reactos/dll/3rdparty/libpng/pngread.c

4209 lines
139 KiB
C

/* pngread.c - read a PNG file
*
* Last changed in libpng 1.6.32 [August 24, 2017]
* Copyright (c) 1998-2002,2004,2006-2017 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*
* This file contains routines that an application calls directly to
* read a PNG file or stream.
*/
#include "pngpriv.h"
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) && defined(PNG_STDIO_SUPPORTED)
# include <errno.h>
#endif
#ifdef PNG_READ_SUPPORTED
/* Create a PNG structure for reading, and allocate any memory needed. */
PNG_FUNCTION(png_structp,PNGAPI
png_create_read_struct,(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn),PNG_ALLOCATED)
{
#ifndef PNG_USER_MEM_SUPPORTED
png_structp png_ptr = png_create_png_struct(user_png_ver, error_ptr,
error_fn, warn_fn, NULL, NULL, NULL);
#else
return png_create_read_struct_2(user_png_ver, error_ptr, error_fn,
warn_fn, NULL, NULL, NULL);
}
/* Alternate create PNG structure for reading, and allocate any memory
* needed.
*/
PNG_FUNCTION(png_structp,PNGAPI
png_create_read_struct_2,(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED)
{
png_structp png_ptr = png_create_png_struct(user_png_ver, error_ptr,
error_fn, warn_fn, mem_ptr, malloc_fn, free_fn);
#endif /* USER_MEM */
if (png_ptr != NULL)
{
png_ptr->mode = PNG_IS_READ_STRUCT;
/* Added in libpng-1.6.0; this can be used to detect a read structure if
* required (it will be zero in a write structure.)
*/
# ifdef PNG_SEQUENTIAL_READ_SUPPORTED
png_ptr->IDAT_read_size = PNG_IDAT_READ_SIZE;
# endif
# ifdef PNG_BENIGN_READ_ERRORS_SUPPORTED
png_ptr->flags |= PNG_FLAG_BENIGN_ERRORS_WARN;
/* In stable builds only warn if an application error can be completely
* handled.
*/
# if PNG_RELEASE_BUILD
png_ptr->flags |= PNG_FLAG_APP_WARNINGS_WARN;
# endif
# endif
/* TODO: delay this, it can be done in png_init_io (if the app doesn't
* do it itself) avoiding setting the default function if it is not
* required.
*/
png_set_read_fn(png_ptr, NULL, NULL);
}
return png_ptr;
}
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read the information before the actual image data. This has been
* changed in v0.90 to allow reading a file that already has the magic
* bytes read from the stream. You can tell libpng how many bytes have
* been read from the beginning of the stream (up to the maximum of 8)
* via png_set_sig_bytes(), and we will only check the remaining bytes
* here. The application can then have access to the signature bytes we
* read if it is determined that this isn't a valid PNG file.
*/
void PNGAPI
png_read_info(png_structrp png_ptr, png_inforp info_ptr)
{
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
int keep;
#endif
png_debug(1, "in png_read_info");
if (png_ptr == NULL || info_ptr == NULL)
return;
/* Read and check the PNG file signature. */
png_read_sig(png_ptr, info_ptr);
for (;;)
{
png_uint_32 length = png_read_chunk_header(png_ptr);
png_uint_32 chunk_name = png_ptr->chunk_name;
/* IDAT logic needs to happen here to simplify getting the two flags
* right.
*/
if (chunk_name == png_IDAT)
{
if ((png_ptr->mode & PNG_HAVE_IHDR) == 0)
png_chunk_error(png_ptr, "Missing IHDR before IDAT");
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
(png_ptr->mode & PNG_HAVE_PLTE) == 0)
png_chunk_error(png_ptr, "Missing PLTE before IDAT");
else if ((png_ptr->mode & PNG_AFTER_IDAT) != 0)
png_chunk_benign_error(png_ptr, "Too many IDATs found");
png_ptr->mode |= PNG_HAVE_IDAT;
}
else if ((png_ptr->mode & PNG_HAVE_IDAT) != 0)
{
png_ptr->mode |= PNG_HAVE_CHUNK_AFTER_IDAT;
png_ptr->mode |= PNG_AFTER_IDAT;
}
/* This should be a binary subdivision search or a hash for
* matching the chunk name rather than a linear search.
*/
if (chunk_name == png_IHDR)
png_handle_IHDR(png_ptr, info_ptr, length);
else if (chunk_name == png_IEND)
png_handle_IEND(png_ptr, info_ptr, length);
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
else if ((keep = png_chunk_unknown_handling(png_ptr, chunk_name)) != 0)
{
png_handle_unknown(png_ptr, info_ptr, length, keep);
if (chunk_name == png_PLTE)
png_ptr->mode |= PNG_HAVE_PLTE;
else if (chunk_name == png_IDAT)
{
png_ptr->idat_size = 0; /* It has been consumed */
break;
}
}
#endif
else if (chunk_name == png_PLTE)
png_handle_PLTE(png_ptr, info_ptr, length);
else if (chunk_name == png_IDAT)
{
png_ptr->idat_size = length;
break;
}
#ifdef PNG_READ_bKGD_SUPPORTED
else if (chunk_name == png_bKGD)
png_handle_bKGD(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_cHRM_SUPPORTED
else if (chunk_name == png_cHRM)
png_handle_cHRM(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_eXIf_SUPPORTED
else if (chunk_name == png_eXIf)
png_handle_eXIf(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_gAMA_SUPPORTED
else if (chunk_name == png_gAMA)
png_handle_gAMA(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_hIST_SUPPORTED
else if (chunk_name == png_hIST)
png_handle_hIST(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_oFFs_SUPPORTED
else if (chunk_name == png_oFFs)
png_handle_oFFs(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_pCAL_SUPPORTED
else if (chunk_name == png_pCAL)
png_handle_pCAL(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_sCAL_SUPPORTED
else if (chunk_name == png_sCAL)
png_handle_sCAL(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_pHYs_SUPPORTED
else if (chunk_name == png_pHYs)
png_handle_pHYs(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_sBIT_SUPPORTED
else if (chunk_name == png_sBIT)
png_handle_sBIT(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_sRGB_SUPPORTED
else if (chunk_name == png_sRGB)
png_handle_sRGB(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_iCCP_SUPPORTED
else if (chunk_name == png_iCCP)
png_handle_iCCP(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_sPLT_SUPPORTED
else if (chunk_name == png_sPLT)
png_handle_sPLT(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_tEXt_SUPPORTED
else if (chunk_name == png_tEXt)
png_handle_tEXt(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_tIME_SUPPORTED
else if (chunk_name == png_tIME)
png_handle_tIME(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_tRNS_SUPPORTED
else if (chunk_name == png_tRNS)
png_handle_tRNS(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_zTXt_SUPPORTED
else if (chunk_name == png_zTXt)
png_handle_zTXt(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_iTXt_SUPPORTED
else if (chunk_name == png_iTXt)
png_handle_iTXt(png_ptr, info_ptr, length);
#endif
else
png_handle_unknown(png_ptr, info_ptr, length,
PNG_HANDLE_CHUNK_AS_DEFAULT);
}
}
#endif /* SEQUENTIAL_READ */
/* Optional call to update the users info_ptr structure */
void PNGAPI
png_read_update_info(png_structrp png_ptr, png_inforp info_ptr)
{
png_debug(1, "in png_read_update_info");
if (png_ptr != NULL)
{
if ((png_ptr->flags & PNG_FLAG_ROW_INIT) == 0)
{
png_read_start_row(png_ptr);
# ifdef PNG_READ_TRANSFORMS_SUPPORTED
png_read_transform_info(png_ptr, info_ptr);
# else
PNG_UNUSED(info_ptr)
# endif
}
/* New in 1.6.0 this avoids the bug of doing the initializations twice */
else
png_app_error(png_ptr,
"png_read_update_info/png_start_read_image: duplicate call");
}
}
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Initialize palette, background, etc, after transformations
* are set, but before any reading takes place. This allows
* the user to obtain a gamma-corrected palette, for example.
* If the user doesn't call this, we will do it ourselves.
*/
void PNGAPI
png_start_read_image(png_structrp png_ptr)
{
png_debug(1, "in png_start_read_image");
if (png_ptr != NULL)
{
if ((png_ptr->flags & PNG_FLAG_ROW_INIT) == 0)
png_read_start_row(png_ptr);
/* New in 1.6.0 this avoids the bug of doing the initializations twice */
else
png_app_error(png_ptr,
"png_start_read_image/png_read_update_info: duplicate call");
}
}
#endif /* SEQUENTIAL_READ */
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
#ifdef PNG_MNG_FEATURES_SUPPORTED
/* Undoes intrapixel differencing,
* NOTE: this is apparently only supported in the 'sequential' reader.
*/
static void
png_do_read_intrapixel(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_read_intrapixel");
if (
(row_info->color_type & PNG_COLOR_MASK_COLOR) != 0)
{
int bytes_per_pixel;
png_uint_32 row_width = row_info->width;
if (row_info->bit_depth == 8)
{
png_bytep rp;
png_uint_32 i;
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
bytes_per_pixel = 3;
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
bytes_per_pixel = 4;
else
return;
for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel)
{
*(rp) = (png_byte)((256 + *rp + *(rp + 1)) & 0xff);
*(rp+2) = (png_byte)((256 + *(rp + 2) + *(rp + 1)) & 0xff);
}
}
else if (row_info->bit_depth == 16)
{
png_bytep rp;
png_uint_32 i;
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
bytes_per_pixel = 6;
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
bytes_per_pixel = 8;
else
return;
for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel)
{
png_uint_32 s0 = (png_uint_32)(*(rp ) << 8) | *(rp + 1);
png_uint_32 s1 = (png_uint_32)(*(rp + 2) << 8) | *(rp + 3);
png_uint_32 s2 = (png_uint_32)(*(rp + 4) << 8) | *(rp + 5);
png_uint_32 red = (s0 + s1 + 65536) & 0xffff;
png_uint_32 blue = (s2 + s1 + 65536) & 0xffff;
*(rp ) = (png_byte)((red >> 8) & 0xff);
*(rp + 1) = (png_byte)(red & 0xff);
*(rp + 4) = (png_byte)((blue >> 8) & 0xff);
*(rp + 5) = (png_byte)(blue & 0xff);
}
}
}
}
#endif /* MNG_FEATURES */
void PNGAPI
png_read_row(png_structrp png_ptr, png_bytep row, png_bytep dsp_row)
{
png_row_info row_info;
if (png_ptr == NULL)
return;
png_debug2(1, "in png_read_row (row %lu, pass %d)",
(unsigned long)png_ptr->row_number, png_ptr->pass);
/* png_read_start_row sets the information (in particular iwidth) for this
* interlace pass.
*/
if ((png_ptr->flags & PNG_FLAG_ROW_INIT) == 0)
png_read_start_row(png_ptr);
/* 1.5.6: row_info moved out of png_struct to a local here. */
row_info.width = png_ptr->iwidth; /* NOTE: width of current interlaced row */
row_info.color_type = png_ptr->color_type;
row_info.bit_depth = png_ptr->bit_depth;
row_info.channels = png_ptr->channels;
row_info.pixel_depth = png_ptr->pixel_depth;
row_info.rowbytes = PNG_ROWBYTES(row_info.pixel_depth, row_info.width);
#ifdef PNG_WARNINGS_SUPPORTED
if (png_ptr->row_number == 0 && png_ptr->pass == 0)
{
/* Check for transforms that have been set but were defined out */
#if defined(PNG_WRITE_INVERT_SUPPORTED) && !defined(PNG_READ_INVERT_SUPPORTED)
if ((png_ptr->transformations & PNG_INVERT_MONO) != 0)
png_warning(png_ptr, "PNG_READ_INVERT_SUPPORTED is not defined");
#endif
#if defined(PNG_WRITE_FILLER_SUPPORTED) && !defined(PNG_READ_FILLER_SUPPORTED)
if ((png_ptr->transformations & PNG_FILLER) != 0)
png_warning(png_ptr, "PNG_READ_FILLER_SUPPORTED is not defined");
#endif
#if defined(PNG_WRITE_PACKSWAP_SUPPORTED) && \
!defined(PNG_READ_PACKSWAP_SUPPORTED)
if ((png_ptr->transformations & PNG_PACKSWAP) != 0)
png_warning(png_ptr, "PNG_READ_PACKSWAP_SUPPORTED is not defined");
#endif
#if defined(PNG_WRITE_PACK_SUPPORTED) && !defined(PNG_READ_PACK_SUPPORTED)
if ((png_ptr->transformations & PNG_PACK) != 0)
png_warning(png_ptr, "PNG_READ_PACK_SUPPORTED is not defined");
#endif
#if defined(PNG_WRITE_SHIFT_SUPPORTED) && !defined(PNG_READ_SHIFT_SUPPORTED)
if ((png_ptr->transformations & PNG_SHIFT) != 0)
png_warning(png_ptr, "PNG_READ_SHIFT_SUPPORTED is not defined");
#endif
#if defined(PNG_WRITE_BGR_SUPPORTED) && !defined(PNG_READ_BGR_SUPPORTED)
if ((png_ptr->transformations & PNG_BGR) != 0)
png_warning(png_ptr, "PNG_READ_BGR_SUPPORTED is not defined");
#endif
#if defined(PNG_WRITE_SWAP_SUPPORTED) && !defined(PNG_READ_SWAP_SUPPORTED)
if ((png_ptr->transformations & PNG_SWAP_BYTES) != 0)
png_warning(png_ptr, "PNG_READ_SWAP_SUPPORTED is not defined");
#endif
}
#endif /* WARNINGS */
#ifdef PNG_READ_INTERLACING_SUPPORTED
/* If interlaced and we do not need a new row, combine row and return.
* Notice that the pixels we have from previous rows have been transformed
* already; we can only combine like with like (transformed or
* untransformed) and, because of the libpng API for interlaced images, this
* means we must transform before de-interlacing.
*/
if (png_ptr->interlaced != 0 &&
(png_ptr->transformations & PNG_INTERLACE) != 0)
{
switch (png_ptr->pass)
{
case 0:
if (png_ptr->row_number & 0x07)
{
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row, 1/*display*/);
png_read_finish_row(png_ptr);
return;
}
break;
case 1:
if ((png_ptr->row_number & 0x07) || png_ptr->width < 5)
{
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row, 1/*display*/);
png_read_finish_row(png_ptr);
return;
}
break;
case 2:
if ((png_ptr->row_number & 0x07) != 4)
{
if (dsp_row != NULL && (png_ptr->row_number & 4))
png_combine_row(png_ptr, dsp_row, 1/*display*/);
png_read_finish_row(png_ptr);
return;
}
break;
case 3:
if ((png_ptr->row_number & 3) || png_ptr->width < 3)
{
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row, 1/*display*/);
png_read_finish_row(png_ptr);
return;
}
break;
case 4:
if ((png_ptr->row_number & 3) != 2)
{
if (dsp_row != NULL && (png_ptr->row_number & 2))
png_combine_row(png_ptr, dsp_row, 1/*display*/);
png_read_finish_row(png_ptr);
return;
}
break;
case 5:
if ((png_ptr->row_number & 1) || png_ptr->width < 2)
{
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row, 1/*display*/);
png_read_finish_row(png_ptr);
return;
}
break;
default:
case 6:
if ((png_ptr->row_number & 1) == 0)
{
png_read_finish_row(png_ptr);
return;
}
break;
}
}
#endif
if ((png_ptr->mode & PNG_HAVE_IDAT) == 0)
png_error(png_ptr, "Invalid attempt to read row data");
/* Fill the row with IDAT data: */
png_ptr->row_buf[0]=255; /* to force error if no data was found */
png_read_IDAT_data(png_ptr, png_ptr->row_buf, row_info.rowbytes + 1);
if (png_ptr->row_buf[0] > PNG_FILTER_VALUE_NONE)
{
if (png_ptr->row_buf[0] < PNG_FILTER_VALUE_LAST)
png_read_filter_row(png_ptr, &row_info, png_ptr->row_buf + 1,
png_ptr->prev_row + 1, png_ptr->row_buf[0]);
else
png_error(png_ptr, "bad adaptive filter value");
}
/* libpng 1.5.6: the following line was copying png_ptr->rowbytes before
* 1.5.6, while the buffer really is this big in current versions of libpng
* it may not be in the future, so this was changed just to copy the
* interlaced count:
*/
memcpy(png_ptr->prev_row, png_ptr->row_buf, row_info.rowbytes + 1);
#ifdef PNG_MNG_FEATURES_SUPPORTED
if ((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 &&
(png_ptr->filter_type == PNG_INTRAPIXEL_DIFFERENCING))
{
/* Intrapixel differencing */
png_do_read_intrapixel(&row_info, png_ptr->row_buf + 1);
}
#endif
#ifdef PNG_READ_TRANSFORMS_SUPPORTED
if (png_ptr->transformations)
png_do_read_transformations(png_ptr, &row_info);
#endif
/* The transformed pixel depth should match the depth now in row_info. */
if (png_ptr->transformed_pixel_depth == 0)
{
png_ptr->transformed_pixel_depth = row_info.pixel_depth;
if (row_info.pixel_depth > png_ptr->maximum_pixel_depth)
png_error(png_ptr, "sequential row overflow");
}
else if (png_ptr->transformed_pixel_depth != row_info.pixel_depth)
png_error(png_ptr, "internal sequential row size calculation error");
#ifdef PNG_READ_INTERLACING_SUPPORTED
/* Expand interlaced rows to full size */
if (png_ptr->interlaced != 0 &&
(png_ptr->transformations & PNG_INTERLACE) != 0)
{
if (png_ptr->pass < 6)
png_do_read_interlace(&row_info, png_ptr->row_buf + 1, png_ptr->pass,
png_ptr->transformations);
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row, 1/*display*/);
if (row != NULL)
png_combine_row(png_ptr, row, 0/*row*/);
}
else
#endif
{
if (row != NULL)
png_combine_row(png_ptr, row, -1/*ignored*/);
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row, -1/*ignored*/);
}
png_read_finish_row(png_ptr);
if (png_ptr->read_row_fn != NULL)
(*(png_ptr->read_row_fn))(png_ptr, png_ptr->row_number, png_ptr->pass);
}
#endif /* SEQUENTIAL_READ */
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read one or more rows of image data. If the image is interlaced,
* and png_set_interlace_handling() has been called, the rows need to
* contain the contents of the rows from the previous pass. If the
* image has alpha or transparency, and png_handle_alpha()[*] has been
* called, the rows contents must be initialized to the contents of the
* screen.
*
* "row" holds the actual image, and pixels are placed in it
* as they arrive. If the image is displayed after each pass, it will
* appear to "sparkle" in. "display_row" can be used to display a
* "chunky" progressive image, with finer detail added as it becomes
* available. If you do not want this "chunky" display, you may pass
* NULL for display_row. If you do not want the sparkle display, and
* you have not called png_handle_alpha(), you may pass NULL for rows.
* If you have called png_handle_alpha(), and the image has either an
* alpha channel or a transparency chunk, you must provide a buffer for
* rows. In this case, you do not have to provide a display_row buffer
* also, but you may. If the image is not interlaced, or if you have
* not called png_set_interlace_handling(), the display_row buffer will
* be ignored, so pass NULL to it.
*
* [*] png_handle_alpha() does not exist yet, as of this version of libpng
*/
void PNGAPI
png_read_rows(png_structrp png_ptr, png_bytepp row,
png_bytepp display_row, png_uint_32 num_rows)
{
png_uint_32 i;
png_bytepp rp;
png_bytepp dp;
png_debug(1, "in png_read_rows");
if (png_ptr == NULL)
return;
rp = row;
dp = display_row;
if (rp != NULL && dp != NULL)
for (i = 0; i < num_rows; i++)
{
png_bytep rptr = *rp++;
png_bytep dptr = *dp++;
png_read_row(png_ptr, rptr, dptr);
}
else if (rp != NULL)
for (i = 0; i < num_rows; i++)
{
png_bytep rptr = *rp;
png_read_row(png_ptr, rptr, NULL);
rp++;
}
else if (dp != NULL)
for (i = 0; i < num_rows; i++)
{
png_bytep dptr = *dp;
png_read_row(png_ptr, NULL, dptr);
dp++;
}
}
#endif /* SEQUENTIAL_READ */
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read the entire image. If the image has an alpha channel or a tRNS
* chunk, and you have called png_handle_alpha()[*], you will need to
* initialize the image to the current image that PNG will be overlaying.
* We set the num_rows again here, in case it was incorrectly set in
* png_read_start_row() by a call to png_read_update_info() or
* png_start_read_image() if png_set_interlace_handling() wasn't called
* prior to either of these functions like it should have been. You can
* only call this function once. If you desire to have an image for
* each pass of a interlaced image, use png_read_rows() instead.
*
* [*] png_handle_alpha() does not exist yet, as of this version of libpng
*/
void PNGAPI
png_read_image(png_structrp png_ptr, png_bytepp image)
{
png_uint_32 i, image_height;
int pass, j;
png_bytepp rp;
png_debug(1, "in png_read_image");
if (png_ptr == NULL)
return;
#ifdef PNG_READ_INTERLACING_SUPPORTED
if ((png_ptr->flags & PNG_FLAG_ROW_INIT) == 0)
{
pass = png_set_interlace_handling(png_ptr);
/* And make sure transforms are initialized. */
png_start_read_image(png_ptr);
}
else
{
if (png_ptr->interlaced != 0 &&
(png_ptr->transformations & PNG_INTERLACE) == 0)
{
/* Caller called png_start_read_image or png_read_update_info without
* first turning on the PNG_INTERLACE transform. We can fix this here,
* but the caller should do it!
*/
png_warning(png_ptr, "Interlace handling should be turned on when "
"using png_read_image");
/* Make sure this is set correctly */
png_ptr->num_rows = png_ptr->height;
}
/* Obtain the pass number, which also turns on the PNG_INTERLACE flag in
* the above error case.
*/
pass = png_set_interlace_handling(png_ptr);
}
#else
if (png_ptr->interlaced)
png_error(png_ptr,
"Cannot read interlaced image -- interlace handler disabled");
pass = 1;
#endif
image_height=png_ptr->height;
for (j = 0; j < pass; j++)
{
rp = image;
for (i = 0; i < image_height; i++)
{
png_read_row(png_ptr, *rp, NULL);
rp++;
}
}
}
#endif /* SEQUENTIAL_READ */
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read the end of the PNG file. Will not read past the end of the
* file, will verify the end is accurate, and will read any comments
* or time information at the end of the file, if info is not NULL.
*/
void PNGAPI
png_read_end(png_structrp png_ptr, png_inforp info_ptr)
{
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
int keep;
#endif
png_debug(1, "in png_read_end");
if (png_ptr == NULL)
return;
/* If png_read_end is called in the middle of reading the rows there may
* still be pending IDAT data and an owned zstream. Deal with this here.
*/
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
if (png_chunk_unknown_handling(png_ptr, png_IDAT) == 0)
#endif
png_read_finish_IDAT(png_ptr);
#ifdef PNG_READ_CHECK_FOR_INVALID_INDEX_SUPPORTED
/* Report invalid palette index; added at libng-1.5.10 */
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
png_ptr->num_palette_max > png_ptr->num_palette)
png_benign_error(png_ptr, "Read palette index exceeding num_palette");
#endif
do
{
png_uint_32 length = png_read_chunk_header(png_ptr);
png_uint_32 chunk_name = png_ptr->chunk_name;
if (chunk_name != png_IDAT)
png_ptr->mode |= PNG_HAVE_CHUNK_AFTER_IDAT;
if (chunk_name == png_IEND)
png_handle_IEND(png_ptr, info_ptr, length);
else if (chunk_name == png_IHDR)
png_handle_IHDR(png_ptr, info_ptr, length);
else if (info_ptr == NULL)
png_crc_finish(png_ptr, length);
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
else if ((keep = png_chunk_unknown_handling(png_ptr, chunk_name)) != 0)
{
if (chunk_name == png_IDAT)
{
if ((length > 0 && !(png_ptr->flags & PNG_FLAG_ZSTREAM_ENDED))
|| (png_ptr->mode & PNG_HAVE_CHUNK_AFTER_IDAT) != 0)
png_benign_error(png_ptr, ".Too many IDATs found");
}
png_handle_unknown(png_ptr, info_ptr, length, keep);
if (chunk_name == png_PLTE)
png_ptr->mode |= PNG_HAVE_PLTE;
}
#endif
else if (chunk_name == png_IDAT)
{
/* Zero length IDATs are legal after the last IDAT has been
* read, but not after other chunks have been read. 1.6 does not
* always read all the deflate data; specifically it cannot be relied
* upon to read the Adler32 at the end. If it doesn't ignore IDAT
* chunks which are longer than zero as well:
*/
if ((length > 0 && !(png_ptr->flags & PNG_FLAG_ZSTREAM_ENDED))
|| (png_ptr->mode & PNG_HAVE_CHUNK_AFTER_IDAT) != 0)
png_benign_error(png_ptr, "..Too many IDATs found");
png_crc_finish(png_ptr, length);
}
else if (chunk_name == png_PLTE)
png_handle_PLTE(png_ptr, info_ptr, length);
#ifdef PNG_READ_bKGD_SUPPORTED
else if (chunk_name == png_bKGD)
png_handle_bKGD(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_cHRM_SUPPORTED
else if (chunk_name == png_cHRM)
png_handle_cHRM(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_eXIf_SUPPORTED
else if (chunk_name == png_eXIf)
png_handle_eXIf(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_gAMA_SUPPORTED
else if (chunk_name == png_gAMA)
png_handle_gAMA(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_hIST_SUPPORTED
else if (chunk_name == png_hIST)
png_handle_hIST(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_oFFs_SUPPORTED
else if (chunk_name == png_oFFs)
png_handle_oFFs(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_pCAL_SUPPORTED
else if (chunk_name == png_pCAL)
png_handle_pCAL(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_sCAL_SUPPORTED
else if (chunk_name == png_sCAL)
png_handle_sCAL(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_pHYs_SUPPORTED
else if (chunk_name == png_pHYs)
png_handle_pHYs(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_sBIT_SUPPORTED
else if (chunk_name == png_sBIT)
png_handle_sBIT(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_sRGB_SUPPORTED
else if (chunk_name == png_sRGB)
png_handle_sRGB(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_iCCP_SUPPORTED
else if (chunk_name == png_iCCP)
png_handle_iCCP(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_sPLT_SUPPORTED
else if (chunk_name == png_sPLT)
png_handle_sPLT(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_tEXt_SUPPORTED
else if (chunk_name == png_tEXt)
png_handle_tEXt(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_tIME_SUPPORTED
else if (chunk_name == png_tIME)
png_handle_tIME(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_tRNS_SUPPORTED
else if (chunk_name == png_tRNS)
png_handle_tRNS(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_zTXt_SUPPORTED
else if (chunk_name == png_zTXt)
png_handle_zTXt(png_ptr, info_ptr, length);
#endif
#ifdef PNG_READ_iTXt_SUPPORTED
else if (chunk_name == png_iTXt)
png_handle_iTXt(png_ptr, info_ptr, length);
#endif
else
png_handle_unknown(png_ptr, info_ptr, length,
PNG_HANDLE_CHUNK_AS_DEFAULT);
} while ((png_ptr->mode & PNG_HAVE_IEND) == 0);
}
#endif /* SEQUENTIAL_READ */
/* Free all memory used in the read struct */
static void
png_read_destroy(png_structrp png_ptr)
{
png_debug(1, "in png_read_destroy");
#ifdef PNG_READ_GAMMA_SUPPORTED
png_destroy_gamma_table(png_ptr);
#endif
png_free(png_ptr, png_ptr->big_row_buf);
png_ptr->big_row_buf = NULL;
png_free(png_ptr, png_ptr->big_prev_row);
png_ptr->big_prev_row = NULL;
png_free(png_ptr, png_ptr->read_buffer);
png_ptr->read_buffer = NULL;
#ifdef PNG_READ_QUANTIZE_SUPPORTED
png_free(png_ptr, png_ptr->palette_lookup);
png_ptr->palette_lookup = NULL;
png_free(png_ptr, png_ptr->quantize_index);
png_ptr->quantize_index = NULL;
#endif
if ((png_ptr->free_me & PNG_FREE_PLTE) != 0)
{
png_zfree(png_ptr, png_ptr->palette);
png_ptr->palette = NULL;
}
png_ptr->free_me &= ~PNG_FREE_PLTE;
#if defined(PNG_tRNS_SUPPORTED) || \
defined(PNG_READ_EXPAND_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
if ((png_ptr->free_me & PNG_FREE_TRNS) != 0)
{
png_free(png_ptr, png_ptr->trans_alpha);
png_ptr->trans_alpha = NULL;
}
png_ptr->free_me &= ~PNG_FREE_TRNS;
#endif
inflateEnd(&png_ptr->zstream);
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
png_free(png_ptr, png_ptr->save_buffer);
png_ptr->save_buffer = NULL;
#endif
#if defined(PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED) && \
defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED)
png_free(png_ptr, png_ptr->unknown_chunk.data);
png_ptr->unknown_chunk.data = NULL;
#endif
#ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED
png_free(png_ptr, png_ptr->chunk_list);
png_ptr->chunk_list = NULL;
#endif
/* NOTE: the 'setjmp' buffer may still be allocated and the memory and error
* callbacks are still set at this point. They are required to complete the
* destruction of the png_struct itself.
*/
}
/* Free all memory used by the read */
void PNGAPI
png_destroy_read_struct(png_structpp png_ptr_ptr, png_infopp info_ptr_ptr,
png_infopp end_info_ptr_ptr)
{
png_structrp png_ptr = NULL;
png_debug(1, "in png_destroy_read_struct");
if (png_ptr_ptr != NULL)
png_ptr = *png_ptr_ptr;
if (png_ptr == NULL)
return;
/* libpng 1.6.0: use the API to destroy info structs to ensure consistent
* behavior. Prior to 1.6.0 libpng did extra 'info' destruction in this API.
* The extra was, apparently, unnecessary yet this hides memory leak bugs.
*/
png_destroy_info_struct(png_ptr, end_info_ptr_ptr);
png_destroy_info_struct(png_ptr, info_ptr_ptr);
*png_ptr_ptr = NULL;
png_read_destroy(png_ptr);
png_destroy_png_struct(png_ptr);
}
void PNGAPI
png_set_read_status_fn(png_structrp png_ptr, png_read_status_ptr read_row_fn)
{
if (png_ptr == NULL)
return;
png_ptr->read_row_fn = read_row_fn;
}
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
#ifdef PNG_INFO_IMAGE_SUPPORTED
void PNGAPI
png_read_png(png_structrp png_ptr, png_inforp info_ptr,
int transforms, voidp params)
{
if (png_ptr == NULL || info_ptr == NULL)
return;
/* png_read_info() gives us all of the information from the
* PNG file before the first IDAT (image data chunk).
*/
png_read_info(png_ptr, info_ptr);
if (info_ptr->height > PNG_UINT_32_MAX/(sizeof (png_bytep)))
png_error(png_ptr, "Image is too high to process with png_read_png()");
/* -------------- image transformations start here ------------------- */
/* libpng 1.6.10: add code to cause a png_app_error if a selected TRANSFORM
* is not implemented. This will only happen in de-configured (non-default)
* libpng builds. The results can be unexpected - png_read_png may return
* short or mal-formed rows because the transform is skipped.
*/
/* Tell libpng to strip 16-bit/color files down to 8 bits per color.
*/
if ((transforms & PNG_TRANSFORM_SCALE_16) != 0)
/* Added at libpng-1.5.4. "strip_16" produces the same result that it
* did in earlier versions, while "scale_16" is now more accurate.
*/
#ifdef PNG_READ_SCALE_16_TO_8_SUPPORTED
png_set_scale_16(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_SCALE_16 not supported");
#endif
/* If both SCALE and STRIP are required pngrtran will effectively cancel the
* latter by doing SCALE first. This is ok and allows apps not to check for
* which is supported to get the right answer.
*/
if ((transforms & PNG_TRANSFORM_STRIP_16) != 0)
#ifdef PNG_READ_STRIP_16_TO_8_SUPPORTED
png_set_strip_16(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_STRIP_16 not supported");
#endif
/* Strip alpha bytes from the input data without combining with
* the background (not recommended).
*/
if ((transforms & PNG_TRANSFORM_STRIP_ALPHA) != 0)
#ifdef PNG_READ_STRIP_ALPHA_SUPPORTED
png_set_strip_alpha(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_STRIP_ALPHA not supported");
#endif
/* Extract multiple pixels with bit depths of 1, 2, or 4 from a single
* byte into separate bytes (useful for paletted and grayscale images).
*/
if ((transforms & PNG_TRANSFORM_PACKING) != 0)
#ifdef PNG_READ_PACK_SUPPORTED
png_set_packing(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_PACKING not supported");
#endif
/* Change the order of packed pixels to least significant bit first
* (not useful if you are using png_set_packing).
*/
if ((transforms & PNG_TRANSFORM_PACKSWAP) != 0)
#ifdef PNG_READ_PACKSWAP_SUPPORTED
png_set_packswap(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_PACKSWAP not supported");
#endif
/* Expand paletted colors into true RGB triplets
* Expand grayscale images to full 8 bits from 1, 2, or 4 bits/pixel
* Expand paletted or RGB images with transparency to full alpha
* channels so the data will be available as RGBA quartets.
*/
if ((transforms & PNG_TRANSFORM_EXPAND) != 0)
#ifdef PNG_READ_EXPAND_SUPPORTED
png_set_expand(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_EXPAND not supported");
#endif
/* We don't handle background color or gamma transformation or quantizing.
*/
/* Invert monochrome files to have 0 as white and 1 as black
*/
if ((transforms & PNG_TRANSFORM_INVERT_MONO) != 0)
#ifdef PNG_READ_INVERT_SUPPORTED
png_set_invert_mono(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_INVERT_MONO not supported");
#endif
/* If you want to shift the pixel values from the range [0,255] or
* [0,65535] to the original [0,7] or [0,31], or whatever range the
* colors were originally in:
*/
if ((transforms & PNG_TRANSFORM_SHIFT) != 0)
#ifdef PNG_READ_SHIFT_SUPPORTED
if ((info_ptr->valid & PNG_INFO_sBIT) != 0)
png_set_shift(png_ptr, &info_ptr->sig_bit);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_SHIFT not supported");
#endif
/* Flip the RGB pixels to BGR (or RGBA to BGRA) */
if ((transforms & PNG_TRANSFORM_BGR) != 0)
#ifdef PNG_READ_BGR_SUPPORTED
png_set_bgr(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_BGR not supported");
#endif
/* Swap the RGBA or GA data to ARGB or AG (or BGRA to ABGR) */
if ((transforms & PNG_TRANSFORM_SWAP_ALPHA) != 0)
#ifdef PNG_READ_SWAP_ALPHA_SUPPORTED
png_set_swap_alpha(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_SWAP_ALPHA not supported");
#endif
/* Swap bytes of 16-bit files to least significant byte first */
if ((transforms & PNG_TRANSFORM_SWAP_ENDIAN) != 0)
#ifdef PNG_READ_SWAP_SUPPORTED
png_set_swap(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_SWAP_ENDIAN not supported");
#endif
/* Added at libpng-1.2.41 */
/* Invert the alpha channel from opacity to transparency */
if ((transforms & PNG_TRANSFORM_INVERT_ALPHA) != 0)
#ifdef PNG_READ_INVERT_ALPHA_SUPPORTED
png_set_invert_alpha(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_INVERT_ALPHA not supported");
#endif
/* Added at libpng-1.2.41 */
/* Expand grayscale image to RGB */
if ((transforms & PNG_TRANSFORM_GRAY_TO_RGB) != 0)
#ifdef PNG_READ_GRAY_TO_RGB_SUPPORTED
png_set_gray_to_rgb(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_GRAY_TO_RGB not supported");
#endif
/* Added at libpng-1.5.4 */
if ((transforms & PNG_TRANSFORM_EXPAND_16) != 0)
#ifdef PNG_READ_EXPAND_16_SUPPORTED
png_set_expand_16(png_ptr);
#else
png_app_error(png_ptr, "PNG_TRANSFORM_EXPAND_16 not supported");
#endif
/* We don't handle adding filler bytes */
/* We use png_read_image and rely on that for interlace handling, but we also
* call png_read_update_info therefore must turn on interlace handling now:
*/
(void)png_set_interlace_handling(png_ptr);
/* Optional call to gamma correct and add the background to the palette
* and update info structure. REQUIRED if you are expecting libpng to
* update the palette for you (i.e., you selected such a transform above).
*/
png_read_update_info(png_ptr, info_ptr);
/* -------------- image transformations end here ------------------- */
png_free_data(png_ptr, info_ptr, PNG_FREE_ROWS, 0);
if (info_ptr->row_pointers == NULL)
{
png_uint_32 iptr;
info_ptr->row_pointers = png_voidcast(png_bytepp, png_malloc(png_ptr,
info_ptr->height * (sizeof (png_bytep))));
for (iptr=0; iptr<info_ptr->height; iptr++)
info_ptr->row_pointers[iptr] = NULL;
info_ptr->free_me |= PNG_FREE_ROWS;
for (iptr = 0; iptr < info_ptr->height; iptr++)
info_ptr->row_pointers[iptr] = png_voidcast(png_bytep,
png_malloc(png_ptr, info_ptr->rowbytes));
}
png_read_image(png_ptr, info_ptr->row_pointers);
info_ptr->valid |= PNG_INFO_IDAT;
/* Read rest of file, and get additional chunks in info_ptr - REQUIRED */
png_read_end(png_ptr, info_ptr);
PNG_UNUSED(params)
}
#endif /* INFO_IMAGE */
#endif /* SEQUENTIAL_READ */
#ifdef PNG_SIMPLIFIED_READ_SUPPORTED
/* SIMPLIFIED READ
*
* This code currently relies on the sequential reader, though it could easily
* be made to work with the progressive one.
*/
/* Arguments to png_image_finish_read: */
/* Encoding of PNG data (used by the color-map code) */
# define P_NOTSET 0 /* File encoding not yet known */
# define P_sRGB 1 /* 8-bit encoded to sRGB gamma */
# define P_LINEAR 2 /* 16-bit linear: not encoded, NOT pre-multiplied! */
# define P_FILE 3 /* 8-bit encoded to file gamma, not sRGB or linear */
# define P_LINEAR8 4 /* 8-bit linear: only from a file value */
/* Color-map processing: after libpng has run on the PNG image further
* processing may be needed to convert the data to color-map indices.
*/
#define PNG_CMAP_NONE 0
#define PNG_CMAP_GA 1 /* Process GA data to a color-map with alpha */
#define PNG_CMAP_TRANS 2 /* Process GA data to a background index */
#define PNG_CMAP_RGB 3 /* Process RGB data */
#define PNG_CMAP_RGB_ALPHA 4 /* Process RGBA data */
/* The following document where the background is for each processing case. */
#define PNG_CMAP_NONE_BACKGROUND 256
#define PNG_CMAP_GA_BACKGROUND 231
#define PNG_CMAP_TRANS_BACKGROUND 254
#define PNG_CMAP_RGB_BACKGROUND 256
#define PNG_CMAP_RGB_ALPHA_BACKGROUND 216
typedef struct
{
/* Arguments: */
png_imagep image;
png_voidp buffer;
png_int_32 row_stride;
png_voidp colormap;
png_const_colorp background;
/* Local variables: */
png_voidp local_row;
png_voidp first_row;
ptrdiff_t row_bytes; /* step between rows */
int file_encoding; /* E_ values above */
png_fixed_point gamma_to_linear; /* For P_FILE, reciprocal of gamma */
int colormap_processing; /* PNG_CMAP_ values above */
} png_image_read_control;
/* Do all the *safe* initialization - 'safe' means that png_error won't be
* called, so setting up the jmp_buf is not required. This means that anything
* called from here must *not* call png_malloc - it has to call png_malloc_warn
* instead so that control is returned safely back to this routine.
*/
static int
png_image_read_init(png_imagep image)
{
if (image->opaque == NULL)
{
png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, image,
png_safe_error, png_safe_warning);
/* And set the rest of the structure to NULL to ensure that the various
* fields are consistent.
*/
memset(image, 0, (sizeof *image));
image->version = PNG_IMAGE_VERSION;
if (png_ptr != NULL)
{
png_infop info_ptr = png_create_info_struct(png_ptr);
if (info_ptr != NULL)
{
png_controlp control = png_voidcast(png_controlp,
png_malloc_warn(png_ptr, (sizeof *control)));
if (control != NULL)
{
memset(control, 0, (sizeof *control));
control->png_ptr = png_ptr;
control->info_ptr = info_ptr;
control->for_write = 0;
image->opaque = control;
return 1;
}
/* Error clean up */
png_destroy_info_struct(png_ptr, &info_ptr);
}
png_destroy_read_struct(&png_ptr, NULL, NULL);
}
return png_image_error(image, "png_image_read: out of memory");
}
return png_image_error(image, "png_image_read: opaque pointer not NULL");
}
/* Utility to find the base format of a PNG file from a png_struct. */
static png_uint_32
png_image_format(png_structrp png_ptr)
{
png_uint_32 format = 0;
if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0)
format |= PNG_FORMAT_FLAG_COLOR;
if ((png_ptr->color_type & PNG_COLOR_MASK_ALPHA) != 0)
format |= PNG_FORMAT_FLAG_ALPHA;
/* Use png_ptr here, not info_ptr, because by examination png_handle_tRNS
* sets the png_struct fields; that's all we are interested in here. The
* precise interaction with an app call to png_set_tRNS and PNG file reading
* is unclear.
*/
else if (png_ptr->num_trans > 0)
format |= PNG_FORMAT_FLAG_ALPHA;
if (png_ptr->bit_depth == 16)
format |= PNG_FORMAT_FLAG_LINEAR;
if ((png_ptr->color_type & PNG_COLOR_MASK_PALETTE) != 0)
format |= PNG_FORMAT_FLAG_COLORMAP;
return format;
}
/* Is the given gamma significantly different from sRGB? The test is the same
* one used in pngrtran.c when deciding whether to do gamma correction. The
* arithmetic optimizes the division by using the fact that the inverse of the
* file sRGB gamma is 2.2
*/
static int
png_gamma_not_sRGB(png_fixed_point g)
{
if (g < PNG_FP_1)
{
/* An uninitialized gamma is assumed to be sRGB for the simplified API. */
if (g == 0)
return 0;
return png_gamma_significant((g * 11 + 2)/5 /* i.e. *2.2, rounded */);
}
return 1;
}
/* Do the main body of a 'png_image_begin_read' function; read the PNG file
* header and fill in all the information. This is executed in a safe context,
* unlike the init routine above.
*/
static int
png_image_read_header(png_voidp argument)
{
png_imagep image = png_voidcast(png_imagep, argument);
png_structrp png_ptr = image->opaque->png_ptr;
png_inforp info_ptr = image->opaque->info_ptr;
#ifdef PNG_BENIGN_ERRORS_SUPPORTED
png_set_benign_errors(png_ptr, 1/*warn*/);
#endif
png_read_info(png_ptr, info_ptr);
/* Do this the fast way; just read directly out of png_struct. */
image->width = png_ptr->width;
image->height = png_ptr->height;
{
png_uint_32 format = png_image_format(png_ptr);
image->format = format;
#ifdef PNG_COLORSPACE_SUPPORTED
/* Does the colorspace match sRGB? If there is no color endpoint
* (colorant) information assume yes, otherwise require the
* 'ENDPOINTS_MATCHP_sRGB' colorspace flag to have been set. If the
* colorspace has been determined to be invalid ignore it.
*/
if ((format & PNG_FORMAT_FLAG_COLOR) != 0 && ((png_ptr->colorspace.flags
& (PNG_COLORSPACE_HAVE_ENDPOINTS|PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB|
PNG_COLORSPACE_INVALID)) == PNG_COLORSPACE_HAVE_ENDPOINTS))
image->flags |= PNG_IMAGE_FLAG_COLORSPACE_NOT_sRGB;
#endif
}
/* We need the maximum number of entries regardless of the format the
* application sets here.
*/
{
png_uint_32 cmap_entries;
switch (png_ptr->color_type)
{
case PNG_COLOR_TYPE_GRAY:
cmap_entries = 1U << png_ptr->bit_depth;
break;
case PNG_COLOR_TYPE_PALETTE:
cmap_entries = (png_uint_32)png_ptr->num_palette;
break;
default:
cmap_entries = 256;
break;
}
if (cmap_entries > 256)
cmap_entries = 256;
image->colormap_entries = cmap_entries;
}
return 1;
}
#ifdef PNG_STDIO_SUPPORTED
int PNGAPI
png_image_begin_read_from_stdio(png_imagep image, FILE* file)
{
if (image != NULL && image->version == PNG_IMAGE_VERSION)
{
if (file != NULL)
{
if (png_image_read_init(image) != 0)
{
/* This is slightly evil, but png_init_io doesn't do anything other
* than this and we haven't changed the standard IO functions so
* this saves a 'safe' function.
*/
image->opaque->png_ptr->io_ptr = file;
return png_safe_execute(image, png_image_read_header, image);
}
}
else
return png_image_error(image,
"png_image_begin_read_from_stdio: invalid argument");
}
else if (image != NULL)
return png_image_error(image,
"png_image_begin_read_from_stdio: incorrect PNG_IMAGE_VERSION");
return 0;
}
int PNGAPI
png_image_begin_read_from_file(png_imagep image, const char *file_name)
{
if (image != NULL && image->version == PNG_IMAGE_VERSION)
{
if (file_name != NULL)
{
FILE *fp = fopen(file_name, "rb");
if (fp != NULL)
{
if (png_image_read_init(image) != 0)
{
image->opaque->png_ptr->io_ptr = fp;
image->opaque->owned_file = 1;
return png_safe_execute(image, png_image_read_header, image);
}
/* Clean up: just the opened file. */
(void)fclose(fp);
}
else
return png_image_error(image, strerror(errno));
}
else
return png_image_error(image,
"png_image_begin_read_from_file: invalid argument");
}
else if (image != NULL)
return png_image_error(image,
"png_image_begin_read_from_file: incorrect PNG_IMAGE_VERSION");
return 0;
}
#endif /* STDIO */
static void PNGCBAPI
png_image_memory_read(png_structp png_ptr, png_bytep out, png_size_t need)
{
if (png_ptr != NULL)
{
png_imagep image = png_voidcast(png_imagep, png_ptr->io_ptr);
if (image != NULL)
{
png_controlp cp = image->opaque;
if (cp != NULL)
{
png_const_bytep memory = cp->memory;
png_size_t size = cp->size;
if (memory != NULL && size >= need)
{
memcpy(out, memory, need);
cp->memory = memory + need;
cp->size = size - need;
return;
}
png_error(png_ptr, "read beyond end of data");
}
}
png_error(png_ptr, "invalid memory read");
}
}
int PNGAPI png_image_begin_read_from_memory(png_imagep image,
png_const_voidp memory, png_size_t size)
{
if (image != NULL && image->version == PNG_IMAGE_VERSION)
{
if (memory != NULL && size > 0)
{
if (png_image_read_init(image) != 0)
{
/* Now set the IO functions to read from the memory buffer and
* store it into io_ptr. Again do this in-place to avoid calling a
* libpng function that requires error handling.
*/
image->opaque->memory = png_voidcast(png_const_bytep, memory);
image->opaque->size = size;
image->opaque->png_ptr->io_ptr = image;
image->opaque->png_ptr->read_data_fn = png_image_memory_read;
return png_safe_execute(image, png_image_read_header, image);
}
}
else
return png_image_error(image,
"png_image_begin_read_from_memory: invalid argument");
}
else if (image != NULL)
return png_image_error(image,
"png_image_begin_read_from_memory: incorrect PNG_IMAGE_VERSION");
return 0;
}
/* Utility function to skip chunks that are not used by the simplified image
* read functions and an appropriate macro to call it.
*/
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
static void
png_image_skip_unused_chunks(png_structrp png_ptr)
{
/* Prepare the reader to ignore all recognized chunks whose data will not
* be used, i.e., all chunks recognized by libpng except for those
* involved in basic image reading:
*
* IHDR, PLTE, IDAT, IEND
*
* Or image data handling:
*
* tRNS, bKGD, gAMA, cHRM, sRGB, [iCCP] and sBIT.
*
* This provides a small performance improvement and eliminates any
* potential vulnerability to security problems in the unused chunks.
*
* At present the iCCP chunk data isn't used, so iCCP chunk can be ignored
* too. This allows the simplified API to be compiled without iCCP support,
* however if the support is there the chunk is still checked to detect
* errors (which are unfortunately quite common.)
*/
{
static PNG_CONST png_byte chunks_to_process[] = {
98, 75, 71, 68, '\0', /* bKGD */
99, 72, 82, 77, '\0', /* cHRM */
103, 65, 77, 65, '\0', /* gAMA */
# ifdef PNG_READ_iCCP_SUPPORTED
105, 67, 67, 80, '\0', /* iCCP */
# endif
115, 66, 73, 84, '\0', /* sBIT */
115, 82, 71, 66, '\0', /* sRGB */
};
/* Ignore unknown chunks and all other chunks except for the
* IHDR, PLTE, tRNS, IDAT, and IEND chunks.
*/
png_set_keep_unknown_chunks(png_ptr, PNG_HANDLE_CHUNK_NEVER,
NULL, -1);
/* But do not ignore image data handling chunks */
png_set_keep_unknown_chunks(png_ptr, PNG_HANDLE_CHUNK_AS_DEFAULT,
chunks_to_process, (int)/*SAFE*/(sizeof chunks_to_process)/5);
}
}
# define PNG_SKIP_CHUNKS(p) png_image_skip_unused_chunks(p)
#else
# define PNG_SKIP_CHUNKS(p) ((void)0)
#endif /* HANDLE_AS_UNKNOWN */
/* The following macro gives the exact rounded answer for all values in the
* range 0..255 (it actually divides by 51.2, but the rounding still generates
* the correct numbers 0..5
*/
#define PNG_DIV51(v8) (((v8) * 5 + 130) >> 8)
/* Utility functions to make particular color-maps */
static void
set_file_encoding(png_image_read_control *display)
{
png_fixed_point g = display->image->opaque->png_ptr->colorspace.gamma;
if (png_gamma_significant(g) != 0)
{
if (png_gamma_not_sRGB(g) != 0)
{
display->file_encoding = P_FILE;
display->gamma_to_linear = png_reciprocal(g);
}
else
display->file_encoding = P_sRGB;
}
else
display->file_encoding = P_LINEAR8;
}
static unsigned int
decode_gamma(png_image_read_control *display, png_uint_32 value, int encoding)
{
if (encoding == P_FILE) /* double check */
encoding = display->file_encoding;
if (encoding == P_NOTSET) /* must be the file encoding */
{
set_file_encoding(display);
encoding = display->file_encoding;
}
switch (encoding)
{
case P_FILE:
value = png_gamma_16bit_correct(value*257, display->gamma_to_linear);
break;
case P_sRGB:
value = png_sRGB_table[value];
break;
case P_LINEAR:
break;
case P_LINEAR8:
value *= 257;
break;
#ifdef __GNUC__
default:
png_error(display->image->opaque->png_ptr,
"unexpected encoding (internal error)");
#endif
}
return value;
}
static png_uint_32
png_colormap_compose(png_image_read_control *display,
png_uint_32 foreground, int foreground_encoding, png_uint_32 alpha,
png_uint_32 background, int encoding)
{
/* The file value is composed on the background, the background has the given
* encoding and so does the result, the file is encoded with P_FILE and the
* file and alpha are 8-bit values. The (output) encoding will always be
* P_LINEAR or P_sRGB.
*/
png_uint_32 f = decode_gamma(display, foreground, foreground_encoding);
png_uint_32 b = decode_gamma(display, background, encoding);
/* The alpha is always an 8-bit value (it comes from the palette), the value
* scaled by 255 is what PNG_sRGB_FROM_LINEAR requires.
*/
f = f * alpha + b * (255-alpha);
if (encoding == P_LINEAR)
{
/* Scale to 65535; divide by 255, approximately (in fact this is extremely
* accurate, it divides by 255.00000005937181414556, with no overflow.)
*/
f *= 257; /* Now scaled by 65535 */
f += f >> 16;
f = (f+32768) >> 16;
}
else /* P_sRGB */
f = PNG_sRGB_FROM_LINEAR(f);
return f;
}
/* NOTE: P_LINEAR values to this routine must be 16-bit, but P_FILE values must
* be 8-bit.
*/
static void
png_create_colormap_entry(png_image_read_control *display,
png_uint_32 ip, png_uint_32 red, png_uint_32 green, png_uint_32 blue,
png_uint_32 alpha, int encoding)
{
png_imagep image = display->image;
const int output_encoding = (image->format & PNG_FORMAT_FLAG_LINEAR) != 0 ?
P_LINEAR : P_sRGB;
const int convert_to_Y = (image->format & PNG_FORMAT_FLAG_COLOR) == 0 &&
(red != green || green != blue);
if (ip > 255)
png_error(image->opaque->png_ptr, "color-map index out of range");
/* Update the cache with whether the file gamma is significantly different
* from sRGB.
*/
if (encoding == P_FILE)
{
if (display->file_encoding == P_NOTSET)
set_file_encoding(display);
/* Note that the cached value may be P_FILE too, but if it is then the
* gamma_to_linear member has been set.
*/
encoding = display->file_encoding;
}
if (encoding == P_FILE)
{
png_fixed_point g = display->gamma_to_linear;
red = png_gamma_16bit_correct(red*257, g);
green = png_gamma_16bit_correct(green*257, g);
blue = png_gamma_16bit_correct(blue*257, g);
if (convert_to_Y != 0 || output_encoding == P_LINEAR)
{
alpha *= 257;
encoding = P_LINEAR;
}
else
{
red = PNG_sRGB_FROM_LINEAR(red * 255);
green = PNG_sRGB_FROM_LINEAR(green * 255);
blue = PNG_sRGB_FROM_LINEAR(blue * 255);
encoding = P_sRGB;
}
}
else if (encoding == P_LINEAR8)
{
/* This encoding occurs quite frequently in test cases because PngSuite
* includes a gAMA 1.0 chunk with most images.
*/
red *= 257;
green *= 257;
blue *= 257;
alpha *= 257;
encoding = P_LINEAR;
}
else if (encoding == P_sRGB &&
(convert_to_Y != 0 || output_encoding == P_LINEAR))
{
/* The values are 8-bit sRGB values, but must be converted to 16-bit
* linear.
*/
red = png_sRGB_table[red];
green = png_sRGB_table[green];
blue = png_sRGB_table[blue];
alpha *= 257;
encoding = P_LINEAR;
}
/* This is set if the color isn't gray but the output is. */
if (encoding == P_LINEAR)
{
if (convert_to_Y != 0)
{
/* NOTE: these values are copied from png_do_rgb_to_gray */
png_uint_32 y = (png_uint_32)6968 * red + (png_uint_32)23434 * green +
(png_uint_32)2366 * blue;
if (output_encoding == P_LINEAR)
y = (y + 16384) >> 15;
else
{
/* y is scaled by 32768, we need it scaled by 255: */
y = (y + 128) >> 8;
y *= 255;
y = PNG_sRGB_FROM_LINEAR((y + 64) >> 7);
alpha = PNG_DIV257(alpha);
encoding = P_sRGB;
}
blue = red = green = y;
}
else if (output_encoding == P_sRGB)
{
red = PNG_sRGB_FROM_LINEAR(red * 255);
green = PNG_sRGB_FROM_LINEAR(green * 255);
blue = PNG_sRGB_FROM_LINEAR(blue * 255);
alpha = PNG_DIV257(alpha);
encoding = P_sRGB;
}
}
if (encoding != output_encoding)
png_error(image->opaque->png_ptr, "bad encoding (internal error)");
/* Store the value. */
{
# ifdef PNG_FORMAT_AFIRST_SUPPORTED
const int afirst = (image->format & PNG_FORMAT_FLAG_AFIRST) != 0 &&
(image->format & PNG_FORMAT_FLAG_ALPHA) != 0;
# else
# define afirst 0
# endif
# ifdef PNG_FORMAT_BGR_SUPPORTED
const int bgr = (image->format & PNG_FORMAT_FLAG_BGR) != 0 ? 2 : 0;
# else
# define bgr 0
# endif
if (output_encoding == P_LINEAR)
{
png_uint_16p entry = png_voidcast(png_uint_16p, display->colormap);
entry += ip * PNG_IMAGE_SAMPLE_CHANNELS(image->format);
/* The linear 16-bit values must be pre-multiplied by the alpha channel
* value, if less than 65535 (this is, effectively, composite on black
* if the alpha channel is removed.)
*/
switch (PNG_IMAGE_SAMPLE_CHANNELS(image->format))
{
case 4:
entry[afirst ? 0 : 3] = (png_uint_16)alpha;
/* FALLTHROUGH */
case 3:
if (alpha < 65535)
{
if (alpha > 0)
{
blue = (blue * alpha + 32767U)/65535U;
green = (green * alpha + 32767U)/65535U;
red = (red * alpha + 32767U)/65535U;
}
else
red = green = blue = 0;
}
entry[afirst + (2 ^ bgr)] = (png_uint_16)blue;
entry[afirst + 1] = (png_uint_16)green;
entry[afirst + bgr] = (png_uint_16)red;
break;
case 2:
entry[1 ^ afirst] = (png_uint_16)alpha;
/* FALLTHROUGH */
case 1:
if (alpha < 65535)
{
if (alpha > 0)
green = (green * alpha + 32767U)/65535U;
else
green = 0;
}
entry[afirst] = (png_uint_16)green;
break;
default:
break;
}
}
else /* output encoding is P_sRGB */
{
png_bytep entry = png_voidcast(png_bytep, display->colormap);
entry += ip * PNG_IMAGE_SAMPLE_CHANNELS(image->format);
switch (PNG_IMAGE_SAMPLE_CHANNELS(image->format))
{
case 4:
entry[afirst ? 0 : 3] = (png_byte)alpha;
/* FALLTHROUGH */
case 3:
entry[afirst + (2 ^ bgr)] = (png_byte)blue;
entry[afirst + 1] = (png_byte)green;
entry[afirst + bgr] = (png_byte)red;
break;
case 2:
entry[1 ^ afirst] = (png_byte)alpha;
/* FALLTHROUGH */
case 1:
entry[afirst] = (png_byte)green;
break;
default:
break;
}
}
# ifdef afirst
# undef afirst
# endif
# ifdef bgr
# undef bgr
# endif
}
}
static int
make_gray_file_colormap(png_image_read_control *display)
{
unsigned int i;
for (i=0; i<256; ++i)
png_create_colormap_entry(display, i, i, i, i, 255, P_FILE);
return (int)i;
}
static int
make_gray_colormap(png_image_read_control *display)
{
unsigned int i;
for (i=0; i<256; ++i)
png_create_colormap_entry(display, i, i, i, i, 255, P_sRGB);
return (int)i;
}
#define PNG_GRAY_COLORMAP_ENTRIES 256
static int
make_ga_colormap(png_image_read_control *display)
{
unsigned int i, a;
/* Alpha is retained, the output will be a color-map with entries
* selected by six levels of alpha. One transparent entry, 6 gray
* levels for all the intermediate alpha values, leaving 230 entries
* for the opaque grays. The color-map entries are the six values
* [0..5]*51, the GA processing uses PNG_DIV51(value) to find the
* relevant entry.
*
* if (alpha > 229) // opaque
* {
* // The 231 entries are selected to make the math below work:
* base = 0;
* entry = (231 * gray + 128) >> 8;
* }
* else if (alpha < 26) // transparent
* {
* base = 231;
* entry = 0;
* }
* else // partially opaque
* {
* base = 226 + 6 * PNG_DIV51(alpha);
* entry = PNG_DIV51(gray);
* }
*/
i = 0;
while (i < 231)
{
unsigned int gray = (i * 256 + 115) / 231;
png_create_colormap_entry(display, i++, gray, gray, gray, 255, P_sRGB);
}
/* 255 is used here for the component values for consistency with the code
* that undoes premultiplication in pngwrite.c.
*/
png_create_colormap_entry(display, i++, 255, 255, 255, 0, P_sRGB);
for (a=1; a<5; ++a)
{
unsigned int g;
for (g=0; g<6; ++g)
png_create_colormap_entry(display, i++, g*51, g*51, g*51, a*51,
P_sRGB);
}
return (int)i;
}
#define PNG_GA_COLORMAP_ENTRIES 256
static int
make_rgb_colormap(png_image_read_control *display)
{
unsigned int i, r;
/* Build a 6x6x6 opaque RGB cube */
for (i=r=0; r<6; ++r)
{
unsigned int g;
for (g=0; g<6; ++g)
{
unsigned int b;
for (b=0; b<6; ++b)
png_create_colormap_entry(display, i++, r*51, g*51, b*51, 255,
P_sRGB);
}
}
return (int)i;
}
#define PNG_RGB_COLORMAP_ENTRIES 216
/* Return a palette index to the above palette given three 8-bit sRGB values. */
#define PNG_RGB_INDEX(r,g,b) \
((png_byte)(6 * (6 * PNG_DIV51(r) + PNG_DIV51(g)) + PNG_DIV51(b)))
static int
png_image_read_colormap(png_voidp argument)
{
png_image_read_control *display =
png_voidcast(png_image_read_control*, argument);
const png_imagep image = display->image;
const png_structrp png_ptr = image->opaque->png_ptr;
const png_uint_32 output_format = image->format;
const int output_encoding = (output_format & PNG_FORMAT_FLAG_LINEAR) != 0 ?
P_LINEAR : P_sRGB;
unsigned int cmap_entries;
unsigned int output_processing; /* Output processing option */
unsigned int data_encoding = P_NOTSET; /* Encoding libpng must produce */
/* Background information; the background color and the index of this color
* in the color-map if it exists (else 256).
*/
unsigned int background_index = 256;
png_uint_32 back_r, back_g, back_b;
/* Flags to accumulate things that need to be done to the input. */
int expand_tRNS = 0;
/* Exclude the NYI feature of compositing onto a color-mapped buffer; it is
* very difficult to do, the results look awful, and it is difficult to see
* what possible use it is because the application can't control the
* color-map.
*/
if (((png_ptr->color_type & PNG_COLOR_MASK_ALPHA) != 0 ||
png_ptr->num_trans > 0) /* alpha in input */ &&
((output_format & PNG_FORMAT_FLAG_ALPHA) == 0) /* no alpha in output */)
{
if (output_encoding == P_LINEAR) /* compose on black */
back_b = back_g = back_r = 0;
else if (display->background == NULL /* no way to remove it */)
png_error(png_ptr,
"background color must be supplied to remove alpha/transparency");
/* Get a copy of the background color (this avoids repeating the checks
* below.) The encoding is 8-bit sRGB or 16-bit linear, depending on the
* output format.
*/
else
{
back_g = display->background->green;
if ((output_format & PNG_FORMAT_FLAG_COLOR) != 0)
{
back_r = display->background->red;
back_b = display->background->blue;
}
else
back_b = back_r = back_g;
}
}
else if (output_encoding == P_LINEAR)
back_b = back_r = back_g = 65535;
else
back_b = back_r = back_g = 255;
/* Default the input file gamma if required - this is necessary because
* libpng assumes that if no gamma information is present the data is in the
* output format, but the simplified API deduces the gamma from the input
* format.
*/
if ((png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_GAMMA) == 0)
{
/* Do this directly, not using the png_colorspace functions, to ensure
* that it happens even if the colorspace is invalid (though probably if
* it is the setting will be ignored) Note that the same thing can be
* achieved at the application interface with png_set_gAMA.
*/
if (png_ptr->bit_depth == 16 &&
(image->flags & PNG_IMAGE_FLAG_16BIT_sRGB) == 0)
png_ptr->colorspace.gamma = PNG_GAMMA_LINEAR;
else
png_ptr->colorspace.gamma = PNG_GAMMA_sRGB_INVERSE;
png_ptr->colorspace.flags |= PNG_COLORSPACE_HAVE_GAMMA;
}
/* Decide what to do based on the PNG color type of the input data. The
* utility function png_create_colormap_entry deals with most aspects of the
* output transformations; this code works out how to produce bytes of
* color-map entries from the original format.
*/
switch (png_ptr->color_type)
{
case PNG_COLOR_TYPE_GRAY:
if (png_ptr->bit_depth <= 8)
{
/* There at most 256 colors in the output, regardless of
* transparency.
*/
unsigned int step, i, val, trans = 256/*ignore*/, back_alpha = 0;
cmap_entries = 1U << png_ptr->bit_depth;
if (cmap_entries > image->colormap_entries)
png_error(png_ptr, "gray[8] color-map: too few entries");
step = 255 / (cmap_entries - 1);
output_processing = PNG_CMAP_NONE;
/* If there is a tRNS chunk then this either selects a transparent
* value or, if the output has no alpha, the background color.
*/
if (png_ptr->num_trans > 0)
{
trans = png_ptr->trans_color.gray;
if ((output_format & PNG_FORMAT_FLAG_ALPHA) == 0)
back_alpha = output_encoding == P_LINEAR ? 65535 : 255;
}
/* png_create_colormap_entry just takes an RGBA and writes the
* corresponding color-map entry using the format from 'image',
* including the required conversion to sRGB or linear as
* appropriate. The input values are always either sRGB (if the
* gamma correction flag is 0) or 0..255 scaled file encoded values
* (if the function must gamma correct them).
*/
for (i=val=0; i<cmap_entries; ++i, val += step)
{
/* 'i' is a file value. While this will result in duplicated
* entries for 8-bit non-sRGB encoded files it is necessary to
* have non-gamma corrected values to do tRNS handling.
*/
if (i != trans)
png_create_colormap_entry(display, i, val, val, val, 255,
P_FILE/*8-bit with file gamma*/);
/* Else this entry is transparent. The colors don't matter if
* there is an alpha channel (back_alpha == 0), but it does no
* harm to pass them in; the values are not set above so this
* passes in white.
*
* NOTE: this preserves the full precision of the application
* supplied background color when it is used.
*/
else
png_create_colormap_entry(display, i, back_r, back_g, back_b,
back_alpha, output_encoding);
}
/* We need libpng to preserve the original encoding. */
data_encoding = P_FILE;
/* The rows from libpng, while technically gray values, are now also
* color-map indices; however, they may need to be expanded to 1
* byte per pixel. This is what png_set_packing does (i.e., it
* unpacks the bit values into bytes.)
*/
if (png_ptr->bit_depth < 8)
png_set_packing(png_ptr);
}
else /* bit depth is 16 */
{
/* The 16-bit input values can be converted directly to 8-bit gamma
* encoded values; however, if a tRNS chunk is present 257 color-map
* entries are required. This means that the extra entry requires
* special processing; add an alpha channel, sacrifice gray level
* 254 and convert transparent (alpha==0) entries to that.
*
* Use libpng to chop the data to 8 bits. Convert it to sRGB at the
* same time to minimize quality loss. If a tRNS chunk is present
* this means libpng must handle it too; otherwise it is impossible
* to do the exact match on the 16-bit value.
*
* If the output has no alpha channel *and* the background color is
* gray then it is possible to let libpng handle the substitution by
* ensuring that the corresponding gray level matches the background
* color exactly.
*/
data_encoding = P_sRGB;
if (PNG_GRAY_COLORMAP_ENTRIES > image->colormap_entries)
png_error(png_ptr, "gray[16] color-map: too few entries");
cmap_entries = (unsigned int)make_gray_colormap(display);
if (png_ptr->num_trans > 0)
{
unsigned int back_alpha;
if ((output_format & PNG_FORMAT_FLAG_ALPHA) != 0)
back_alpha = 0;
else
{
if (back_r == back_g && back_g == back_b)
{
/* Background is gray; no special processing will be
* required.
*/
png_color_16 c;
png_uint_32 gray = back_g;
if (output_encoding == P_LINEAR)
{
gray = PNG_sRGB_FROM_LINEAR(gray * 255);
/* And make sure the corresponding palette entry
* matches.
*/
png_create_colormap_entry(display, gray, back_g, back_g,
back_g, 65535, P_LINEAR);
}
/* The background passed to libpng, however, must be the
* sRGB value.
*/
c.index = 0; /*unused*/
c.gray = c.red = c.green = c.blue = (png_uint_16)gray;
/* NOTE: does this work without expanding tRNS to alpha?
* It should be the color->gray case below apparently
* doesn't.
*/
png_set_background_fixed(png_ptr, &c,
PNG_BACKGROUND_GAMMA_SCREEN, 0/*need_expand*/,
0/*gamma: not used*/);
output_processing = PNG_CMAP_NONE;
break;
}
#ifdef __COVERITY__
/* Coverity claims that output_encoding cannot be 2 (P_LINEAR)
* here.
*/
back_alpha = 255;
#else
back_alpha = output_encoding == P_LINEAR ? 65535 : 255;
#endif
}
/* output_processing means that the libpng-processed row will be
* 8-bit GA and it has to be processing to single byte color-map
* values. Entry 254 is replaced by either a completely
* transparent entry or by the background color at full
* precision (and the background color is not a simple gray
* level in this case.)
*/
expand_tRNS = 1;
output_processing = PNG_CMAP_TRANS;
background_index = 254;
/* And set (overwrite) color-map entry 254 to the actual
* background color at full precision.
*/
png_create_colormap_entry(display, 254, back_r, back_g, back_b,
back_alpha, output_encoding);
}
else
output_processing = PNG_CMAP_NONE;
}
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
/* 8-bit or 16-bit PNG with two channels - gray and alpha. A minimum
* of 65536 combinations. If, however, the alpha channel is to be
* removed there are only 256 possibilities if the background is gray.
* (Otherwise there is a subset of the 65536 possibilities defined by
* the triangle between black, white and the background color.)
*
* Reduce 16-bit files to 8-bit and sRGB encode the result. No need to
* worry about tRNS matching - tRNS is ignored if there is an alpha
* channel.
*/
data_encoding = P_sRGB;
if ((output_format & PNG_FORMAT_FLAG_ALPHA) != 0)
{
if (PNG_GA_COLORMAP_ENTRIES > image->colormap_entries)
png_error(png_ptr, "gray+alpha color-map: too few entries");
cmap_entries = (unsigned int)make_ga_colormap(display);
background_index = PNG_CMAP_GA_BACKGROUND;
output_processing = PNG_CMAP_GA;
}
else /* alpha is removed */
{
/* Alpha must be removed as the PNG data is processed when the
* background is a color because the G and A channels are
* independent and the vector addition (non-parallel vectors) is a
* 2-D problem.
*
* This can be reduced to the same algorithm as above by making a
* colormap containing gray levels (for the opaque grays), a
* background entry (for a transparent pixel) and a set of four six
* level color values, one set for each intermediate alpha value.
* See the comments in make_ga_colormap for how this works in the
* per-pixel processing.
*
* If the background is gray, however, we only need a 256 entry gray
* level color map. It is sufficient to make the entry generated
* for the background color be exactly the color specified.
*/
if ((output_format & PNG_FORMAT_FLAG_COLOR) == 0 ||
(back_r == back_g && back_g == back_b))
{
/* Background is gray; no special processing will be required. */
png_color_16 c;
png_uint_32 gray = back_g;
if (PNG_GRAY_COLORMAP_ENTRIES > image->colormap_entries)
png_error(png_ptr, "gray-alpha color-map: too few entries");
cmap_entries = (unsigned int)make_gray_colormap(display);
if (output_encoding == P_LINEAR)
{
gray = PNG_sRGB_FROM_LINEAR(gray * 255);
/* And make sure the corresponding palette entry matches. */
png_create_colormap_entry(display, gray, back_g, back_g,
back_g, 65535, P_LINEAR);
}
/* The background passed to libpng, however, must be the sRGB
* value.
*/
c.index = 0; /*unused*/
c.gray = c.red = c.green = c.blue = (png_uint_16)gray;
png_set_background_fixed(png_ptr, &c,
PNG_BACKGROUND_GAMMA_SCREEN, 0/*need_expand*/,
0/*gamma: not used*/);
output_processing = PNG_CMAP_NONE;
}
else
{
png_uint_32 i, a;
/* This is the same as png_make_ga_colormap, above, except that
* the entries are all opaque.
*/
if (PNG_GA_COLORMAP_ENTRIES > image->colormap_entries)
png_error(png_ptr, "ga-alpha color-map: too few entries");
i = 0;
while (i < 231)
{
png_uint_32 gray = (i * 256 + 115) / 231;
png_create_colormap_entry(display, i++, gray, gray, gray,
255, P_sRGB);
}
/* NOTE: this preserves the full precision of the application
* background color.
*/
background_index = i;
png_create_colormap_entry(display, i++, back_r, back_g, back_b,
#ifdef __COVERITY__
/* Coverity claims that output_encoding
* cannot be 2 (P_LINEAR) here.
*/ 255U,
#else
output_encoding == P_LINEAR ? 65535U : 255U,
#endif
output_encoding);
/* For non-opaque input composite on the sRGB background - this
* requires inverting the encoding for each component. The input
* is still converted to the sRGB encoding because this is a
* reasonable approximate to the logarithmic curve of human
* visual sensitivity, at least over the narrow range which PNG
* represents. Consequently 'G' is always sRGB encoded, while
* 'A' is linear. We need the linear background colors.
*/
if (output_encoding == P_sRGB) /* else already linear */
{
/* This may produce a value not exactly matching the
* background, but that's ok because these numbers are only
* used when alpha != 0
*/
back_r = png_sRGB_table[back_r];
back_g = png_sRGB_table[back_g];
back_b = png_sRGB_table[back_b];
}
for (a=1; a<5; ++a)
{
unsigned int g;
/* PNG_sRGB_FROM_LINEAR expects a 16-bit linear value scaled
* by an 8-bit alpha value (0..255).
*/
png_uint_32 alpha = 51 * a;
png_uint_32 back_rx = (255-alpha) * back_r;
png_uint_32 back_gx = (255-alpha) * back_g;
png_uint_32 back_bx = (255-alpha) * back_b;
for (g=0; g<6; ++g)
{
png_uint_32 gray = png_sRGB_table[g*51] * alpha;
png_create_colormap_entry(display, i++,
PNG_sRGB_FROM_LINEAR(gray + back_rx),
PNG_sRGB_FROM_LINEAR(gray + back_gx),
PNG_sRGB_FROM_LINEAR(gray + back_bx), 255, P_sRGB);
}
}
cmap_entries = i;
output_processing = PNG_CMAP_GA;
}
}
break;
case PNG_COLOR_TYPE_RGB:
case PNG_COLOR_TYPE_RGB_ALPHA:
/* Exclude the case where the output is gray; we can always handle this
* with the cases above.
*/
if ((output_format & PNG_FORMAT_FLAG_COLOR) == 0)
{
/* The color-map will be grayscale, so we may as well convert the
* input RGB values to a simple grayscale and use the grayscale
* code above.
*
* NOTE: calling this apparently damages the recognition of the
* transparent color in background color handling; call
* png_set_tRNS_to_alpha before png_set_background_fixed.
*/
png_set_rgb_to_gray_fixed(png_ptr, PNG_ERROR_ACTION_NONE, -1,
-1);
data_encoding = P_sRGB;
/* The output will now be one or two 8-bit gray or gray+alpha
* channels. The more complex case arises when the input has alpha.
*/
if ((png_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA ||
png_ptr->num_trans > 0) &&
(output_format & PNG_FORMAT_FLAG_ALPHA) != 0)
{
/* Both input and output have an alpha channel, so no background
* processing is required; just map the GA bytes to the right
* color-map entry.
*/
expand_tRNS = 1;
if (PNG_GA_COLORMAP_ENTRIES > image->colormap_entries)
png_error(png_ptr, "rgb[ga] color-map: too few entries");
cmap_entries = (unsigned int)make_ga_colormap(display);
background_index = PNG_CMAP_GA_BACKGROUND;
output_processing = PNG_CMAP_GA;
}
else
{
/* Either the input or the output has no alpha channel, so there
* will be no non-opaque pixels in the color-map; it will just be
* grayscale.
*/
if (PNG_GRAY_COLORMAP_ENTRIES > image->colormap_entries)
png_error(png_ptr, "rgb[gray] color-map: too few entries");
/* Ideally this code would use libpng to do the gamma correction,
* but if an input alpha channel is to be removed we will hit the
* libpng bug in gamma+compose+rgb-to-gray (the double gamma
* correction bug). Fix this by dropping the gamma correction in
* this case and doing it in the palette; this will result in
* duplicate palette entries, but that's better than the
* alternative of double gamma correction.
*/
if ((png_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA ||
png_ptr->num_trans > 0) &&
png_gamma_not_sRGB(png_ptr->colorspace.gamma) != 0)
{
cmap_entries = (unsigned int)make_gray_file_colormap(display);
data_encoding = P_FILE;
}
else
cmap_entries = (unsigned int)make_gray_colormap(display);
/* But if the input has alpha or transparency it must be removed
*/
if (png_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA ||
png_ptr->num_trans > 0)
{
png_color_16 c;
png_uint_32 gray = back_g;
/* We need to ensure that the application background exists in
* the colormap and that completely transparent pixels map to
* it. Achieve this simply by ensuring that the entry
* selected for the background really is the background color.
*/
if (data_encoding == P_FILE) /* from the fixup above */
{
/* The app supplied a gray which is in output_encoding, we
* need to convert it to a value of the input (P_FILE)
* encoding then set this palette entry to the required
* output encoding.
*/
if (output_encoding == P_sRGB)
gray = png_sRGB_table[gray]; /* now P_LINEAR */
gray = PNG_DIV257(png_gamma_16bit_correct(gray,
png_ptr->colorspace.gamma)); /* now P_FILE */
/* And make sure the corresponding palette entry contains
* exactly the required sRGB value.
*/
png_create_colormap_entry(display, gray, back_g, back_g,
back_g, 0/*unused*/, output_encoding);
}
else if (output_encoding == P_LINEAR)
{
gray = PNG_sRGB_FROM_LINEAR(gray * 255);
/* And make sure the corresponding palette entry matches.
*/
png_create_colormap_entry(display, gray, back_g, back_g,
back_g, 0/*unused*/, P_LINEAR);
}
/* The background passed to libpng, however, must be the
* output (normally sRGB) value.
*/
c.index = 0; /*unused*/
c.gray = c.red = c.green = c.blue = (png_uint_16)gray;
/* NOTE: the following is apparently a bug in libpng. Without
* it the transparent color recognition in
* png_set_background_fixed seems to go wrong.
*/
expand_tRNS = 1;
png_set_background_fixed(png_ptr, &c,
PNG_BACKGROUND_GAMMA_SCREEN, 0/*need_expand*/,
0/*gamma: not used*/);
}
output_processing = PNG_CMAP_NONE;
}
}
else /* output is color */
{
/* We could use png_quantize here so long as there is no transparent
* color or alpha; png_quantize ignores alpha. Easier overall just
* to do it once and using PNG_DIV51 on the 6x6x6 reduced RGB cube.
* Consequently we always want libpng to produce sRGB data.
*/
data_encoding = P_sRGB;
/* Is there any transparency or alpha? */
if (png_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA ||
png_ptr->num_trans > 0)
{
/* Is there alpha in the output too? If so all four channels are
* processed into a special RGB cube with alpha support.
*/
if ((output_format & PNG_FORMAT_FLAG_ALPHA) != 0)
{
png_uint_32 r;
if (PNG_RGB_COLORMAP_ENTRIES+1+27 > image->colormap_entries)
png_error(png_ptr, "rgb+alpha color-map: too few entries");
cmap_entries = (unsigned int)make_rgb_colormap(display);
/* Add a transparent entry. */
png_create_colormap_entry(display, cmap_entries, 255, 255,
255, 0, P_sRGB);
/* This is stored as the background index for the processing
* algorithm.
*/
background_index = cmap_entries++;
/* Add 27 r,g,b entries each with alpha 0.5. */
for (r=0; r<256; r = (r << 1) | 0x7f)
{
png_uint_32 g;
for (g=0; g<256; g = (g << 1) | 0x7f)
{
png_uint_32 b;
/* This generates components with the values 0, 127 and
* 255
*/
for (b=0; b<256; b = (b << 1) | 0x7f)
png_create_colormap_entry(display, cmap_entries++,
r, g, b, 128, P_sRGB);
}
}
expand_tRNS = 1;
output_processing = PNG_CMAP_RGB_ALPHA;
}
else
{
/* Alpha/transparency must be removed. The background must
* exist in the color map (achieved by setting adding it after
* the 666 color-map). If the standard processing code will
* pick up this entry automatically that's all that is
* required; libpng can be called to do the background
* processing.
*/
unsigned int sample_size =
PNG_IMAGE_SAMPLE_SIZE(output_format);
png_uint_32 r, g, b; /* sRGB background */
if (PNG_RGB_COLORMAP_ENTRIES+1+27 > image->colormap_entries)
png_error(png_ptr, "rgb-alpha color-map: too few entries");
cmap_entries = (unsigned int)make_rgb_colormap(display);
png_create_colormap_entry(display, cmap_entries, back_r,
back_g, back_b, 0/*unused*/, output_encoding);
if (output_encoding == P_LINEAR)
{
r = PNG_sRGB_FROM_LINEAR(back_r * 255);
g = PNG_sRGB_FROM_LINEAR(back_g * 255);
b = PNG_sRGB_FROM_LINEAR(back_b * 255);
}
else
{
r = back_r;
g = back_g;
b = back_g;
}
/* Compare the newly-created color-map entry with the one the
* PNG_CMAP_RGB algorithm will use. If the two entries don't
* match, add the new one and set this as the background
* index.
*/
if (memcmp((png_const_bytep)display->colormap +
sample_size * cmap_entries,
(png_const_bytep)display->colormap +
sample_size * PNG_RGB_INDEX(r,g,b),
sample_size) != 0)
{
/* The background color must be added. */
background_index = cmap_entries++;
/* Add 27 r,g,b entries each with created by composing with
* the background at alpha 0.5.
*/
for (r=0; r<256; r = (r << 1) | 0x7f)
{
for (g=0; g<256; g = (g << 1) | 0x7f)
{
/* This generates components with the values 0, 127
* and 255
*/
for (b=0; b<256; b = (b << 1) | 0x7f)
png_create_colormap_entry(display, cmap_entries++,
png_colormap_compose(display, r, P_sRGB, 128,
back_r, output_encoding),
png_colormap_compose(display, g, P_sRGB, 128,
back_g, output_encoding),
png_colormap_compose(display, b, P_sRGB, 128,
back_b, output_encoding),
0/*unused*/, output_encoding);
}
}
expand_tRNS = 1;
output_processing = PNG_CMAP_RGB_ALPHA;
}
else /* background color is in the standard color-map */
{
png_color_16 c;
c.index = 0; /*unused*/
c.red = (png_uint_16)back_r;
c.gray = c.green = (png_uint_16)back_g;
c.blue = (png_uint_16)back_b;
png_set_background_fixed(png_ptr, &c,
PNG_BACKGROUND_GAMMA_SCREEN, 0/*need_expand*/,
0/*gamma: not used*/);
output_processing = PNG_CMAP_RGB;
}
}
}
else /* no alpha or transparency in the input */
{
/* Alpha in the output is irrelevant, simply map the opaque input
* pixels to the 6x6x6 color-map.
*/
if (PNG_RGB_COLORMAP_ENTRIES > image->colormap_entries)
png_error(png_ptr, "rgb color-map: too few entries");
cmap_entries = (unsigned int)make_rgb_colormap(display);
output_processing = PNG_CMAP_RGB;
}
}
break;
case PNG_COLOR_TYPE_PALETTE:
/* It's already got a color-map. It may be necessary to eliminate the
* tRNS entries though.
*/
{
unsigned int num_trans = png_ptr->num_trans;
png_const_bytep trans = num_trans > 0 ? png_ptr->trans_alpha : NULL;
png_const_colorp colormap = png_ptr->palette;
const int do_background = trans != NULL &&
(output_format & PNG_FORMAT_FLAG_ALPHA) == 0;
unsigned int i;
/* Just in case: */
if (trans == NULL)
num_trans = 0;
output_processing = PNG_CMAP_NONE;
data_encoding = P_FILE; /* Don't change from color-map indices */
cmap_entries = (unsigned int)png_ptr->num_palette;
if (cmap_entries > 256)
cmap_entries = 256;
if (cmap_entries > (unsigned int)image->colormap_entries)
png_error(png_ptr, "palette color-map: too few entries");
for (i=0; i < cmap_entries; ++i)
{
if (do_background != 0 && i < num_trans && trans[i] < 255)
{
if (trans[i] == 0)
png_create_colormap_entry(display, i, back_r, back_g,
back_b, 0, output_encoding);
else
{
/* Must compose the PNG file color in the color-map entry
* on the sRGB color in 'back'.
*/
png_create_colormap_entry(display, i,
png_colormap_compose(display, colormap[i].red,
P_FILE, trans[i], back_r, output_encoding),
png_colormap_compose(display, colormap[i].green,
P_FILE, trans[i], back_g, output_encoding),
png_colormap_compose(display, colormap[i].blue,
P_FILE, trans[i], back_b, output_encoding),
output_encoding == P_LINEAR ? trans[i] * 257U :
trans[i],
output_encoding);
}
}
else
png_create_colormap_entry(display, i, colormap[i].red,
colormap[i].green, colormap[i].blue,
i < num_trans ? trans[i] : 255U, P_FILE/*8-bit*/);
}
/* The PNG data may have indices packed in fewer than 8 bits, it
* must be expanded if so.
*/
if (png_ptr->bit_depth < 8)
png_set_packing(png_ptr);
}
break;
default:
png_error(png_ptr, "invalid PNG color type");
/*NOT REACHED*/
}
/* Now deal with the output processing */
if (expand_tRNS != 0 && png_ptr->num_trans > 0 &&
(png_ptr->color_type & PNG_COLOR_MASK_ALPHA) == 0)
png_set_tRNS_to_alpha(png_ptr);
switch (data_encoding)
{
case P_sRGB:
/* Change to 8-bit sRGB */
png_set_alpha_mode_fixed(png_ptr, PNG_ALPHA_PNG, PNG_GAMMA_sRGB);
/* FALLTHROUGH */
case P_FILE:
if (png_ptr->bit_depth > 8)
png_set_scale_16(png_ptr);
break;
#ifdef __GNUC__
default:
png_error(png_ptr, "bad data option (internal error)");
#endif
}
if (cmap_entries > 256 || cmap_entries > image->colormap_entries)
png_error(png_ptr, "color map overflow (BAD internal error)");
image->colormap_entries = cmap_entries;
/* Double check using the recorded background index */
switch (output_processing)
{
case PNG_CMAP_NONE:
if (background_index != PNG_CMAP_NONE_BACKGROUND)
goto bad_background;
break;
case PNG_CMAP_GA:
if (background_index != PNG_CMAP_GA_BACKGROUND)
goto bad_background;
break;
case PNG_CMAP_TRANS:
if (background_index >= cmap_entries ||
background_index != PNG_CMAP_TRANS_BACKGROUND)
goto bad_background;
break;
case PNG_CMAP_RGB:
if (background_index != PNG_CMAP_RGB_BACKGROUND)
goto bad_background;
break;
case PNG_CMAP_RGB_ALPHA:
if (background_index != PNG_CMAP_RGB_ALPHA_BACKGROUND)
goto bad_background;
break;
default:
png_error(png_ptr, "bad processing option (internal error)");
bad_background:
png_error(png_ptr, "bad background index (internal error)");
}
display->colormap_processing = (int)output_processing;
return 1/*ok*/;
}
/* The final part of the color-map read called from png_image_finish_read. */
static int
png_image_read_and_map(png_voidp argument)
{
png_image_read_control *display = png_voidcast(png_image_read_control*,
argument);
png_imagep image = display->image;
png_structrp png_ptr = image->opaque->png_ptr;
int passes;
/* Called when the libpng data must be transformed into the color-mapped
* form. There is a local row buffer in display->local and this routine must
* do the interlace handling.
*/
switch (png_ptr->interlaced)
{
case PNG_INTERLACE_NONE:
passes = 1;
break;
case PNG_INTERLACE_ADAM7:
passes = PNG_INTERLACE_ADAM7_PASSES;
break;
default:
png_error(png_ptr, "unknown interlace type");
}
{
png_uint_32 height = image->height;
png_uint_32 width = image->width;
int proc = display->colormap_processing;
png_bytep first_row = png_voidcast(png_bytep, display->first_row);
ptrdiff_t step_row = display->row_bytes;
int pass;
for (pass = 0; pass < passes; ++pass)
{
unsigned int startx, stepx, stepy;
png_uint_32 y;
if (png_ptr->interlaced == PNG_INTERLACE_ADAM7)
{
/* The row may be empty for a short image: */
if (PNG_PASS_COLS(width, pass) == 0)
continue;
startx = PNG_PASS_START_COL(pass);
stepx = PNG_PASS_COL_OFFSET(pass);
y = PNG_PASS_START_ROW(pass);
stepy = PNG_PASS_ROW_OFFSET(pass);
}
else
{
y = 0;
startx = 0;
stepx = stepy = 1;
}
for (; y<height; y += stepy)
{
png_bytep inrow = png_voidcast(png_bytep, display->local_row);
png_bytep outrow = first_row + y * step_row;
png_const_bytep end_row = outrow + width;
/* Read read the libpng data into the temporary buffer. */
png_read_row(png_ptr, inrow, NULL);
/* Now process the row according to the processing option, note
* that the caller verifies that the format of the libpng output
* data is as required.
*/
outrow += startx;
switch (proc)
{
case PNG_CMAP_GA:
for (; outrow < end_row; outrow += stepx)
{
/* The data is always in the PNG order */
unsigned int gray = *inrow++;
unsigned int alpha = *inrow++;
unsigned int entry;
/* NOTE: this code is copied as a comment in
* make_ga_colormap above. Please update the
* comment if you change this code!
*/
if (alpha > 229) /* opaque */
{
entry = (231 * gray + 128) >> 8;
}
else if (alpha < 26) /* transparent */
{
entry = 231;
}
else /* partially opaque */
{
entry = 226 + 6 * PNG_DIV51(alpha) + PNG_DIV51(gray);
}
*outrow = (png_byte)entry;
}
break;
case PNG_CMAP_TRANS:
for (; outrow < end_row; outrow += stepx)
{
png_byte gray = *inrow++;
png_byte alpha = *inrow++;
if (alpha == 0)
*outrow = PNG_CMAP_TRANS_BACKGROUND;
else if (gray != PNG_CMAP_TRANS_BACKGROUND)
*outrow = gray;
else
*outrow = (png_byte)(PNG_CMAP_TRANS_BACKGROUND+1);
}
break;
case PNG_CMAP_RGB:
for (; outrow < end_row; outrow += stepx)
{
*outrow = PNG_RGB_INDEX(inrow[0], inrow[1], inrow[2]);
inrow += 3;
}
break;
case PNG_CMAP_RGB_ALPHA:
for (; outrow < end_row; outrow += stepx)
{
unsigned int alpha = inrow[3];
/* Because the alpha entries only hold alpha==0.5 values
* split the processing at alpha==0.25 (64) and 0.75
* (196).
*/
if (alpha >= 196)
*outrow = PNG_RGB_INDEX(inrow[0], inrow[1],
inrow[2]);
else if (alpha < 64)
*outrow = PNG_CMAP_RGB_ALPHA_BACKGROUND;
else
{
/* Likewise there are three entries for each of r, g
* and b. We could select the entry by popcount on
* the top two bits on those architectures that
* support it, this is what the code below does,
* crudely.
*/
unsigned int back_i = PNG_CMAP_RGB_ALPHA_BACKGROUND+1;
/* Here are how the values map:
*
* 0x00 .. 0x3f -> 0
* 0x40 .. 0xbf -> 1
* 0xc0 .. 0xff -> 2
*
* So, as above with the explicit alpha checks, the
* breakpoints are at 64 and 196.
*/
if (inrow[0] & 0x80) back_i += 9; /* red */
if (inrow[0] & 0x40) back_i += 9;
if (inrow[0] & 0x80) back_i += 3; /* green */
if (inrow[0] & 0x40) back_i += 3;
if (inrow[0] & 0x80) back_i += 1; /* blue */
if (inrow[0] & 0x40) back_i += 1;
*outrow = (png_byte)back_i;
}
inrow += 4;
}
break;
default:
break;
}
}
}
}
return 1;
}
static int
png_image_read_colormapped(png_voidp argument)
{
png_image_read_control *display = png_voidcast(png_image_read_control*,
argument);
png_imagep image = display->image;
png_controlp control = image->opaque;
png_structrp png_ptr = control->png_ptr;
png_inforp info_ptr = control->info_ptr;
int passes = 0; /* As a flag */
PNG_SKIP_CHUNKS(png_ptr);
/* Update the 'info' structure and make sure the result is as required; first
* make sure to turn on the interlace handling if it will be required
* (because it can't be turned on *after* the call to png_read_update_info!)
*/
if (display->colormap_processing == PNG_CMAP_NONE)
passes = png_set_interlace_handling(png_ptr);
png_read_update_info(png_ptr, info_ptr);
/* The expected output can be deduced from the colormap_processing option. */
switch (display->colormap_processing)
{
case PNG_CMAP_NONE:
/* Output must be one channel and one byte per pixel, the output
* encoding can be anything.
*/
if ((info_ptr->color_type == PNG_COLOR_TYPE_PALETTE ||
info_ptr->color_type == PNG_COLOR_TYPE_GRAY) &&
info_ptr->bit_depth == 8)
break;
goto bad_output;
case PNG_CMAP_TRANS:
case PNG_CMAP_GA:
/* Output must be two channels and the 'G' one must be sRGB, the latter
* can be checked with an exact number because it should have been set
* to this number above!
*/
if (info_ptr->color_type == PNG_COLOR_TYPE_GRAY_ALPHA &&
info_ptr->bit_depth == 8 &&
png_ptr->screen_gamma == PNG_GAMMA_sRGB &&
image->colormap_entries == 256)
break;
goto bad_output;
case PNG_CMAP_RGB:
/* Output must be 8-bit sRGB encoded RGB */
if (info_ptr->color_type == PNG_COLOR_TYPE_RGB &&
info_ptr->bit_depth == 8 &&
png_ptr->screen_gamma == PNG_GAMMA_sRGB &&
image->colormap_entries == 216)
break;
goto bad_output;
case PNG_CMAP_RGB_ALPHA:
/* Output must be 8-bit sRGB encoded RGBA */
if (info_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA &&
info_ptr->bit_depth == 8 &&
png_ptr->screen_gamma == PNG_GAMMA_sRGB &&
image->colormap_entries == 244 /* 216 + 1 + 27 */)
break;
goto bad_output;
default:
bad_output:
png_error(png_ptr, "bad color-map processing (internal error)");
}
/* Now read the rows. Do this here if it is possible to read directly into
* the output buffer, otherwise allocate a local row buffer of the maximum
* size libpng requires and call the relevant processing routine safely.
*/
{
png_voidp first_row = display->buffer;
ptrdiff_t row_bytes = display->row_stride;
/* The following expression is designed to work correctly whether it gives
* a signed or an unsigned result.
*/
if (row_bytes < 0)
{
char *ptr = png_voidcast(char*, first_row);
ptr += (image->height-1) * (-row_bytes);
first_row = png_voidcast(png_voidp, ptr);
}
display->first_row = first_row;
display->row_bytes = row_bytes;
}
if (passes == 0)
{
int result;
png_voidp row = png_malloc(png_ptr, png_get_rowbytes(png_ptr, info_ptr));
display->local_row = row;
result = png_safe_execute(image, png_image_read_and_map, display);
display->local_row = NULL;
png_free(png_ptr, row);
return result;
}
else
{
png_alloc_size_t row_bytes = (png_alloc_size_t)display->row_bytes;
while (--passes >= 0)
{
png_uint_32 y = image->height;
png_bytep row = png_voidcast(png_bytep, display->first_row);
for (; y > 0; --y)
{
png_read_row(png_ptr, row, NULL);
row += row_bytes;
}
}
return 1;
}
}
/* Just the row reading part of png_image_read. */
static int
png_image_read_composite(png_voidp argument)
{
png_image_read_control *display = png_voidcast(png_image_read_control*,
argument);
png_imagep image = display->image;
png_structrp png_ptr = image->opaque->png_ptr;
int passes;
switch (png_ptr->interlaced)
{
case PNG_INTERLACE_NONE:
passes = 1;
break;
case PNG_INTERLACE_ADAM7:
passes = PNG_INTERLACE_ADAM7_PASSES;
break;
default:
png_error(png_ptr, "unknown interlace type");
}
{
png_uint_32 height = image->height;
png_uint_32 width = image->width;
ptrdiff_t step_row = display->row_bytes;
unsigned int channels =
(image->format & PNG_FORMAT_FLAG_COLOR) != 0 ? 3 : 1;
int pass;
for (pass = 0; pass < passes; ++pass)
{
unsigned int startx, stepx, stepy;
png_uint_32 y;
if (png_ptr->interlaced == PNG_INTERLACE_ADAM7)
{
/* The row may be empty for a short image: */
if (PNG_PASS_COLS(width, pass) == 0)
continue;
startx = PNG_PASS_START_COL(pass) * channels;
stepx = PNG_PASS_COL_OFFSET(pass) * channels;
y = PNG_PASS_START_ROW(pass);
stepy = PNG_PASS_ROW_OFFSET(pass);
}
else
{
y = 0;
startx = 0;
stepx = channels;
stepy = 1;
}
for (; y<height; y += stepy)
{
png_bytep inrow = png_voidcast(png_bytep, display->local_row);
png_bytep outrow;
png_const_bytep end_row;
/* Read the row, which is packed: */
png_read_row(png_ptr, inrow, NULL);
outrow = png_voidcast(png_bytep, display->first_row);
outrow += y * step_row;
end_row = outrow + width * channels;
/* Now do the composition on each pixel in this row. */
outrow += startx;
for (; outrow < end_row; outrow += stepx)
{
png_byte alpha = inrow[channels];
if (alpha > 0) /* else no change to the output */
{
unsigned int c;
for (c=0; c<channels; ++c)
{
png_uint_32 component = inrow[c];
if (alpha < 255) /* else just use component */
{
/* This is PNG_OPTIMIZED_ALPHA, the component value
* is a linear 8-bit value. Combine this with the
* current outrow[c] value which is sRGB encoded.
* Arithmetic here is 16-bits to preserve the output
* values correctly.
*/
component *= 257*255; /* =65535 */
component += (255-alpha)*png_sRGB_table[outrow[c]];
/* So 'component' is scaled by 255*65535 and is
* therefore appropriate for the sRGB to linear
* conversion table.
*/
component = PNG_sRGB_FROM_LINEAR(component);
}
outrow[c] = (png_byte)component;
}
}
inrow += channels+1; /* components and alpha channel */
}
}
}
}
return 1;
}
/* The do_local_background case; called when all the following transforms are to
* be done:
*
* PNG_RGB_TO_GRAY
* PNG_COMPOSITE
* PNG_GAMMA
*
* This is a work-around for the fact that both the PNG_RGB_TO_GRAY and
* PNG_COMPOSITE code performs gamma correction, so we get double gamma
* correction. The fix-up is to prevent the PNG_COMPOSITE operation from
* happening inside libpng, so this routine sees an 8 or 16-bit gray+alpha
* row and handles the removal or pre-multiplication of the alpha channel.
*/
static int
png_image_read_background(png_voidp argument)
{
png_image_read_control *display = png_voidcast(png_image_read_control*,
argument);
png_imagep image = display->image;
png_structrp png_ptr = image->opaque->png_ptr;
png_inforp info_ptr = image->opaque->info_ptr;
png_uint_32 height = image->height;
png_uint_32 width = image->width;
int pass, passes;
/* Double check the convoluted logic below. We expect to get here with
* libpng doing rgb to gray and gamma correction but background processing
* left to the png_image_read_background function. The rows libpng produce
* might be 8 or 16-bit but should always have two channels; gray plus alpha.
*/
if ((png_ptr->transformations & PNG_RGB_TO_GRAY) == 0)
png_error(png_ptr, "lost rgb to gray");
if ((png_ptr->transformations & PNG_COMPOSE) != 0)
png_error(png_ptr, "unexpected compose");
if (png_get_channels(png_ptr, info_ptr) != 2)
png_error(png_ptr, "lost/gained channels");
/* Expect the 8-bit case to always remove the alpha channel */
if ((image->format & PNG_FORMAT_FLAG_LINEAR) == 0 &&
(image->format & PNG_FORMAT_FLAG_ALPHA) != 0)
png_error(png_ptr, "unexpected 8-bit transformation");
switch (png_ptr->interlaced)
{
case PNG_INTERLACE_NONE:
passes = 1;
break;
case PNG_INTERLACE_ADAM7:
passes = PNG_INTERLACE_ADAM7_PASSES;
break;
default:
png_error(png_ptr, "unknown interlace type");
}
/* Use direct access to info_ptr here because otherwise the simplified API
* would require PNG_EASY_ACCESS_SUPPORTED (just for this.) Note this is
* checking the value after libpng expansions, not the original value in the
* PNG.
*/
switch (info_ptr->bit_depth)
{
case 8:
/* 8-bit sRGB gray values with an alpha channel; the alpha channel is
* to be removed by composing on a background: either the row if
* display->background is NULL or display->background->green if not.
* Unlike the code above ALPHA_OPTIMIZED has *not* been done.
*/
{
png_bytep first_row = png_voidcast(png_bytep, display->first_row);
ptrdiff_t step_row = display->row_bytes;
for (pass = 0; pass < passes; ++pass)
{
png_bytep row = png_voidcast(png_bytep, display->first_row);
unsigned int startx, stepx, stepy;
png_uint_32 y;
if (png_ptr->interlaced == PNG_INTERLACE_ADAM7)
{
/* The row may be empty for a short image: */
if (PNG_PASS_COLS(width, pass) == 0)
continue;
startx = PNG_PASS_START_COL(pass);
stepx = PNG_PASS_COL_OFFSET(pass);
y = PNG_PASS_START_ROW(pass);
stepy = PNG_PASS_ROW_OFFSET(pass);
}
else
{
y = 0;
startx = 0;
stepx = stepy = 1;
}
if (display->background == NULL)
{
for (; y<height; y += stepy)
{
png_bytep inrow = png_voidcast(png_bytep,
display->local_row);
png_bytep outrow = first_row + y * step_row;
png_const_bytep end_row = outrow + width;
/* Read the row, which is packed: */
png_read_row(png_ptr, inrow, NULL);
/* Now do the composition on each pixel in this row. */
outrow += startx;
for (; outrow < end_row; outrow += stepx)
{
png_byte alpha = inrow[1];
if (alpha > 0) /* else no change to the output */
{
png_uint_32 component = inrow[0];
if (alpha < 255) /* else just use component */
{
/* Since PNG_OPTIMIZED_ALPHA was not set it is
* necessary to invert the sRGB transfer
* function and multiply the alpha out.
*/
component = png_sRGB_table[component] * alpha;
component += png_sRGB_table[outrow[0]] *
(255-alpha);
component = PNG_sRGB_FROM_LINEAR(component);
}
outrow[0] = (png_byte)component;
}
inrow += 2; /* gray and alpha channel */
}
}
}
else /* constant background value */
{
png_byte background8 = display->background->green;
png_uint_16 background = png_sRGB_table[background8];
for (; y<height; y += stepy)
{
png_bytep inrow = png_voidcast(png_bytep,
display->local_row);
png_bytep outrow = first_row + y * step_row;
png_const_bytep end_row = outrow + width;
/* Read the row, which is packed: */
png_read_row(png_ptr, inrow, NULL);
/* Now do the composition on each pixel in this row. */
outrow += startx;
for (; outrow < end_row; outrow += stepx)
{
png_byte alpha = inrow[1];
if (alpha > 0) /* else use background */
{
png_uint_32 component = inrow[0];
if (alpha < 255) /* else just use component */
{
component = png_sRGB_table[component] * alpha;
component += background * (255-alpha);
component = PNG_sRGB_FROM_LINEAR(component);
}
outrow[0] = (png_byte)component;
}
else
outrow[0] = background8;
inrow += 2; /* gray and alpha channel */
}
row += display->row_bytes;
}
}
}
}
break;
case 16:
/* 16-bit linear with pre-multiplied alpha; the pre-multiplication must
* still be done and, maybe, the alpha channel removed. This code also
* handles the alpha-first option.
*/
{
png_uint_16p first_row = png_voidcast(png_uint_16p,
display->first_row);
/* The division by two is safe because the caller passed in a
* stride which was multiplied by 2 (below) to get row_bytes.
*/
ptrdiff_t step_row = display->row_bytes / 2;
unsigned int preserve_alpha = (image->format &
PNG_FORMAT_FLAG_ALPHA) != 0;
unsigned int outchannels = 1U+preserve_alpha;
int swap_alpha = 0;
# ifdef PNG_SIMPLIFIED_READ_AFIRST_SUPPORTED
if (preserve_alpha != 0 &&
(image->format & PNG_FORMAT_FLAG_AFIRST) != 0)
swap_alpha = 1;
# endif
for (pass = 0; pass < passes; ++pass)
{
unsigned int startx, stepx, stepy;
png_uint_32 y;
/* The 'x' start and step are adjusted to output components here.
*/
if (png_ptr->interlaced == PNG_INTERLACE_ADAM7)
{
/* The row may be empty for a short image: */
if (PNG_PASS_COLS(width, pass) == 0)
continue;
startx = PNG_PASS_START_COL(pass) * outchannels;
stepx = PNG_PASS_COL_OFFSET(pass) * outchannels;
y = PNG_PASS_START_ROW(pass);
stepy = PNG_PASS_ROW_OFFSET(pass);
}
else
{
y = 0;
startx = 0;
stepx = outchannels;
stepy = 1;
}
for (; y<height; y += stepy)
{
png_const_uint_16p inrow;
png_uint_16p outrow = first_row + y*step_row;
png_uint_16p end_row = outrow + width * outchannels;
/* Read the row, which is packed: */
png_read_row(png_ptr, png_voidcast(png_bytep,
display->local_row), NULL);
inrow = png_voidcast(png_const_uint_16p, display->local_row);
/* Now do the pre-multiplication on each pixel in this row.
*/
outrow += startx;
for (; outrow < end_row; outrow += stepx)
{
png_uint_32 component = inrow[0];
png_uint_16 alpha = inrow[1];
if (alpha > 0) /* else 0 */
{
if (alpha < 65535) /* else just use component */
{
component *= alpha;
component += 32767;
component /= 65535;
}
}
else
component = 0;
outrow[swap_alpha] = (png_uint_16)component;
if (preserve_alpha != 0)
outrow[1 ^ swap_alpha] = alpha;
inrow += 2; /* components and alpha channel */
}
}
}
}
break;
#ifdef __GNUC__
default:
png_error(png_ptr, "unexpected bit depth");
#endif
}
return 1;
}
/* The guts of png_image_finish_read as a png_safe_execute callback. */
static int
png_image_read_direct(png_voidp argument)
{
png_image_read_control *display = png_voidcast(png_image_read_control*,
argument);
png_imagep image = display->image;
png_structrp png_ptr = image->opaque->png_ptr;
png_inforp info_ptr = image->opaque->info_ptr;
png_uint_32 format = image->format;
int linear = (format & PNG_FORMAT_FLAG_LINEAR) != 0;
int do_local_compose = 0;
int do_local_background = 0; /* to avoid double gamma correction bug */
int passes = 0;
/* Add transforms to ensure the correct output format is produced then check
* that the required implementation support is there. Always expand; always
* need 8 bits minimum, no palette and expanded tRNS.
*/
png_set_expand(png_ptr);
/* Now check the format to see if it was modified. */
{
png_uint_32 base_format = png_image_format(png_ptr) &
~PNG_FORMAT_FLAG_COLORMAP /* removed by png_set_expand */;
png_uint_32 change = format ^ base_format;
png_fixed_point output_gamma;
int mode; /* alpha mode */
/* Do this first so that we have a record if rgb to gray is happening. */
if ((change & PNG_FORMAT_FLAG_COLOR) != 0)
{
/* gray<->color transformation required. */
if ((format & PNG_FORMAT_FLAG_COLOR) != 0)
png_set_gray_to_rgb(png_ptr);
else
{
/* libpng can't do both rgb to gray and
* background/pre-multiplication if there is also significant gamma
* correction, because both operations require linear colors and
* the code only supports one transform doing the gamma correction.
* Handle this by doing the pre-multiplication or background
* operation in this code, if necessary.
*
* TODO: fix this by rewriting pngrtran.c (!)
*
* For the moment (given that fixing this in pngrtran.c is an
* enormous change) 'do_local_background' is used to indicate that
* the problem exists.
*/
if ((base_format & PNG_FORMAT_FLAG_ALPHA) != 0)
do_local_background = 1/*maybe*/;
png_set_rgb_to_gray_fixed(png_ptr, PNG_ERROR_ACTION_NONE,
PNG_RGB_TO_GRAY_DEFAULT, PNG_RGB_TO_GRAY_DEFAULT);
}
change &= ~PNG_FORMAT_FLAG_COLOR;
}
/* Set the gamma appropriately, linear for 16-bit input, sRGB otherwise.
*/
{
png_fixed_point input_gamma_default;
if ((base_format & PNG_FORMAT_FLAG_LINEAR) != 0 &&
(image->flags & PNG_IMAGE_FLAG_16BIT_sRGB) == 0)
input_gamma_default = PNG_GAMMA_LINEAR;
else
input_gamma_default = PNG_DEFAULT_sRGB;
/* Call png_set_alpha_mode to set the default for the input gamma; the
* output gamma is set by a second call below.
*/
png_set_alpha_mode_fixed(png_ptr, PNG_ALPHA_PNG, input_gamma_default);
}
if (linear != 0)
{
/* If there *is* an alpha channel in the input it must be multiplied
* out; use PNG_ALPHA_STANDARD, otherwise just use PNG_ALPHA_PNG.
*/
if ((base_format & PNG_FORMAT_FLAG_ALPHA) != 0)
mode = PNG_ALPHA_STANDARD; /* associated alpha */
else
mode = PNG_ALPHA_PNG;
output_gamma = PNG_GAMMA_LINEAR;
}
else
{
mode = PNG_ALPHA_PNG;
output_gamma = PNG_DEFAULT_sRGB;
}
/* If 'do_local_background' is set check for the presence of gamma
* correction; this is part of the work-round for the libpng bug
* described above.
*
* TODO: fix libpng and remove this.
*/
if (do_local_background != 0)
{
png_fixed_point gtest;
/* This is 'png_gamma_threshold' from pngrtran.c; the test used for
* gamma correction, the screen gamma hasn't been set on png_struct
* yet; it's set below. png_struct::gamma, however, is set to the
* final value.
*/
if (png_muldiv(&gtest, output_gamma, png_ptr->colorspace.gamma,
PNG_FP_1) != 0 && png_gamma_significant(gtest) == 0)
do_local_background = 0;
else if (mode == PNG_ALPHA_STANDARD)
{
do_local_background = 2/*required*/;
mode = PNG_ALPHA_PNG; /* prevent libpng doing it */
}
/* else leave as 1 for the checks below */
}
/* If the bit-depth changes then handle that here. */
if ((change & PNG_FORMAT_FLAG_LINEAR) != 0)
{
if (linear != 0 /*16-bit output*/)
png_set_expand_16(png_ptr);
else /* 8-bit output */
png_set_scale_16(png_ptr);
change &= ~PNG_FORMAT_FLAG_LINEAR;
}
/* Now the background/alpha channel changes. */
if ((change & PNG_FORMAT_FLAG_ALPHA) != 0)
{
/* Removing an alpha channel requires composition for the 8-bit
* formats; for the 16-bit it is already done, above, by the
* pre-multiplication and the channel just needs to be stripped.
*/
if ((base_format & PNG_FORMAT_FLAG_ALPHA) != 0)
{
/* If RGB->gray is happening the alpha channel must be left and the
* operation completed locally.
*
* TODO: fix libpng and remove this.
*/
if (do_local_background != 0)
do_local_background = 2/*required*/;
/* 16-bit output: just remove the channel */
else if (linear != 0) /* compose on black (well, pre-multiply) */
png_set_strip_alpha(png_ptr);
/* 8-bit output: do an appropriate compose */
else if (display->background != NULL)
{
png_color_16 c;
c.index = 0; /*unused*/
c.red = display->background->red;
c.green = display->background->green;
c.blue = display->background->blue;
c.gray = display->background->green;
/* This is always an 8-bit sRGB value, using the 'green' channel
* for gray is much better than calculating the luminance here;
* we can get off-by-one errors in that calculation relative to
* the app expectations and that will show up in transparent
* pixels.
*/
png_set_background_fixed(png_ptr, &c,
PNG_BACKGROUND_GAMMA_SCREEN, 0/*need_expand*/,
0/*gamma: not used*/);
}
else /* compose on row: implemented below. */
{
do_local_compose = 1;
/* This leaves the alpha channel in the output, so it has to be
* removed by the code below. Set the encoding to the 'OPTIMIZE'
* one so the code only has to hack on the pixels that require
* composition.
*/
mode = PNG_ALPHA_OPTIMIZED;
}
}
else /* output needs an alpha channel */
{
/* This is tricky because it happens before the swap operation has
* been accomplished; however, the swap does *not* swap the added
* alpha channel (weird API), so it must be added in the correct
* place.
*/
png_uint_32 filler; /* opaque filler */
int where;
if (linear != 0)
filler = 65535;
else
filler = 255;
#ifdef PNG_FORMAT_AFIRST_SUPPORTED
if ((format & PNG_FORMAT_FLAG_AFIRST) != 0)
{
where = PNG_FILLER_BEFORE;
change &= ~PNG_FORMAT_FLAG_AFIRST;
}
else
#endif
where = PNG_FILLER_AFTER;
png_set_add_alpha(png_ptr, filler, where);
}
/* This stops the (irrelevant) call to swap_alpha below. */
change &= ~PNG_FORMAT_FLAG_ALPHA;
}
/* Now set the alpha mode correctly; this is always done, even if there is
* no alpha channel in either the input or the output because it correctly
* sets the output gamma.
*/
png_set_alpha_mode_fixed(png_ptr, mode, output_gamma);
# ifdef PNG_FORMAT_BGR_SUPPORTED
if ((change & PNG_FORMAT_FLAG_BGR) != 0)
{
/* Check only the output format; PNG is never BGR; don't do this if
* the output is gray, but fix up the 'format' value in that case.
*/
if ((format & PNG_FORMAT_FLAG_COLOR) != 0)
png_set_bgr(png_ptr);
else
format &= ~PNG_FORMAT_FLAG_BGR;
change &= ~PNG_FORMAT_FLAG_BGR;
}
# endif
# ifdef PNG_FORMAT_AFIRST_SUPPORTED
if ((change & PNG_FORMAT_FLAG_AFIRST) != 0)
{
/* Only relevant if there is an alpha channel - it's particularly
* important to handle this correctly because do_local_compose may
* be set above and then libpng will keep the alpha channel for this
* code to remove.
*/
if ((format & PNG_FORMAT_FLAG_ALPHA) != 0)
{
/* Disable this if doing a local background,
* TODO: remove this when local background is no longer required.
*/
if (do_local_background != 2)
png_set_swap_alpha(png_ptr);
}
else
format &= ~PNG_FORMAT_FLAG_AFIRST;
change &= ~PNG_FORMAT_FLAG_AFIRST;
}
# endif
/* If the *output* is 16-bit then we need to check for a byte-swap on this
* architecture.
*/
if (linear != 0)
{
PNG_CONST png_uint_16 le = 0x0001;
if ((*(png_const_bytep) & le) != 0)
png_set_swap(png_ptr);
}
/* If change is not now 0 some transformation is missing - error out. */
if (change != 0)
png_error(png_ptr, "png_read_image: unsupported transformation");
}
PNG_SKIP_CHUNKS(png_ptr);
/* Update the 'info' structure and make sure the result is as required; first
* make sure to turn on the interlace handling if it will be required
* (because it can't be turned on *after* the call to png_read_update_info!)
*
* TODO: remove the do_local_background fixup below.
*/
if (do_local_compose == 0 && do_local_background != 2)
passes = png_set_interlace_handling(png_ptr);
png_read_update_info(png_ptr, info_ptr);
{
png_uint_32 info_format = 0;
if ((info_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0)
info_format |= PNG_FORMAT_FLAG_COLOR;
if ((info_ptr->color_type & PNG_COLOR_MASK_ALPHA) != 0)
{
/* do_local_compose removes this channel below. */
if (do_local_compose == 0)
{
/* do_local_background does the same if required. */
if (do_local_background != 2 ||
(format & PNG_FORMAT_FLAG_ALPHA) != 0)
info_format |= PNG_FORMAT_FLAG_ALPHA;
}
}
else if (do_local_compose != 0) /* internal error */
png_error(png_ptr, "png_image_read: alpha channel lost");
if (info_ptr->bit_depth == 16)
info_format |= PNG_FORMAT_FLAG_LINEAR;
#ifdef PNG_FORMAT_BGR_SUPPORTED
if ((png_ptr->transformations & PNG_BGR) != 0)
info_format |= PNG_FORMAT_FLAG_BGR;
#endif
#ifdef PNG_FORMAT_AFIRST_SUPPORTED
if (do_local_background == 2)
{
if ((format & PNG_FORMAT_FLAG_AFIRST) != 0)
info_format |= PNG_FORMAT_FLAG_AFIRST;
}
if ((png_ptr->transformations & PNG_SWAP_ALPHA) != 0 ||
((png_ptr->transformations & PNG_ADD_ALPHA) != 0 &&
(png_ptr->flags & PNG_FLAG_FILLER_AFTER) == 0))
{
if (do_local_background == 2)
png_error(png_ptr, "unexpected alpha swap transformation");
info_format |= PNG_FORMAT_FLAG_AFIRST;
}
# endif
/* This is actually an internal error. */
if (info_format != format)
png_error(png_ptr, "png_read_image: invalid transformations");
}
/* Now read the rows. If do_local_compose is set then it is necessary to use
* a local row buffer. The output will be GA, RGBA or BGRA and must be
* converted to G, RGB or BGR as appropriate. The 'local_row' member of the
* display acts as a flag.
*/
{
png_voidp first_row = display->buffer;
ptrdiff_t row_bytes = display->row_stride;
if (linear != 0)
row_bytes *= 2;
/* The following expression is designed to work correctly whether it gives
* a signed or an unsigned result.
*/
if (row_bytes < 0)
{
char *ptr = png_voidcast(char*, first_row);
ptr += (image->height-1) * (-row_bytes);
first_row = png_voidcast(png_voidp, ptr);
}
display->first_row = first_row;
display->row_bytes = row_bytes;
}
if (do_local_compose != 0)
{
int result;
png_voidp row = png_malloc(png_ptr, png_get_rowbytes(png_ptr, info_ptr));
display->local_row = row;
result = png_safe_execute(image, png_image_read_composite, display);
display->local_row = NULL;
png_free(png_ptr, row);
return result;
}
else if (do_local_background == 2)
{
int result;
png_voidp row = png_malloc(png_ptr, png_get_rowbytes(png_ptr, info_ptr));
display->local_row = row;
result = png_safe_execute(image, png_image_read_background, display);
display->local_row = NULL;
png_free(png_ptr, row);
return result;
}
else
{
png_alloc_size_t row_bytes = (png_alloc_size_t)display->row_bytes;
while (--passes >= 0)
{
png_uint_32 y = image->height;
png_bytep row = png_voidcast(png_bytep, display->first_row);
for (; y > 0; --y)
{
png_read_row(png_ptr, row, NULL);
row += row_bytes;
}
}
return 1;
}
}
int PNGAPI
png_image_finish_read(png_imagep image, png_const_colorp background,
void *buffer, png_int_32 row_stride, void *colormap)
{
if (image != NULL && image->version == PNG_IMAGE_VERSION)
{
/* Check for row_stride overflow. This check is not performed on the
* original PNG format because it may not occur in the output PNG format
* and libpng deals with the issues of reading the original.
*/
const unsigned int channels = PNG_IMAGE_PIXEL_CHANNELS(image->format);
/* The following checks just the 'row_stride' calculation to ensure it
* fits in a signed 32-bit value. Because channels/components can be
* either 1 or 2 bytes in size the length of a row can still overflow 32
* bits; this is just to verify that the 'row_stride' argument can be
* represented.
*/
if (image->width <= 0x7fffffffU/channels) /* no overflow */
{
png_uint_32 check;
const png_uint_32 png_row_stride = image->width * channels;
if (row_stride == 0)
row_stride = (png_int_32)/*SAFE*/png_row_stride;
if (row_stride < 0)
check = (png_uint_32)(-row_stride);
else
check = (png_uint_32)row_stride;
/* This verifies 'check', the absolute value of the actual stride
* passed in and detects overflow in the application calculation (i.e.
* if the app did actually pass in a non-zero 'row_stride'.
*/
if (image->opaque != NULL && buffer != NULL && check >= png_row_stride)
{
/* Now check for overflow of the image buffer calculation; this
* limits the whole image size to 32 bits for API compatibility with
* the current, 32-bit, PNG_IMAGE_BUFFER_SIZE macro.
*
* The PNG_IMAGE_BUFFER_SIZE macro is:
*
* (PNG_IMAGE_PIXEL_COMPONENT_SIZE(fmt)*height*(row_stride))
*
* And the component size is always 1 or 2, so make sure that the
* number of *bytes* that the application is saying are available
* does actually fit into a 32-bit number.
*
* NOTE: this will be changed in 1.7 because PNG_IMAGE_BUFFER_SIZE
* will be changed to use png_alloc_size_t; bigger images can be
* accomodated on 64-bit systems.
*/
if (image->height <=
0xffffffffU/PNG_IMAGE_PIXEL_COMPONENT_SIZE(image->format)/check)
{
if ((image->format & PNG_FORMAT_FLAG_COLORMAP) == 0 ||
(image->colormap_entries > 0 && colormap != NULL))
{
int result;
png_image_read_control display;
memset(&display, 0, (sizeof display));
display.image = image;
display.buffer = buffer;
display.row_stride = row_stride;
display.colormap = colormap;
display.background = background;
display.local_row = NULL;
/* Choose the correct 'end' routine; for the color-map case
* all the setup has already been done.
*/
if ((image->format & PNG_FORMAT_FLAG_COLORMAP) != 0)
result =
png_safe_execute(image,
png_image_read_colormap, &display) &&
png_safe_execute(image,
png_image_read_colormapped, &display);
else
result =
png_safe_execute(image,
png_image_read_direct, &display);
png_image_free(image);
return result;
}
else
return png_image_error(image,
"png_image_finish_read[color-map]: no color-map");
}
else
return png_image_error(image,
"png_image_finish_read: image too large");
}
else
return png_image_error(image,
"png_image_finish_read: invalid argument");
}
else
return png_image_error(image,
"png_image_finish_read: row_stride too large");
}
else if (image != NULL)
return png_image_error(image,
"png_image_finish_read: damaged PNG_IMAGE_VERSION");
return 0;
}
#endif /* SIMPLIFIED_READ */
#endif /* READ */