALSE, NULL);
}
/* Loop the list until we get to the end, then insert this entry there */
for (NextEntry = ListHead; NextEntry->Next; NextEntry = NextEntry->Next);
NextEntry->Next = &DeviceExtension->List;
/* Check if we had acquired a lock previously */
if (Lock)
{
/* Release it */
KeSetEvent(Lock, IO_NO_INCREMENT, FALSE);
KeLeaveCriticalRegion();
}
}
VOID
NTAPI
PciInsertEntryAtHead(IN PSINGLE_LIST_ENTRY ListHead,
IN PSINGLE_LIST_ENTRY Entry,
IN PKEVENT Lock)
{
PAGED_CODE();
/* Check if a lock was specified */
if (Lock)
{
/* Wait for the lock to be released */
KeEnterCriticalRegion();
KeWaitForSingleObject(Lock, Executive, KernelMode, FALSE, NULL);
}
/* Make the entry point to the current head and make the head point to it */
Entry->Next = ListHead->Next;
ListHead->Next = Entry;
/* Check if we had acquired a lock previously */
if (Lock)
{
/* Release it */
KeSetEvent(Lock, IO_NO_INCREMENT, FALSE);
KeLeaveCriticalRegion();
}
}
VOID
NTAPI
PcipLinkSecondaryExtension(IN PSINGLE_LIST_ENTRY List,
IN PVOID Lock,
IN PPCI_SECONDARY_EXTENSION SecondaryExtension,
IN PCI_SIGNATURE ExtensionType,
IN PVOID Destructor)
{
PAGED_CODE();
/* Setup the extension data, and insert it into the primary's list */
SecondaryExtension->ExtensionType = ExtensionType;
SecondaryExtension->Destructor = Destructor;
PciInsertEntryAtHead(List, &SecondaryExtension->List, Lock);
}
NTSTATUS
NTAPI
PciGetDeviceProperty(IN PDEVICE_OBJECT DeviceObject,
IN DEVICE_REGISTRY_PROPERTY DeviceProperty,
OUT PVOID *OutputBuffer)
{
NTSTATUS Status;
ULONG BufferLength, ResultLength;
PVOID Buffer;
do
{
/* Query the requested property size */
Status = IoGetDeviceProperty(DeviceObject,
DeviceProperty,
0,
NULL,
&BufferLength);
if (Status != STATUS_BUFFER_TOO_SMALL)
{
/* Call should've failed with buffer too small! */
DPRINT1("PCI - Unexpected status from GetDeviceProperty, saw %08X, expected %08X.\n",
Status,
STATUS_BUFFER_TOO_SMALL);
*OutputBuffer = NULL;
ASSERTMSG("PCI Successfully did the impossible!", FALSE);
break;
}
/* Allocate the required buffer */
Buffer = ExAllocatePoolWithTag(PagedPool, BufferLength, 'BicP');
if (!Buffer)
{
/* No memory, fail the request */
DPRINT1("PCI - Failed to allocate DeviceProperty buffer (%u bytes).\n", BufferLength);
Status = STATUS_INSUFFICIENT_RESOURCES;
break;
}
/* Do the actual property query call */
Status = IoGetDeviceProperty(DeviceObject,
DeviceProperty,
BufferLength,
Buffer,
&ResultLength);
if (!NT_SUCCESS(Status)) break;
/* Return the buffer to the caller */
ASSERT(BufferLength == ResultLength);
*OutputBuffer = Buffer;
return STATUS_SUCCESS;
} while (FALSE);
/* Failure path */
return STATUS_UNSUCCESSFUL;
}
NTSTATUS
NTAPI
PciSendIoctl(IN PDEVICE_OBJECT DeviceObject,
IN ULONG IoControlCode,
IN PVOID InputBuffer,
IN ULONG InputBufferLength,
IN PVOID OutputBuffer,
IN ULONG OutputBufferLength)
{
PIRP Irp;
NTSTATUS Status;
KEVENT Event;
IO_STATUS_BLOCK IoStatusBlock;
PDEVICE_OBJECT AttachedDevice;
PAGED_CODE();
/* Initialize the pending IRP event */
KeInitializeEvent(&Event, SynchronizationEvent, FALSE);
/* Get a reference to the root PDO (ACPI) */
AttachedDevice = IoGetAttachedDeviceReference(DeviceObject);
if (!AttachedDevice) return STATUS_INVALID_PARAMETER;
/* Build the requested IOCTL IRP */
Irp = IoBuildDeviceIoControlRequest(IoControlCode,
AttachedDevice,
InputBuffer,
InputBufferLength,
OutputBuffer,
OutputBufferLength,
0,
&Event,
&IoStatusBlock);
if (!Irp) return STATUS_INSUFFICIENT_RESOURCES;
/* Send the IOCTL to the driver */
Status = IoCallDriver(AttachedDevice, Irp);
if (Status == STATUS_PENDING)
{
/* Wait for a response */
KeWaitForSingleObject(&Event,
Executive,
KernelMode,
FALSE,
NULL);
Status = Irp->IoStatus.Status;
}
/* Take away the reference we took and return the result to the caller */
ObDereferenceObject(AttachedDevice);
return Status;
}
PPCI_SECONDARY_EXTENSION
NTAPI
PciFindNextSecondaryExtension(IN PSINGLE_LIST_ENTRY ListHead,
IN PCI_SIGNATURE ExtensionType)
{
PSINGLE_LIST_ENTRY NextEntry;
PPCI_SECONDARY_EXTENSION Extension;
/* Scan the list */
for (NextEntry = ListHead; NextEntry; NextEntry = NextEntry->Next)
{
/* Grab each extension and check if it's the one requested */
Extension = CONTAINING_RECORD(NextEntry, PCI_SECONDARY_EXTENSION, List);
if (Extension->ExtensionType == ExtensionType) return Extension;
}
/* Nothing was found */
return NULL;
}
ULONGLONG
NTAPI
PciGetHackFlags(IN USHORT VendorId,
IN USHORT DeviceId,
IN USHORT SubVendorId,
IN USHORT SubSystemId,
IN UCHAR RevisionId)
{
PPCI_HACK_ENTRY HackEntry;
ULONGLONG HackFlags;
ULONG LastWeight, MatchWeight;
ULONG EntryFlags;
/* ReactOS SetupLDR Hack */
if (!PciHackTable) return 0;
/* Initialize the variables before looping */
LastWeight = 0;
HackFlags = 0;
ASSERT(PciHackTable);
/* Scan the hack table */
for (HackEntry = PciHackTable;
HackEntry->VendorID != PCI_INVALID_VENDORID;
++HackEntry)
{
/* Check if there's an entry for this device */
if ((HackEntry->DeviceID == DeviceId) &&
(HackEntry->VendorID == VendorId))
{
/* This is a basic match */
EntryFlags = HackEntry->Flags;
MatchWeight = 1;
/* Does the entry have revision information? */
if (EntryFlags & PCI_HACK_HAS_REVISION_INFO)
{
/* Check if the revision matches, if so, this is a better match */
if (HackEntry->RevisionID != RevisionId) continue;
MatchWeight = 3;
}
/* Does the netry have subsystem information? */
if (EntryFlags & PCI_HACK_HAS_SUBSYSTEM_INFO)
{
/* Check if it matches, if so, this is the best possible match */
if ((HackEntry->SubVendorID != SubVendorId) ||
(HackEntry->SubSystemID != SubSystemId))
{
continue;
}
MatchWeight += 4;
}
/* Is this the best match yet? */
if (MatchWeight > LastWeight)
{
/* This is the best match for now, use this as the hack flags */
HackFlags = HackEntry->HackFlags;
LastWeight = MatchWeight;
}
}
}
/* Return the best match */
return HackFlags;
}
BOOLEAN
NTAPI
PciIsCriticalDeviceClass(IN UCHAR BaseClass,
IN UCHAR SubClass)
{
/* Check for system or bridge devices */
if (BaseClass == PCI_CLASS_BASE_SYSTEM_DEV)
{
/* Interrupt controllers are critical */
return SubClass == PCI_SUBCLASS_SYS_INTERRUPT_CTLR;
}
else if (BaseClass == PCI_CLASS_BRIDGE_DEV)
{
/* ISA Bridges are critical */
return SubClass == PCI_SUBCLASS_BR_ISA;
}
else
{
/* All display controllers are critical */
return BaseClass == PCI_CLASS_DISPLAY_CTLR;
}
}
PPCI_PDO_EXTENSION
NTAPI
PciFindPdoByFunction(IN PPCI_FDO_EXTENSION DeviceExtension,
IN ULONG FunctionNumber,
IN PPCI_COMMON_HEADER PciData)
{
KIRQL Irql;
PPCI_PDO_EXTENSION PdoExtension;
/* Get the current IRQL when this call was made */
Irql = KeGetCurrentIrql();
/* Is this a low-IRQL call? */
if (Irql < DISPATCH_LEVEL)
{
/* Acquire this device's lock */
KeEnterCriticalRegion();
KeWaitForSingleObject(&DeviceExtension->ChildListLock,
Executive,
KernelMode,
FALSE,
NULL);
}
/* Loop every child PDO */
for (PdoExtension = DeviceExtension->ChildPdoList;
PdoExtension;
PdoExtension = PdoExtension->Next)
{
/* Find only enumerated PDOs */
if (!PdoExtension->ReportedMissing)
{
/* Check if the function number and header data matches */
if ((FunctionNumber == PdoExtension->Slot.u.AsULONG) &&
(PdoExtension->VendorId == PciData->VendorID) &&
(PdoExtension->DeviceId == PciData->DeviceID) &&
(PdoExtension->RevisionId == PciData->RevisionID))
{
/* This is considered to be the same PDO */
break;
}
}
}
/* Was this a low-IRQL call? */
if (Irql < DISPATCH_LEVEL)
{
/* Release this device's lock */
KeSetEvent(&DeviceExtension->ChildListLock, IO_NO_INCREMENT, FALSE);
KeLeaveCriticalRegion();
}
/* If the search found something, this is non-NULL, otherwise it's NULL */
return PdoExtension;
}
BOOLEAN
NTAPI
PciIsDeviceOnDebugPath(IN PPCI_PDO_EXTENSION DeviceExtension)
{
PAGED_CODE();
UNREFERENCED_PARAMETER(DeviceExtension);
/* Check for too many, or no, debug ports */
ASSERT(PciDebugPortsCount <= MAX_DEBUGGING_DEVICES_SUPPORTED);
if (!PciDebugPortsCount) return FALSE;
/* eVb has not been able to test such devices yet */
UNIMPLEMENTED_DBGBREAK();
return FALSE;
}
NTSTATUS
NTAPI
PciGetBiosConfig(IN PPCI_PDO_EXTENSION DeviceExtension,
OUT PPCI_COMMON_HEADER PciData)
{
HANDLE KeyHandle, SubKeyHandle;
OBJECT_ATTRIBUTES ObjectAttributes;
UNICODE_STRING KeyName, KeyValue;
WCHAR Buffer[32];
WCHAR DataBuffer[sizeof(KEY_VALUE_PARTIAL_INFORMATION) + PCI_COMMON_HDR_LENGTH];
PKEY_VALUE_PARTIAL_INFORMATION PartialInfo = (PVOID)DataBuffer;
NTSTATUS Status;
ULONG ResultLength;
PAGED_CODE();
/* Open the PCI key */
Status = IoOpenDeviceRegistryKey(DeviceExtension->ParentFdoExtension->
PhysicalDeviceObject,
TRUE,
KEY_ALL_ACCESS,
&KeyHandle);
if (!NT_SUCCESS(Status)) return Status;
/* Create a volatile BIOS configuration key */
RtlInitUnicodeString(&KeyName, L"BiosConfig");
InitializeObjectAttributes(&ObjectAttributes,
&KeyName,
OBJ_KERNEL_HANDLE,
KeyHandle,
NULL);
Status = ZwCreateKey(&SubKeyHandle,
KEY_READ,
&ObjectAttributes,
0,
NULL,
REG_OPTION_VOLATILE,
NULL);
ZwClose(KeyHandle);
if (!NT_SUCCESS(Status)) return Status;
/* Create the key value based on the device and function number */
swprintf(Buffer,
L"DEV_%02x&FUN_%02x",
DeviceExtension->Slot.u.bits.DeviceNumber,
DeviceExtension->Slot.u.bits.FunctionNumber);
RtlInitUnicodeString(&KeyValue, Buffer);
/* Query the value information (PCI BIOS configuration header) */
Status = ZwQueryValueKey(SubKeyHandle,
&KeyValue,
KeyValuePartialInformation,
PartialInfo,
sizeof(DataBuffer),
&ResultLength);
ZwClose(SubKeyHandle);
if (!NT_SUCCESS(Status)) return Status;
/* If any information was returned, go ahead and copy its data */
ASSERT(PartialInfo->DataLength == PCI_COMMON_HDR_LENGTH);
RtlCopyMemory(PciData, PartialInfo->Data, PCI_COMMON_HDR_LENGTH);
return Status;
}
NTSTATUS
NTAPI
PciSaveBiosConfig(IN PPCI_PDO_EXTENSION DeviceExtension,
IN PPCI_COMMON_HEADER PciData)
{
HANDLE KeyHandle, SubKeyHandle;
OBJECT_ATTRIBUTES ObjectAttributes;
UNICODE_STRING KeyName, KeyValue;
WCHAR Buffer[32];
NTSTATUS Status;
PAGED_CODE();
/* Open the PCI key */
Status = IoOpenDeviceRegistryKey(DeviceExtension->ParentFdoExtension->
PhysicalDeviceObject,
TRUE,
KEY_READ | KEY_WRITE,
&KeyHandle);
if (!NT_SUCCESS(Status)) return Status;
/* Create a volatile BIOS configuration key */
RtlInitUnicodeString(&KeyName, L"BiosConfig");
InitializeObjectAttributes(&ObjectAttributes,
&KeyName,
OBJ_KERNEL_HANDLE,
KeyHandle,
NULL);
Status = ZwCreateKey(&SubKeyHandle,
KEY_READ | KEY_WRITE,
&ObjectAttributes,
0,
NULL,
REG_OPTION_VOLATILE,
NULL);
ZwClose(KeyHandle);
if (!NT_SUCCESS(Status)) return Status;
/* Create the key value based on the device and function number */
swprintf(Buffer,
L"DEV_%02x&FUN_%02x",
DeviceExtension->Slot.u.bits.DeviceNumber,
DeviceExtension->Slot.u.bits.FunctionNumber);
RtlInitUnicodeString(&KeyValue, Buffer);
/* Set the value data (the PCI BIOS configuration header) */
Status = ZwSetValueKey(SubKeyHandle,
&KeyValue,
0,
REG_BINARY,
PciData,
PCI_COMMON_HDR_LENGTH);
ZwClose(SubKeyHandle);
return Status;
}
UCHAR
NTAPI
PciReadDeviceCapability(IN PPCI_PDO_EXTENSION DeviceExtension,
IN UCHAR Offset,
IN ULONG CapabilityId,
OUT PPCI_CAPABILITIES_HEADER Buffer,
IN ULONG Length)
{
ULONG CapabilityCount = 0;
/* If the device has no capabilility list, fail */
if (!Offset) return 0;
/* Validate a PDO with capabilities, a valid buffer, and a valid length */
ASSERT(DeviceExtension->ExtensionType == PciPdoExtensionType);
ASSERT(DeviceExtension->CapabilitiesPtr != 0);
ASSERT(Buffer);
ASSERT(Length >= sizeof(PCI_CAPABILITIES_HEADER));
/* Loop all capabilities */
while (Offset)
{
/* Make sure the pointer is spec-aligned and spec-sized */
ASSERT((Offset >= PCI_COMMON_HDR_LENGTH) && ((Offset & 0x3) == 0));
/* Read the capability header */
PciReadDeviceConfig(DeviceExtension,
Buffer,
Offset,
sizeof(PCI_CAPABILITIES_HEADER));
/* Check if this is the capability being looked up */
if ((Buffer->CapabilityID == CapabilityId) || !(CapabilityId))
{
/* Check if was at a valid offset and length */
if ((Offset) && (Length > sizeof(PCI_CAPABILITIES_HEADER)))
{
/* Sanity check */
ASSERT(Length <= (sizeof(PCI_COMMON_CONFIG) - Offset));
/* Now read the whole capability data into the buffer */
PciReadDeviceConfig(DeviceExtension,
(PVOID)((ULONG_PTR)Buffer +
sizeof(PCI_CAPABILITIES_HEADER)),
Offset + sizeof(PCI_CAPABILITIES_HEADER),
Length - sizeof(PCI_CAPABILITIES_HEADER));
}
/* Return the offset where the capability was found */
return Offset;
}
/* Try the next capability instead */
CapabilityCount++;
Offset = Buffer->Next;
/* There can't be more than 48 capabilities (256 bytes max) */
if (CapabilityCount > 48)
{
/* Fail, since this is basically a broken PCI device */
DPRINT1("PCI device %p capabilities list is broken.\n", DeviceExtension);
return 0;
}
}
/* Capability wasn't found, fail */
return 0;
}
BOOLEAN
NTAPI
PciCanDisableDecodes(IN PPCI_PDO_EXTENSION DeviceExtension,
IN PPCI_COMMON_HEADER Config,
IN ULONGLONG HackFlags,
IN BOOLEAN ForPowerDown)
{
UCHAR BaseClass, SubClass;
BOOLEAN IsVga;
/* Is there a device extension or should the PCI header be used? */
if (DeviceExtension)
{
/* Never disable decodes for a debug PCI Device */
if (DeviceExtension->OnDebugPath) return FALSE;
/* Hack flags will be obtained from the extension, not the caller */
ASSERT(HackFlags == 0);
/* Get hacks and classification from the device extension */
HackFlags = DeviceExtension->HackFlags;
SubClass = DeviceExtension->SubClass;
BaseClass = DeviceExtension->BaseClass;
}
else
{
/* There must be a PCI header, go read the classification information */
ASSERT(Config != NULL);
BaseClass = Config->BaseClass;
SubClass = Config->SubClass;
}
/* Check for hack flags that prevent disabling the decodes */
if (HackFlags & (PCI_HACK_PRESERVE_COMMAND |
PCI_HACK_CB_SHARE_CMD_BITS |
PCI_HACK_DONT_DISABLE_DECODES))
{
/* Don't do it */
return FALSE;
}
/* Is this a VGA adapter? */
if ((BaseClass == PCI_CLASS_DISPLAY_CTLR) &&
(SubClass == PCI_SUBCLASS_VID_VGA_CTLR))
{
/* Never disable decodes if this is for power down */
return ForPowerDown;
}
/* Check for legacy devices */
if (BaseClass == PCI_CLASS_PRE_20)
{
/* Never disable video adapter cards if this is for power down */
if (SubClass == PCI_SUBCLASS_PRE_20_VGA) return ForPowerDown;
}
else if (BaseClass == PCI_CLASS_DISPLAY_CTLR)
{
/* Never disable VGA adapters if this is for power down */
if (SubClass == PCI_SUBCLASS_VID_VGA_CTLR) return ForPowerDown;
}
else if (BaseClass == PCI_CLASS_BRIDGE_DEV)
{
/* Check for legacy bridges */
if ((SubClass == PCI_SUBCLASS_BR_ISA) ||
(SubClass == PCI_SUBCLASS_BR_EISA) ||
(SubClass == PCI_SUBCLASS_BR_MCA) ||
(SubClass == PCI_SUBCLASS_BR_HOST) ||
(SubClass == PCI_SUBCLASS_BR_OTHER))
{
/* Never disable these */
return FALSE;
}
else if ((SubClass == PCI_SUBCLASS_BR_PCI_TO_PCI) ||
(SubClass == PCI_SUBCLASS_BR_CARDBUS))
{
/* This is a supported bridge, but does it have a VGA card? */
if (!DeviceExtension)
{
/* Read the bridge control flag from the PCI header */
IsVga = Config->u.type1.BridgeControl & PCI_ENABLE_BRIDGE_VGA;
}
else
{
/* Read the cached flag in the device extension */
IsVga = DeviceExtension->Dependent.type1.VgaBitSet;
}
/* Never disable VGA adapters if this is for power down */
if (IsVga) return ForPowerDown;
}
}
/* Finally, never disable decodes if there's no power management */
return !(HackFlags & PCI_HACK_NO_PM_CAPS);
}
PCI_DEVICE_TYPES
NTAPI
PciClassifyDeviceType(IN PPCI_PDO_EXTENSION PdoExtension)
{
ASSERT(PdoExtension->ExtensionType == PciPdoExtensionType);
/* Differentiate between devices and bridges */
if (PdoExtension->BaseClass != PCI_CLASS_BRIDGE_DEV) return PciTypeDevice;
/* The PCI Bus driver handles only CardBus and PCI bridges (plus host) */
if (PdoExtension->SubClass == PCI_SUBCLASS_BR_HOST) return PciTypeHostBridge;
if (PdoExtension->SubClass == PCI_SUBCLASS_BR_PCI_TO_PCI) return PciTypePciBridge;
if (PdoExtension->SubClass == PCI_SUBCLASS_BR_CARDBUS) return PciTypeCardbusBridge;
/* Any other kind of bridge is treated like a device */
return PciTypeDevice;
}
ULONG_PTR
NTAPI
PciExecuteCriticalSystemRoutine(IN ULONG_PTR IpiContext)
{
PPCI_IPI_CONTEXT Context = (PPCI_IPI_CONTEXT)IpiContext;
/* Check if the IPI is already running */
if (!InterlockedDecrement(&Context->RunCount))
{
/* Nope, this is the first instance, so execute the IPI function */
Context->Function(Context->DeviceExtension, Context->Context);
/* Notify anyone that was spinning that they can stop now */
Context->Barrier = 0;
}
else
{
/* Spin until it has finished running */
while (Context->Barrier);
}
/* Done */
return 0;
}
BOOLEAN
NTAPI
PciIsSlotPresentInParentMethod(IN PPCI_PDO_EXTENSION PdoExtension,
IN ULONG Method)
{
BOOLEAN FoundSlot;
PACPI_METHOD_ARGUMENT Argument;
ACPI_EVAL_INPUT_BUFFER InputBuffer;
PACPI_EVAL_OUTPUT_BUFFER OutputBuffer;
ULONG i, Length;
NTSTATUS Status;
PAGED_CODE();
/* Assume slot is not part of the parent method */
FoundSlot = FALSE;
/* Allocate a 2KB buffer for the method return parameters */
Length = sizeof(ACPI_EVAL_OUTPUT_BUFFER) + 2048;
OutputBuffer = ExAllocatePoolWithTag(PagedPool, Length, 'BicP');
if (OutputBuffer)
{
/* Clear out the output buffer */
RtlZeroMemory(OutputBuffer, Length);
/* Initialize the input buffer with the method requested */
InputBuffer.Signature = 0;
*(PULONG)InputBuffer.MethodName = Method;
InputBuffer.Signature = ACPI_EVAL_INPUT_BUFFER_SIGNATURE;
/* Send it to the ACPI driver */
Status = PciSendIoctl(PdoExtension->ParentFdoExtension->PhysicalDeviceObject,
IOCTL_ACPI_EVAL_METHOD,
&InputBuffer,
sizeof(ACPI_EVAL_INPUT_BUFFER),
OutputBuffer,
Length);
if (NT_SUCCESS(Status))
{
/* Scan all output arguments */
for (i = 0; i < OutputBuffer->Count; i++)
{
/* Make sure it's an integer */
Argument = &OutputBuffer->Argument[i];
if (Argument->Type != ACPI_METHOD_ARGUMENT_INTEGER) continue;
/* Check if the argument matches this PCI slot structure */
if (Argument->Argument == ((PdoExtension->Slot.u.bits.DeviceNumber) |
((PdoExtension->Slot.u.bits.FunctionNumber) << 16)))
{
/* This slot has been found, return it */
FoundSlot = TRUE;
break;
}
}
}
/* Finished with the buffer, free it */
ExFreePoolWithTag(OutputBuffer, 0);
}
/* Return if the slot was found */
return FoundSlot;
}
ULONG
NTAPI
PciGetLengthFromBar(IN ULONG Bar)
{
ULONG Length;
/* I/O addresses vs. memory addresses start differently due to alignment */
Length = 1 << ((Bar & PCI_ADDRESS_IO_SPACE) ? 2 : 4);
/* Keep going until a set bit */
while (!(Length & Bar) && (Length)) Length <<= 1;
/* Return the length (might be 0 on 64-bit because it's the low-word) */
if ((Bar & PCI_ADDRESS_MEMORY_TYPE_MASK) != PCI_TYPE_64BIT) ASSERT(Length);
return Length;
}
BOOLEAN
NTAPI
PciCreateIoDescriptorFromBarLimit(PIO_RESOURCE_DESCRIPTOR ResourceDescriptor,
IN PULONG BarArray,
IN BOOLEAN Rom)
{
ULONG CurrentBar, BarLength, BarMask;
BOOLEAN Is64BitBar = FALSE;
/* Check if the BAR is nor I/O nor memory */
CurrentBar = BarArray[0];
if (!(CurrentBar & ~PCI_ADDRESS_IO_SPACE))
{
/* Fail this descriptor */
ResourceDescriptor->Type = CmResourceTypeNull;
return FALSE;
}
/* Set default flag and clear high words */
ResourceDescriptor->Flags = 0;
ResourceDescriptor->u.Generic.MaximumAddress.HighPart = 0;
ResourceDescriptor->u.Generic.MinimumAddress.LowPart = 0;
ResourceDescriptor->u.Generic.MinimumAddress.HighPart = 0;
/* Check for ROM Address */
if (Rom)
{
/* Clean up the BAR to get just the address */
CurrentBar &= PCI_ADDRESS_ROM_ADDRESS_MASK;
if (!CurrentBar)
{
/* Invalid ar, fail this descriptor */
ResourceDescriptor->Type = CmResourceTypeNull;
return FALSE;
}
/* ROM Addresses are always read only */
ResourceDescriptor->Flags = CM_RESOURCE_MEMORY_READ_ONLY;
}
/* Compute the length, assume it's the alignment for now */
BarLength = PciGetLengthFromBar(CurrentBar);
ResourceDescriptor->u.Generic.Length = BarLength;
ResourceDescriptor->u.Generic.Alignment = BarLength;
/* Check what kind of BAR this is */
if (CurrentBar & PCI_ADDRESS_IO_SPACE)
{
/* Use correct mask to decode the address */
BarMask = PCI_ADDRESS_IO_ADDRESS_MASK;
/* Set this as an I/O Port descriptor */
ResourceDescriptor->Type = CmResourceTypePort;
ResourceDescriptor->Flags = CM_RESOURCE_PORT_IO;
}
else
{
/* Use correct mask to decode the address */
BarMask = PCI_ADDRESS_MEMORY_ADDRESS_MASK;
/* Set this as a memory descriptor */
ResourceDescriptor->Type = CmResourceTypeMemory;
/* Check if it's 64-bit or 20-bit decode */
if ((CurrentBar & PCI_ADDRESS_MEMORY_TYPE_MASK) == PCI_TYPE_64BIT)
{
/* The next BAR has the high word, read it */
ResourceDescriptor->u.Port.MaximumAddress.HighPart = BarArray[1];
Is64BitBar = TRUE;
}
else if ((CurrentBar & PCI_ADDRESS_MEMORY_TYPE_MASK) == PCI_TYPE_20BIT)
{
/* Use the correct mask to decode the address */
BarMask = ~0xFFF0000F;
}
/* Check if the BAR is listed as prefetchable memory */
if (CurrentBar & PCI_ADDRESS_MEMORY_PREFETCHABLE)
{
/* Mark the descriptor in the same way */
ResourceDescriptor->Flags |= CM_RESOURCE_MEMORY_PREFETCHABLE;
}
}
/* Now write down the maximum address based on the base + length */
ResourceDescriptor->u.Port.MaximumAddress.QuadPart = (CurrentBar & BarMask) +
BarLength - 1;
/* Return if this is a 64-bit BAR, so the loop code knows to skip the next one */
return Is64BitBar;
}
VOID
NTAPI
PciDecodeEnable(IN PPCI_PDO_EXTENSION PdoExtension,
IN BOOLEAN Enable,
OUT PUSHORT Command)
{
USHORT CommandValue;
/*
* If decodes are being disabled, make sure it's allowed, and in both cases,
* make sure that a hackflag isn't preventing touching the decodes at all.
*/
if (((Enable) || (PciCanDisableDecodes(PdoExtension, 0, 0, 0))) &&
!(PdoExtension->HackFlags & PCI_HACK_PRESERVE_COMMAND))
{
/* Did the caller already have a command word? */
if (Command)
{
/* Use the caller's */
CommandValue = *Command;
}
else
{
/* Otherwise, read the current command */
PciReadDeviceConfig(PdoExtension,
&Command,
FIELD_OFFSET(PCI_COMMON_HEADER, Command),
sizeof(USHORT));
}
/* Turn off decodes by default */
CommandValue &= ~(PCI_ENABLE_IO_SPACE |
PCI_ENABLE_MEMORY_SPACE |
PCI_ENABLE_BUS_MASTER);
/* If requested, enable the decodes that were enabled at init time */
if (Enable) CommandValue |= PdoExtension->CommandEnables &
(PCI_ENABLE_IO_SPACE |
PCI_ENABLE_MEMORY_SPACE |
PCI_ENABLE_BUS_MASTER);
/* Update the command word */
PciWriteDeviceConfig(PdoExtension,
&CommandValue,
FIELD_OFFSET(PCI_COMMON_HEADER, Command),
sizeof(USHORT));
}
}
NTSTATUS
NTAPI
PciQueryBusInformation(IN PPCI_PDO_EXTENSION PdoExtension,
IN PPNP_BUS_INFORMATION* Buffer)
{
PPNP_BUS_INFORMATION BusInfo;
UNREFERENCED_PARAMETER(Buffer);
/* Allocate a structure for the bus information */
BusInfo = ExAllocatePoolWithTag(PagedPool,
sizeof(PNP_BUS_INFORMATION),
'BicP');
if (!BusInfo) return STATUS_INSUFFICIENT_RESOURCES;
/* Write the correct GUID and bus type identifier, and fill the bus number */
BusInfo->BusTypeGuid = GUID_BUS_TYPE_PCI;
BusInfo->LegacyBusType = PCIBus;
BusInfo->BusNumber = PdoExtension->ParentFdoExtension->BaseBus;
return STATUS_SUCCESS;
}
NTSTATUS
NTAPI
PciDetermineSlotNumber(IN PPCI_PDO_EXTENSION PdoExtension,
OUT PULONG SlotNumber)
{
PPCI_FDO_EXTENSION ParentExtension;
ULONG ResultLength;
NTSTATUS Status;
PSLOT_INFO SlotInfo;
/* Check if a $PIR from the BIOS is used (legacy IRQ routing) */
ParentExtension = PdoExtension->ParentFdoExtension;
DPRINT1("Slot lookup for %d.%u.%u\n",
ParentExtension ? ParentExtension->BaseBus : -1,
PdoExtension->Slot.u.bits.DeviceNumber,
PdoExtension->Slot.u.bits.FunctionNumber);
if ((PciIrqRoutingTable) && (ParentExtension))
{
/* Read every slot information entry */
SlotInfo = &PciIrqRoutingTable->Slot[0];
DPRINT1("PIR$ %p is %lx bytes, slot 0 is at: %p\n",
PciIrqRoutingTable, PciIrqRoutingTable->TableSize, SlotInfo);
while (SlotInfo < (PSLOT_INFO)((ULONG_PTR)PciIrqRoutingTable +
PciIrqRoutingTable->TableSize))
{
DPRINT1("Slot Info: %u.%u->#%u\n",
SlotInfo->BusNumber,
SlotInfo->DeviceNumber,
SlotInfo->SlotNumber);
/* Check if this slot information matches the PDO being queried */
if ((ParentExtension->BaseBus == SlotInfo->BusNumber) &&
(PdoExtension->Slot.u.bits.DeviceNumber == SlotInfo->DeviceNumber >> 3) &&
(SlotInfo->SlotNumber))
{
/* We found it, return it and return success */
*SlotNumber = SlotInfo->SlotNumber;
return STATUS_SUCCESS;
}
/* Try the next slot */
SlotInfo++;
}
}
/* Otherwise, grab the parent FDO and check if it's the root */
if (PCI_IS_ROOT_FDO(ParentExtension))
{
/* The root FDO doesn't have a slot number */
Status = STATUS_UNSUCCESSFUL;
}
else
{
/* Otherwise, query the slot/UI address/number as a device property */
Status = IoGetDeviceProperty(ParentExtension->PhysicalDeviceObject,
DevicePropertyUINumber,
sizeof(ULONG),
SlotNumber,
&ResultLength);
}
/* Return the status of this endeavour */
return Status;
}
NTSTATUS
NTAPI
PciGetDeviceCapabilities(IN PDEVICE_OBJECT DeviceObject,
IN OUT PDEVICE_CAPABILITIES DeviceCapability)
{
PIRP Irp;
NTSTATUS Status;
KEVENT Event;
PDEVICE_OBJECT AttachedDevice;
PIO_STACK_LOCATION IoStackLocation;
IO_STATUS_BLOCK IoStatusBlock;
PAGED_CODE();
/* Zero out capabilities and set undefined values to start with */
RtlZeroMemory(DeviceCapability, sizeof(DEVICE_CAPABILITIES));
DeviceCapability->Size = sizeof(DEVICE_CAPABILITIES);
DeviceCapability->Version = 1;
DeviceCapability->Address = -1;
DeviceCapability->UINumber = -1;
/* Build the wait event for the IOCTL */
KeInitializeEvent(&Event, SynchronizationEvent, FALSE);
/* Find the device the PDO is attached to */
AttachedDevice = IoGetAttachedDeviceReference(DeviceObject);
/* And build an IRP for it */
Irp = IoBuildSynchronousFsdRequest(IRP_MJ_PNP,
AttachedDevice,
NULL,
0,
NULL,
&Event,
&IoStatusBlock);
if (!Irp)
{
/* The IRP failed, fail the request as well */
ObDereferenceObject(AttachedDevice);
return STATUS_INSUFFICIENT_RESOURCES;
}
/* Set default status */
Irp->IoStatus.Information = 0;
Irp->IoStatus.Status = STATUS_NOT_SUPPORTED;
/* Get a stack location in this IRP */
IoStackLocation = IoGetNextIrpStackLocation(Irp);
ASSERT(IoStackLocation);
/* Initialize it as a query capabilities IRP, with no completion routine */
RtlZeroMemory(IoStackLocation, sizeof(IO_STACK_LOCATION));
IoStackLocation->MajorFunction = IRP_MJ_PNP;
IoStackLocation->MinorFunction = IRP_MN_QUERY_CAPABILITIES;
IoStackLocation->Parameters.DeviceCapabilities.Capabilities = DeviceCapability;
IoSetCompletionRoutine(Irp, NULL, NULL, FALSE, FALSE, FALSE);
/* Send the IOCTL to the driver */
Status = IoCallDriver(AttachedDevice, Irp);
if (Status == STATUS_PENDING)
{
/* Wait for a response and update the actual status */
KeWaitForSingleObject(&Event,
Executive,
KernelMode,
FALSE,
NULL);
Status = Irp->IoStatus.Status;
}
/* Done, dereference the attached device and return the final result */
ObDereferenceObject(AttachedDevice);
return Status;
}
NTSTATUS
NTAPI
PciQueryPowerCapabilities(IN PPCI_PDO_EXTENSION PdoExtension,
IN PDEVICE_CAPABILITIES DeviceCapability)
{
PDEVICE_OBJECT DeviceObject;
NTSTATUS Status;
DEVICE_CAPABILITIES AttachedCaps;
DEVICE_POWER_STATE NewPowerState, DevicePowerState, DeviceWakeLevel, DeviceWakeState;
SYSTEM_POWER_STATE SystemWakeState, DeepestWakeState, CurrentState;
/* Nothing is known at first */
DeviceWakeState = PowerDeviceUnspecified;
SystemWakeState = DeepestWakeState = PowerSystemUnspecified;
/* Get the PCI capabilities for the parent PDO */
DeviceObject = PdoExtension->ParentFdoExtension->PhysicalDeviceObject;
Status = PciGetDeviceCapabilities(DeviceObject, &AttachedCaps);
ASSERT(NT_SUCCESS(Status));
if (!NT_SUCCESS(Status)) return Status;
/* Check if there's not an existing device state for S0 */
if (!AttachedCaps.DeviceState[PowerSystemWorking])
{
/* Set D0<->S0 mapping */
AttachedCaps.DeviceState[PowerSystemWorking] = PowerDeviceD0;
}
/* Check if there's not an existing device state for S3 */
if (!AttachedCaps.DeviceState[PowerSystemShutdown])
{
/* Set D3<->S3 mapping */
AttachedCaps.DeviceState[PowerSystemShutdown] = PowerDeviceD3;
}
/* Check for a PDO with broken, or no, power capabilities */
if (PdoExtension->HackFlags & PCI_HACK_NO_PM_CAPS)
{
/* Unknown wake device states */
DeviceCapability->DeviceWake = PowerDeviceUnspecified;
DeviceCapability->SystemWake = PowerSystemUnspecified;
/* No device state support */
DeviceCapability->DeviceD1 = FALSE;
DeviceCapability->DeviceD2 = FALSE;
/* No waking from any low-power device state is supported */
DeviceCapability->WakeFromD0 = FALSE;
DeviceCapability->WakeFromD1 = FALSE;
DeviceCapability->WakeFromD2 = FALSE;
DeviceCapability->WakeFromD3 = FALSE;
/* For the rest, copy whatever the parent PDO had */
RtlCopyMemory(DeviceCapability->DeviceState,
AttachedCaps.DeviceState,
sizeof(DeviceCapability->DeviceState));
return STATUS_SUCCESS;
}
/* The PCI Device has power capabilities, so read which ones are supported */
DeviceCapability->DeviceD1 = PdoExtension->PowerCapabilities.Support.D1;
DeviceCapability->DeviceD2 = PdoExtension->PowerCapabilities.Support.D2;
DeviceCapability->WakeFromD0 = PdoExtension->PowerCapabilities.Support.PMED0;
DeviceCapability->WakeFromD1 = PdoExtension->PowerCapabilities.Support.PMED1;
DeviceCapability->WakeFromD2 = PdoExtension->PowerCapabilities.Support.PMED2;
/* Can the attached device wake from D3? */
if (AttachedCaps.DeviceWake != PowerDeviceD3)
{
/* It can't, so check if this PDO supports hot D3 wake */
DeviceCapability->WakeFromD3 = PdoExtension->PowerCapabilities.Support.PMED3Hot;
}
else
{
/* It can, is this the root bus? */
if (PCI_IS_ROOT_FDO(PdoExtension->ParentFdoExtension))
{
/* This is the root bus, so just check if it supports hot D3 wake */
DeviceCapability->WakeFromD3 = PdoExtension->PowerCapabilities.Support.PMED3Hot;
}
else
{
/* Take the minimums? -- need to check with briang at work */
UNIMPLEMENTED;
}
}
/* Now loop each system power state to determine its device state mapping */
for (CurrentState = PowerSystemWorking;
CurrentState < PowerSystemMaximum;
CurrentState++)
{
/* Read the current mapping from the attached device */
DevicePowerState = AttachedCaps.DeviceState[CurrentState];
NewPowerState = DevicePowerState;
/* The attachee supports D1, but this PDO does not */
if ((NewPowerState == PowerDeviceD1) &&
!(PdoExtension->PowerCapabilities.Support.D1))
{
/* Fall back to D2 */
NewPowerState = PowerDeviceD2;
}
/* The attachee supports D2, but this PDO does not */
if ((NewPowerState == PowerDeviceD2) &&
!(PdoExtension->PowerCapabilities.Support.D2))
{
/* Fall back to D3 */
NewPowerState = PowerDeviceD3;
}
/* Set the mapping based on the best state supported */
DeviceCapability->DeviceState[CurrentState] = NewPowerState;
/* Check if sleep states are being processed, and a mapping was found */
if ((CurrentState < PowerSystemHibernate) &&
(NewPowerState != PowerDeviceUnspecified))
{
/* Save this state as being the deepest one found until now */
DeepestWakeState = CurrentState;
}
/*
* Finally, check if the computed sleep state is within the states that
* this device can wake the system from, and if it's higher or equal to
* the sleep state mapping that came from the attachee, assuming that it
* had a valid mapping to begin with.
*
* It this is the case, then make sure that the computed sleep state is
* matched by the device's ability to actually wake from that state.
*
* For devices that support D3, the PCI device only needs Hot D3 as long
* as the attachee's state is less than D3. Otherwise, if the attachee
* might also be at D3, this would require a Cold D3 wake, so check that
* the device actually support this.
*/
if ((CurrentState < AttachedCaps.SystemWake) &&
(NewPowerState >= DevicePowerState) &&
(DevicePowerState != PowerDeviceUnspecified) &&
(((NewPowerState == PowerDeviceD0) && (DeviceCapability->WakeFromD0)) ||
((NewPowerState == PowerDeviceD1) && (DeviceCapability->WakeFromD1)) ||
((NewPowerState == PowerDeviceD2) && (DeviceCapability->WakeFromD2)) ||
((NewPowerState == PowerDeviceD3) &&
(PdoExtension->PowerCapabilities.Support.PMED3Hot) &&
((DevicePowerState < PowerDeviceD3) ||
(PdoExtension->PowerCapabilities.Support.PMED3Cold)))))
{
/* The mapping is valid, so this will be the lowest wake state */
SystemWakeState = CurrentState;
DeviceWakeState = NewPowerState;
}
}
/* Read the current wake level */
DeviceWakeLevel = PdoExtension->PowerState.DeviceWakeLevel;
/* Check if the attachee's wake levels are valid, and the PDO's is higher */
if ((AttachedCaps.SystemWake != PowerSystemUnspecified) &&
(AttachedCaps.DeviceWake != PowerDeviceUnspecified) &&
(DeviceWakeLevel != PowerDeviceUnspecified) &&
(DeviceWakeLevel >= AttachedCaps.DeviceWake))
{
/* Inherit the system wake from the attachee, and this PDO's wake level */
DeviceCapability->SystemWake = AttachedCaps.SystemWake;
DeviceCapability->DeviceWake = DeviceWakeLevel;
/* Now check if the wake level is D0, but the PDO doesn't support it */
if ((DeviceCapability->DeviceWake == PowerDeviceD0) &&
!(DeviceCapability->WakeFromD0))
{
/* Bump to D1 */
DeviceCapability->DeviceWake = PowerDeviceD1;
}
/* Now check if the wake level is D1, but the PDO doesn't support it */
if ((DeviceCapability->DeviceWake == PowerDeviceD1) &&
!(DeviceCapability->WakeFromD1))
{
/* Bump to D2 */
DeviceCapability->DeviceWake = PowerDeviceD2;
}
/* Now check if the wake level is D2, but the PDO doesn't support it */
if ((DeviceCapability->DeviceWake == PowerDeviceD2) &&
!(DeviceCapability->WakeFromD2))
{
/* Bump it to D3 */
DeviceCapability->DeviceWake = PowerDeviceD3;
}
/* Now check if the wake level is D3, but the PDO doesn't support it */
if ((DeviceCapability->DeviceWake == PowerDeviceD3) &&
!(DeviceCapability->WakeFromD3))
{
/* Then no valid wake state exists */
DeviceCapability->DeviceWake = PowerDeviceUnspecified;
DeviceCapability->SystemWake = PowerSystemUnspecified;
}
/* Check if no valid wake state was found */
if ((DeviceCapability->DeviceWake == PowerDeviceUnspecified) ||
(DeviceCapability->SystemWake == PowerSystemUnspecified))
{
/* Check if one was computed earlier */
if ((SystemWakeState != PowerSystemUnspecified) &&
(DeviceWakeState != PowerDeviceUnspecified))
{
/* Use the wake state that had been computed earlier */
DeviceCapability->DeviceWake = DeviceWakeState;
DeviceCapability->SystemWake = SystemWakeState;
/* If that state was D3, then the device supports Hot/Cold D3 */
if (DeviceWakeState == PowerDeviceD3) DeviceCapability->WakeFromD3 = TRUE;
}
}
/*
* Finally, check for off states (lower than S3, such as hibernate) and
* make sure that the device both supports waking from D3 as well as
* supports a Cold wake
*/
if ((DeviceCapability->SystemWake > PowerSystemSleeping3) &&
((DeviceCapability->DeviceWake != PowerDeviceD3) ||
!(PdoExtension->PowerCapabilities.Support.PMED3Cold)))
{
/* It doesn't, so pick the computed lowest wake state from earlier */
DeviceCapability->SystemWake = DeepestWakeState;
}
/* Set the PCI Specification mandated maximum latencies for transitions */
DeviceCapability->D1Latency = 0;
DeviceCapability->D2Latency = 2;
DeviceCapability->D3Latency = 100;
/* Sanity check */
ASSERT(DeviceCapability->DeviceState[PowerSystemWorking] == PowerDeviceD0);
}
else
{
/* No valid sleep states, no latencies to worry about */
DeviceCapability->D1Latency = 0;
DeviceCapability->D2Latency = 0;
DeviceCapability->D3Latency = 0;
}
/* This function always succeeds, even without power management support */
return STATUS_SUCCESS;
}
NTSTATUS
NTAPI
PciQueryCapabilities(IN PPCI_PDO_EXTENSION PdoExtension,
IN OUT PDEVICE_CAPABILITIES DeviceCapability)
{
NTSTATUS Status;
/* A PDO ID is never unique, and its address is its function and device */
DeviceCapability->UniqueID = FALSE;
DeviceCapability->Address = PdoExtension->Slot.u.bits.FunctionNumber |
(PdoExtension->Slot.u.bits.DeviceNumber << 16);
/* Check for host bridges */
if ((PdoExtension->BaseClass == PCI_CLASS_BRIDGE_DEV) &&
(PdoExtension->SubClass == PCI_SUBCLASS_BR_HOST))
{
/* Raw device opens to a host bridge are acceptable */
DeviceCapability->RawDeviceOK = TRUE;
}
else
{
/* Otherwise, other PDOs cannot be directly opened */
DeviceCapability->RawDeviceOK = FALSE;
}
/* PCI PDOs are pretty fixed things */
DeviceCapability->LockSupported = FALSE;
DeviceCapability->EjectSupported = FALSE;
DeviceCapability->Removable = FALSE;
DeviceCapability->DockDevice = FALSE;
/* The slot number is stored as a device property, go query it */
PciDetermineSlotNumber(PdoExtension, &DeviceCapability->UINumber);
/* Finally, query and power capabilities and convert them for PnP usage */
Status = PciQueryPowerCapabilities(PdoExtension, DeviceCapability);
/* Dump the capabilities if it all worked, and return the status */
if (NT_SUCCESS(Status)) PciDebugDumpQueryCapabilities(DeviceCapability);
return Status;
}
PCM_PARTIAL_RESOURCE_DESCRIPTOR
NTAPI
PciNextPartialDescriptor(PCM_PARTIAL_RESOURCE_DESCRIPTOR CmDescriptor)
{
PCM_PARTIAL_RESOURCE_DESCRIPTOR NextDescriptor;
/* Assume the descriptors are the fixed size ones */
NextDescriptor = CmDescriptor + 1;
/* But check if this is actually a variable-sized descriptor */
if (CmDescriptor->Type == CmResourceTypeDeviceSpecific)
{
/* Add the size of the variable section as well */
NextDescriptor = (PVOID)((ULONG_PTR)NextDescriptor +
CmDescriptor->u.DeviceSpecificData.DataSize);
}
/* Now the correct pointer has been computed, return it */
return NextDescriptor;
}
/* EOF */