reactos/dll/opengl/mesa/drawpix.c
Jérôme Gardou 5f2bebf7a5 [OPENGL32][MESA] Downgrade Mesa library to version 2.6
With this commit, we now use a forked version of MESA which only supports OpenGL 1.1, like the windows implementation does.
It exposes :
  - The same pixel formats
  - The same set of extensions
  - Nothing more
All of this without taking 10% of your build time.
If you need a more modern option, look at the MESA package from Rapps, which is (and must be) maintained outside of this code tree.
CORE-7499
2019-01-19 14:23:54 +01:00

1207 lines
37 KiB
C

/* $Id: drawpix.c,v 1.16 1998/02/03 23:45:02 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 2.4
* Copyright (C) 1995-1997 Brian Paul
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* $Log: drawpix.c,v $
* Revision 1.16 1998/02/03 23:45:02 brianp
* added casts to prevent warnings with Amiga StormC compiler
*
* Revision 1.15 1997/08/26 02:10:11 brianp
* another bug fix related to glPixelStore()
*
* Revision 1.14 1997/08/24 02:31:23 brianp
* bug fix: glPixelStore() params weren't ignored during display list execute
*
* Revision 1.13 1997/07/24 01:25:01 brianp
* changed precompiled header symbol from PCH to PC_HEADER
*
* Revision 1.12 1997/06/20 02:18:23 brianp
* replaced Current.IntColor with Current.ByteColor
*
* Revision 1.11 1997/05/28 03:24:22 brianp
* added precompiled header (PCH) support
*
* Revision 1.10 1997/04/24 00:18:56 brianp
* added some missing UNDEFARRAY()s. Reported by Randy Frank.
*
* Revision 1.9 1997/04/20 20:28:49 brianp
* replaced abort() with gl_problem()
*
* Revision 1.8 1997/04/11 23:24:25 brianp
* move call to gl_update_state() into gl_DrawPixels() from drawpixels()
*
* Revision 1.7 1997/03/18 01:55:47 brianp
* only generate feedback/selection if raster position is valid
*
* Revision 1.6 1997/02/10 20:26:57 brianp
* fixed memory leak in quickdraw_rgb()
*
* Revision 1.5 1997/02/03 20:30:31 brianp
* added a few DEFARRAY macros for BeOS
*
* Revision 1.4 1996/10/16 00:58:53 brianp
* renamed gl_drawpixels() to drawpixels()
*
* Revision 1.3 1996/09/27 01:26:25 brianp
* added missing default cases to switches
*
* Revision 1.2 1996/09/15 14:17:30 brianp
* now use GLframebuffer and GLvisual
*
* Revision 1.1 1996/09/13 01:38:16 brianp
* Initial revision
*
*/
#ifdef PC_HEADER
#include "all.h"
#else
#include <stdlib.h>
#include <string.h>
#include "context.h"
#include "drawpix.h"
#include "feedback.h"
#include "dlist.h"
#include "macros.h"
#include "pixel.h"
#include "span.h"
#include "stencil.h"
#include "types.h"
#endif
/* TODO: apply texture mapping to fragments */
static void draw_index_pixels( GLcontext* ctx, GLsizei width, GLsizei height,
GLenum type, const GLvoid *pixels )
{
GLint x, y, desty;
GLuint i, j;
GLdepth zspan[MAX_WIDTH];
GLboolean zoom;
zoom = ctx->Pixel.ZoomX!=1.0 || ctx->Pixel.ZoomY!=1.0;
/* Position, depth of pixels */
x = (GLint) (ctx->Current.RasterPos[0] + 0.5F);
y = (GLint) (ctx->Current.RasterPos[1] + 0.5F);
desty = y;
if (ctx->Depth.Test) {
GLdepth zval = (GLdepth) (ctx->Current.RasterPos[2] * DEPTH_SCALE);
for (i=0;i<width;i++) {
zspan[i] = zval;
}
}
/* process the image row by row */
for (i=0;i<height;i++,y++) {
GLuint ispan[MAX_WIDTH];
/* convert to uints */
switch (type) {
case GL_UNSIGNED_BYTE:
{
GLubyte *src = (GLubyte *) pixels + i * width;
for (j=0;j<width;j++) {
ispan[j] = (GLuint) *src++;
}
}
break;
case GL_BYTE:
{
GLbyte *src = (GLbyte *) pixels + i * width;
for (j=0;j<width;j++) {
ispan[j] = (GLuint) *src++;
}
}
break;
case GL_UNSIGNED_SHORT:
{
GLushort *src = (GLushort *) pixels + i * width;
for (j=0;j<width;j++) {
ispan[j] = (GLuint) *src++;
}
}
break;
case GL_SHORT:
{
GLshort *src = (GLshort *) pixels + i * width;
for (j=0;j<width;j++) {
ispan[j] = (GLuint) *src++;
}
}
break;
case GL_UNSIGNED_INT:
{
GLuint *src = (GLuint *) pixels + i * width;
for (j=0;j<width;j++) {
ispan[j] = *src++;
}
}
break;
case GL_INT:
{
GLint *src = (GLint *) pixels + i * width;
for (j=0;j<width;j++) {
ispan[j] = (GLuint) *src++;
}
}
break;
case GL_BITMAP:
/* TODO */
break;
case GL_FLOAT:
{
GLfloat *src = (GLfloat *) pixels + i * width;
for (j=0;j<width;j++) {
ispan[j] = (GLuint) (GLint) *src++;
}
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "Internal: draw_index_pixels" );
}
/* apply shift and offset */
if (ctx->Pixel.IndexOffset || ctx->Pixel.IndexShift) {
if (ctx->Pixel.IndexShift>=0) {
for (j=0;j<width;j++) {
ispan[j] = (ispan[j] << ctx->Pixel.IndexShift)
+ ctx->Pixel.IndexOffset;
}
}
else {
for (j=0;j<width;j++) {
ispan[j] = (ispan[j] >> -ctx->Pixel.IndexShift)
+ ctx->Pixel.IndexOffset;
}
}
}
if (ctx->Visual->RGBAflag) {
/* Convert index to RGBA and write to frame buffer */
GLubyte red[MAX_WIDTH], green[MAX_WIDTH];
GLubyte blue[MAX_WIDTH], alpha[MAX_WIDTH];
for (j=0;j<width;j++) {
red[j] = (GLint) (ctx->Pixel.MapItoR[ispan[j]] * ctx->Visual->RedScale);
green[j] = (GLint) (ctx->Pixel.MapItoG[ispan[j]] * ctx->Visual->GreenScale);
blue[j] = (GLint) (ctx->Pixel.MapItoB[ispan[j]] * ctx->Visual->BlueScale);
alpha[j] = (GLint) (ctx->Pixel.MapItoA[ispan[j]] * ctx->Visual->AlphaScale);
}
if (zoom) {
gl_write_zoomed_color_span( ctx, width, x, y, zspan,
red, green, blue, alpha, desty );
}
else {
gl_write_color_span( ctx, width, x, y, zspan,
red, green, blue, alpha, GL_BITMAP );
}
}
else {
/* optionally apply index map then write to frame buffer */
if (ctx->Pixel.MapColorFlag) {
for (j=0;j<width;j++) {
ispan[j] = ctx->Pixel.MapItoI[ispan[j]];
}
}
if (zoom) {
gl_write_zoomed_index_span( ctx, width, x, y, zspan, ispan, desty );
}
else {
gl_write_index_span( ctx, width, x, y, zspan, ispan, GL_BITMAP );
}
}
}
}
static void draw_stencil_pixels( GLcontext* ctx, GLsizei width, GLsizei height,
GLenum type, const GLvoid *pixels )
{
GLint x, y, desty;
GLuint i, j;
GLboolean zoom;
zoom = ctx->Pixel.ZoomX!=1.0 || ctx->Pixel.ZoomY!=1.0;
/* Position, depth of pixels */
x = (GLint) (ctx->Current.RasterPos[0] + 0.5F);
y = (GLint) (ctx->Current.RasterPos[1] + 0.5F);
desty = y;
/* process the image row by row */
for (i=0;i<height;i++,y++) {
GLubyte stencil[MAX_WIDTH];
/* convert to ubytes */
switch (type) {
case GL_UNSIGNED_BYTE:
{
GLubyte *src = (GLubyte *) pixels + i * width;
MEMCPY( stencil, src, width );
}
break;
case GL_BYTE:
{
GLbyte *src = (GLbyte *) pixels + i * width;
MEMCPY( stencil, src, width );
}
break;
case GL_UNSIGNED_SHORT:
{
GLushort *src = (GLushort *) pixels + i * width;
for (j=0;j<width;j++) {
stencil[j] = (GLubyte) ((*src++) & 0xff);
}
}
break;
case GL_SHORT:
{
GLshort *src = (GLshort *) pixels + i * width;
for (j=0;j<width;j++) {
stencil[j] = (GLubyte) ((*src++) & 0xff);
}
}
break;
case GL_UNSIGNED_INT:
{
GLuint *src = (GLuint *) pixels + i * width;
for (j=0;j<width;j++) {
stencil[j] = (GLubyte) ((*src++) & 0xff);
}
}
break;
case GL_INT:
{
GLint *src = (GLint *) pixels + i * width;
for (j=0;j<width;j++) {
stencil[j] = (GLubyte) ((*src++) & 0xff);
}
}
break;
case GL_BITMAP:
/* TODO */
break;
case GL_FLOAT:
{
GLfloat *src = (GLfloat *) pixels + i * width;
for (j=0;j<width;j++) {
stencil[j] = (GLubyte) (((GLint) *src++) & 0xff);
}
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "Internal: draw_stencil_pixels" );
}
/* apply shift and offset */
if (ctx->Pixel.IndexOffset || ctx->Pixel.IndexShift) {
if (ctx->Pixel.IndexShift>=0) {
for (j=0;j<width;j++) {
stencil[j] = (stencil[j] << ctx->Pixel.IndexShift)
+ ctx->Pixel.IndexOffset;
}
}
else {
for (j=0;j<width;j++) {
stencil[j] = (stencil[j] >> -ctx->Pixel.IndexShift)
+ ctx->Pixel.IndexOffset;
}
}
}
/* mapping */
if (ctx->Pixel.MapStencilFlag) {
for (j=0;j<width;j++) {
stencil[j] = ctx->Pixel.MapStoS[ stencil[j] ];
}
}
/* write stencil values to stencil buffer */
if (zoom) {
gl_write_zoomed_stencil_span( ctx, (GLuint) width, x, y, stencil, desty );
}
else {
gl_write_stencil_span( ctx, (GLuint) width, x, y, stencil );
}
}
}
static void draw_depth_pixels( GLcontext* ctx, GLsizei width, GLsizei height,
GLenum type, const GLvoid *pixels )
{
GLint x, y, desty;
GLubyte red[MAX_WIDTH], green[MAX_WIDTH], blue[MAX_WIDTH], alpha[MAX_WIDTH];
GLuint ispan[MAX_WIDTH];
GLboolean bias_or_scale;
GLboolean zoom;
bias_or_scale = ctx->Pixel.DepthBias!=0.0 || ctx->Pixel.DepthScale!=1.0;
zoom = ctx->Pixel.ZoomX!=1.0 || ctx->Pixel.ZoomY!=1.0;
/* Position, depth of pixels */
x = (GLint) (ctx->Current.RasterPos[0] + 0.5F);
y = (GLint) (ctx->Current.RasterPos[1] + 0.5F);
desty = y;
/* Color or index */
if (ctx->Visual->RGBAflag) {
GLint r, g, b, a;
r = (GLint) (ctx->Current.RasterColor[0] * ctx->Visual->RedScale);
g = (GLint) (ctx->Current.RasterColor[1] * ctx->Visual->GreenScale);
b = (GLint) (ctx->Current.RasterColor[2] * ctx->Visual->BlueScale);
a = (GLint) (ctx->Current.RasterColor[3] * ctx->Visual->AlphaScale);
MEMSET( red, r, width );
MEMSET( green, g, width );
MEMSET( blue, b, width );
MEMSET( alpha, a, width );
}
else {
GLuint i;
for (i=0;i<width;i++) {
ispan[i] = ctx->Current.RasterIndex;
}
}
if (type==GL_UNSIGNED_INT && !bias_or_scale && !zoom && ctx->Visual->RGBAflag)
{
/* Special case: directly write 32-bit depth values */
GLuint i, j;
/* Compute shift value to scale 32-bit uints down to depth values. */
GLuint shift = 0;
GLuint max = MAX_DEPTH;
while ((max&0x80000000)==0) {
max = max << 1;
shift++;
}
for (j=0;j<height;j++,y++) {
GLdepth zspan[MAX_WIDTH];
GLuint *zptr = (GLuint *) pixels + j * width;
for (i=0;i<width;i++) {
zspan[i] = zptr[i] >> shift;
}
gl_write_color_span( ctx, width, x, y, zspan,
red, green, blue, alpha, GL_BITMAP );
}
}
else {
/* General case (slower) */
GLuint i, j;
/* process image row by row */
for (i=0;i<height;i++,y++) {
GLfloat depth[MAX_WIDTH];
GLdepth zspan[MAX_WIDTH];
switch (type) {
case GL_UNSIGNED_BYTE:
{
GLubyte *src = (GLubyte *) pixels + i * width;
for (j=0;j<width;j++) {
depth[j] = UBYTE_TO_FLOAT( *src++ );
}
}
break;
case GL_BYTE:
{
GLbyte *src = (GLbyte *) pixels + i * width;
for (j=0;j<width;j++) {
depth[j] = BYTE_TO_FLOAT( *src++ );
}
}
break;
case GL_UNSIGNED_SHORT:
{
GLushort *src = (GLushort *) pixels + i * width;
for (j=0;j<width;j++) {
depth[j] = USHORT_TO_FLOAT( *src++ );
}
}
break;
case GL_SHORT:
{
GLshort *src = (GLshort *) pixels + i * width;
for (j=0;j<width;j++) {
depth[j] = SHORT_TO_FLOAT( *src++ );
}
}
break;
case GL_UNSIGNED_INT:
{
GLuint *src = (GLuint *) pixels + i * width;
for (j=0;j<width;j++) {
depth[j] = UINT_TO_FLOAT( *src++ );
}
}
break;
case GL_INT:
{
GLint *src = (GLint *) pixels + i * width;
for (j=0;j<width;j++) {
depth[j] = INT_TO_FLOAT( *src++ );
}
}
break;
case GL_FLOAT:
{
GLfloat *src = (GLfloat *) pixels + i * width;
for (j=0;j<width;j++) {
depth[j] = *src++;
}
}
break;
default:
gl_problem(ctx, "Bad type in draw_depth_pixels");
return;
}
/* apply depth scale and bias */
if (ctx->Pixel.DepthScale!=1.0 || ctx->Pixel.DepthBias!=0.0) {
for (j=0;j<width;j++) {
depth[j] = depth[j] * ctx->Pixel.DepthScale + ctx->Pixel.DepthBias;
}
}
/* clamp depth values to [0,1] and convert from floats to integers */
for (j=0;j<width;j++) {
zspan[j] = (GLdepth) (CLAMP( depth[j], 0.0F, 1.0F ) * DEPTH_SCALE);
}
if (ctx->Visual->RGBAflag) {
if (zoom) {
gl_write_zoomed_color_span( ctx, width, x, y, zspan,
red, green, blue, alpha, desty );
}
else {
gl_write_color_span( ctx, width, x, y, zspan,
red, green, blue, alpha, GL_BITMAP );
}
}
else {
if (zoom) {
gl_write_zoomed_index_span( ctx, width, x, y, zspan,
ispan, GL_BITMAP );
}
else {
gl_write_index_span( ctx, width, x, y, zspan, ispan, GL_BITMAP );
}
}
}
}
}
static void draw_color_pixels(GLcontext* ctx, GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid *pixels)
{
GLuint i, j;
GLint x, y, desty;
GLdepth zspan[MAX_WIDTH];
GLboolean scale_or_bias, quick_draw;
GLboolean zoom;
zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0;
/* Position, depth of pixels */
x = (GLint) (ctx->Current.RasterPos[0] + 0.5F);
y = (GLint) (ctx->Current.RasterPos[1] + 0.5F);
desty = y;
if (ctx->Depth.Test)
{
/* fill in array of z values */
GLdepth z = (GLdepth) (ctx->Current.RasterPos[2] * DEPTH_SCALE);
for (i = 0; i < width; i++)
{
zspan[i] = z;
}
}
/* Determine if scaling and/or biasing is needed */
if (ctx->Pixel.RedScale != 1.0F || ctx->Pixel.RedBias != 0.0F
|| ctx->Pixel.GreenScale != 1.0F || ctx->Pixel.GreenBias != 0.0F
|| ctx->Pixel.BlueScale != 1.0F || ctx->Pixel.BlueBias != 0.0F
|| ctx->Pixel.AlphaScale != 1.0F || ctx->Pixel.AlphaBias != 0.0F)
{
scale_or_bias = GL_TRUE;
}
else
{
scale_or_bias = GL_FALSE;
}
/* Determine if we can directly call the device driver function */
if (ctx->RasterMask == 0 && !zoom && x >= 0 && y >= 0
&& x + width <= ctx->Buffer->Width
&& y + height <= ctx->Buffer->Height)
{
quick_draw = GL_TRUE;
}
else
{
quick_draw = GL_FALSE;
}
/* First check for common cases */
if (type == GL_UNSIGNED_BYTE
&& (format == GL_RGB || format == GL_LUMINANCE || format == GL_BGR_EXT)
&& !ctx->Pixel.MapColorFlag
&& !scale_or_bias && ctx->Visual->EightBitColor)
{
DEFARRAY(GLubyte, alpha, MAX_WIDTH);
GLubyte *src = (GLubyte *) pixels;
/* constant alpha */
MEMSET(alpha, (GLint ) ctx->Visual->AlphaScale, width);
if (format == GL_RGB)
{
/* 8-bit RGB pixels */
DEFARRAY(GLubyte, red, MAX_WIDTH);
DEFARRAY(GLubyte, green, MAX_WIDTH);
DEFARRAY(GLubyte, blue, MAX_WIDTH);
for (i = 0; i < height; i++, y++)
{
for (j = 0; j < width; j++)
{
red[j] = *src++;
green[j] = *src++;
blue[j] = *src++;
}
if (quick_draw)
{
(*ctx->Driver.WriteColorSpan)(ctx, width, x, y, red, green,
blue, alpha, NULL);
}
else if (zoom)
{
gl_write_zoomed_color_span(ctx, (GLuint) width, x, y, zspan,
red, green, blue, alpha, desty);
}
else
{
gl_write_color_span(ctx, (GLuint) width, x, y, zspan, red,
green, blue, alpha, GL_BITMAP);
}
}
UNDEFARRAY( red );
UNDEFARRAY( green );
UNDEFARRAY( blue );
}
else if (format == GL_BGR_EXT)
{
/* 8-bit BGR pixels */
DEFARRAY(GLubyte, red, MAX_WIDTH);
DEFARRAY(GLubyte, green, MAX_WIDTH);
DEFARRAY(GLubyte, blue, MAX_WIDTH);
for (i = 0; i < height; i++, y++)
{
for (j = 0; j < width; j++)
{
blue[j] = *src++;
green[j] = *src++;
red[j] = *src++;
}
if (quick_draw)
{
(*ctx->Driver.WriteColorSpan)(ctx, width, x, y, red, green,
blue, alpha, NULL);
}
else if (zoom)
{
gl_write_zoomed_color_span(ctx, (GLuint) width, x, y, zspan,
red, green, blue, alpha, desty);
}
else
{
gl_write_color_span(ctx, (GLuint) width, x, y, zspan, red,
green, blue, alpha, GL_BITMAP);
}
}
UNDEFARRAY( red );
UNDEFARRAY( green );
UNDEFARRAY( blue );
}
else
{
/* 8-bit Luminance pixels */
GLubyte *lum = (GLubyte *) pixels;
for (i = 0; i < height; i++, y++, lum += width)
{
if (quick_draw)
{
(*ctx->Driver.WriteColorSpan)(ctx, width, x, y, lum, lum,
lum, alpha, NULL);
}
else if (zoom)
{
gl_write_zoomed_color_span(ctx, (GLuint) width, x, y, zspan,
lum, lum, lum, alpha, desty);
}
else
{
gl_write_color_span(ctx, (GLuint) width, x, y, zspan, lum,
lum, lum, alpha, GL_BITMAP);
}
}
}
UNDEFARRAY( alpha );
}
else
{
/* General solution */
GLboolean r_flag, g_flag, b_flag, a_flag, l_flag;
GLuint components;
GLboolean is_bgr;
r_flag = g_flag = b_flag = a_flag = l_flag = GL_FALSE;
is_bgr = GL_FALSE;
switch (format)
{
case GL_RED:
r_flag = GL_TRUE;
components = 1;
break;
case GL_GREEN:
g_flag = GL_TRUE;
components = 1;
break;
case GL_BLUE:
b_flag = GL_TRUE;
components = 1;
break;
case GL_ALPHA:
a_flag = GL_TRUE;
components = 1;
break;
case GL_RGB:
r_flag = g_flag = b_flag = GL_TRUE;
components = 3;
break;
case GL_BGR_EXT:
is_bgr = GL_TRUE;
r_flag = g_flag = b_flag = GL_TRUE;
components = 3;
break;
case GL_LUMINANCE:
l_flag = GL_TRUE;
components = 1;
break;
case GL_LUMINANCE_ALPHA:
l_flag = a_flag = GL_TRUE;
components = 2;
break;
case GL_RGBA:
r_flag = g_flag = b_flag = a_flag = GL_TRUE;
components = 4;
break;
case GL_BGRA_EXT:
is_bgr = GL_TRUE;
r_flag = g_flag = b_flag = a_flag = GL_TRUE;
components = 4;
break;
default:
gl_problem(ctx, "Bad type in draw_color_pixels");
return;
}
/* process the image row by row */
for (i = 0; i < height; i++, y++)
{
DEFARRAY(GLfloat, rf, MAX_WIDTH);
DEFARRAY(GLfloat, gf, MAX_WIDTH);
DEFARRAY(GLfloat, bf, MAX_WIDTH);
DEFARRAY(GLfloat, af, MAX_WIDTH);
DEFARRAY(GLubyte, red, MAX_WIDTH);
DEFARRAY(GLubyte, green, MAX_WIDTH);
DEFARRAY(GLubyte, blue, MAX_WIDTH);
DEFARRAY(GLubyte, alpha, MAX_WIDTH);
/* convert to floats */
switch (type)
{
case GL_UNSIGNED_BYTE:
{
GLubyte *src = (GLubyte *) pixels + i * width * components;
for (j = 0; j < width; j++)
{
if (l_flag)
{
rf[j] = gf[j] = bf[j] = UBYTE_TO_FLOAT(*src++);
}
else if (is_bgr)
{
bf[j] = b_flag ? UBYTE_TO_FLOAT(*src++) : 0.0;
gf[j] = g_flag ? UBYTE_TO_FLOAT(*src++) : 0.0;
rf[j] = r_flag ? UBYTE_TO_FLOAT(*src++) : 0.0;
}
else
{
rf[j] = r_flag ? UBYTE_TO_FLOAT(*src++) : 0.0;
gf[j] = g_flag ? UBYTE_TO_FLOAT(*src++) : 0.0;
bf[j] = b_flag ? UBYTE_TO_FLOAT(*src++) : 0.0;
}
af[j] = a_flag ? UBYTE_TO_FLOAT(*src++) : 1.0;
}
}
break;
case GL_BYTE:
{
GLbyte *src = (GLbyte *) pixels + i * width * components;
for (j = 0; j < width; j++)
{
if (l_flag)
{
rf[j] = gf[j] = bf[j] = BYTE_TO_FLOAT(*src++);
}
else if (is_bgr)
{
bf[j] = b_flag ? BYTE_TO_FLOAT(*src++) : 0.0;
gf[j] = g_flag ? BYTE_TO_FLOAT(*src++) : 0.0;
rf[j] = r_flag ? BYTE_TO_FLOAT(*src++) : 0.0;
}
else
{
rf[j] = r_flag ? BYTE_TO_FLOAT(*src++) : 0.0;
gf[j] = g_flag ? BYTE_TO_FLOAT(*src++) : 0.0;
bf[j] = b_flag ? BYTE_TO_FLOAT(*src++) : 0.0;
}
af[j] = a_flag ? BYTE_TO_FLOAT(*src++) : 1.0;
}
}
break;
case GL_BITMAP:
/* special case */
break;
case GL_UNSIGNED_SHORT:
{
GLushort *src = (GLushort *) pixels + i * width * components;
for (j = 0; j < width; j++)
{
if (l_flag)
{
rf[j] = gf[j] = bf[j] = USHORT_TO_FLOAT(*src++);
}
else if (is_bgr)
{
bf[j] = b_flag ? USHORT_TO_FLOAT(*src++) : 0.0;
gf[j] = g_flag ? USHORT_TO_FLOAT(*src++) : 0.0;
rf[j] = r_flag ? USHORT_TO_FLOAT(*src++) : 0.0;
}
else
{
rf[j] = r_flag ? USHORT_TO_FLOAT(*src++) : 0.0;
gf[j] = g_flag ? USHORT_TO_FLOAT(*src++) : 0.0;
bf[j] = b_flag ? USHORT_TO_FLOAT(*src++) : 0.0;
}
af[j] = a_flag ? USHORT_TO_FLOAT(*src++) : 1.0;
}
}
break;
case GL_SHORT:
{
GLshort *src = (GLshort *) pixels + i * width * components;
for (j = 0; j < width; j++)
{
if (l_flag)
{
rf[j] = gf[j] = bf[j] = SHORT_TO_FLOAT(*src++);
}
else if (is_bgr)
{
bf[j] = b_flag ? SHORT_TO_FLOAT(*src++) : 0.0;
gf[j] = g_flag ? SHORT_TO_FLOAT(*src++) : 0.0;
rf[j] = r_flag ? SHORT_TO_FLOAT(*src++) : 0.0;
}
else
{
rf[j] = r_flag ? SHORT_TO_FLOAT(*src++) : 0.0;
gf[j] = g_flag ? SHORT_TO_FLOAT(*src++) : 0.0;
bf[j] = b_flag ? SHORT_TO_FLOAT(*src++) : 0.0;
}
af[j] = a_flag ? SHORT_TO_FLOAT(*src++) : 1.0;
}
}
break;
case GL_UNSIGNED_INT:
{
GLuint *src = (GLuint *) pixels + i * width * components;
for (j = 0; j < width; j++)
{
if (l_flag)
{
rf[j] = gf[j] = bf[j] = UINT_TO_FLOAT(*src++);
}
else if (is_bgr)
{
bf[j] = b_flag ? UINT_TO_FLOAT(*src++) : 0.0;
gf[j] = g_flag ? UINT_TO_FLOAT(*src++) : 0.0;
rf[j] = r_flag ? UINT_TO_FLOAT(*src++) : 0.0;
}
else
{
rf[j] = r_flag ? UINT_TO_FLOAT(*src++) : 0.0;
gf[j] = g_flag ? UINT_TO_FLOAT(*src++) : 0.0;
bf[j] = b_flag ? UINT_TO_FLOAT(*src++) : 0.0;
}
af[j] = a_flag ? UINT_TO_FLOAT(*src++) : 1.0;
}
}
break;
case GL_INT:
{
GLint *src = (GLint *) pixels + i * width * components;
for (j = 0; j < width; j++)
{
if (l_flag)
{
rf[j] = gf[j] = bf[j] = INT_TO_FLOAT(*src++);
}
else if (is_bgr)
{
bf[j] = b_flag ? INT_TO_FLOAT(*src++) : 0.0;
gf[j] = g_flag ? INT_TO_FLOAT(*src++) : 0.0;
rf[j] = r_flag ? INT_TO_FLOAT(*src++) : 0.0;
}
else
{
rf[j] = r_flag ? INT_TO_FLOAT(*src++) : 0.0;
gf[j] = g_flag ? INT_TO_FLOAT(*src++) : 0.0;
bf[j] = b_flag ? INT_TO_FLOAT(*src++) : 0.0;
}
af[j] = a_flag ? INT_TO_FLOAT(*src++) : 1.0;
}
}
break;
case GL_FLOAT:
{
GLfloat *src = (GLfloat *) pixels + i * width * components;
for (j = 0; j < width; j++)
{
if (l_flag)
{
rf[j] = gf[j] = bf[j] = *src++;
}
else if (is_bgr)
{
bf[j] = b_flag ? *src++ : 0.0;
gf[j] = g_flag ? *src++ : 0.0;
rf[j] = r_flag ? *src++ : 0.0;
}
else
{
rf[j] = r_flag ? *src++ : 0.0;
gf[j] = g_flag ? *src++ : 0.0;
bf[j] = b_flag ? *src++ : 0.0;
}
af[j] = a_flag ? *src++ : 1.0;
}
}
break;
default:
gl_error(ctx, GL_INVALID_ENUM, "glDrawPixels");
return;
}
/* apply scale and bias */
if (scale_or_bias)
{
for (j = 0; j < width; j++)
{
GLfloat r, g, b, a;
r = rf[j] * ctx->Pixel.RedScale + ctx->Pixel.RedBias;
g = gf[j] * ctx->Pixel.GreenScale + ctx->Pixel.GreenBias;
b = bf[j] * ctx->Pixel.BlueScale + ctx->Pixel.BlueBias;
a = af[j] * ctx->Pixel.AlphaScale + ctx->Pixel.AlphaBias;
rf[j] = CLAMP(r, 0.0, 1.0);
gf[j] = CLAMP(g, 0.0, 1.0);
bf[j] = CLAMP(b, 0.0, 1.0);
af[j] = CLAMP(a, 0.0, 1.0);
}
}
/* apply pixel mappings */
if (ctx->Pixel.MapColorFlag)
{
GLfloat rscale = ctx->Pixel.MapRtoRsize - 1;
GLfloat gscale = ctx->Pixel.MapGtoGsize - 1;
GLfloat bscale = ctx->Pixel.MapBtoBsize - 1;
GLfloat ascale = ctx->Pixel.MapAtoAsize - 1;
for (j = 0; j < width; j++)
{
rf[j] = ctx->Pixel.MapRtoR[(GLint) (rf[j] * rscale)];
gf[j] = ctx->Pixel.MapGtoG[(GLint) (gf[j] * gscale)];
bf[j] = ctx->Pixel.MapBtoB[(GLint) (bf[j] * bscale)];
af[j] = ctx->Pixel.MapAtoA[(GLint) (af[j] * ascale)];
}
}
/* convert to integers */
for (j = 0; j < width; j++)
{
red[j] = (GLint) (rf[j] * ctx->Visual->RedScale);
green[j] = (GLint) (gf[j] * ctx->Visual->GreenScale);
blue[j] = (GLint) (bf[j] * ctx->Visual->BlueScale);
alpha[j] = (GLint) (af[j] * ctx->Visual->AlphaScale);
}
/* write to frame buffer */
if (quick_draw)
{
(*ctx->Driver.WriteColorSpan)(ctx, width, x, y, red, green,
blue, alpha, NULL);
}
else if (zoom)
{
gl_write_zoomed_color_span(ctx, width, x, y, zspan, red, green,
blue, alpha, desty);
}
else
{
gl_write_color_span(ctx, (GLuint) width, x, y, zspan, red,
green, blue, alpha, GL_BITMAP);
}
UNDEFARRAY(rf);
UNDEFARRAY(gf);
UNDEFARRAY(bf);
UNDEFARRAY(af);
UNDEFARRAY(red);
UNDEFARRAY(green);
UNDEFARRAY(blue);
UNDEFARRAY(alpha);
}
}
}
/*
* Do a glDrawPixels( w, h, GL_RGB, GL_UNSIGNED_BYTE, pixels ) optimized
* for the case of no pixel mapping, no scale, no bias, no zoom, default
* storage mode, no raster ops, and no pixel clipping.
* Return: GL_TRUE if success
* GL_FALSE if conditions weren't met for optimized drawing
*/
static GLboolean quickdraw_rgb( GLcontext* ctx, GLsizei width, GLsizei height,
const void *pixels )
{
DEFARRAY( GLubyte, red, MAX_WIDTH );
DEFARRAY( GLubyte, green, MAX_WIDTH );
DEFARRAY( GLubyte, blue, MAX_WIDTH );
DEFARRAY( GLubyte, alpha, MAX_WIDTH );
GLint i, j;
GLint x, y;
GLint bytes_per_row;
GLboolean result;
bytes_per_row = width * 3 + (width % ctx->Unpack.Alignment);
if (!ctx->Current.RasterPosValid) {
/* This is success, actually. */
result = GL_TRUE;
}
else {
x = (GLint) (ctx->Current.RasterPos[0] + 0.5F);
y = (GLint) (ctx->Current.RasterPos[1] + 0.5F);
if (x<0 || y<0
|| x+width>ctx->Buffer->Width || y+height>ctx->Buffer->Height) {
result = GL_FALSE; /* can't handle this situation */
}
else {
/* constant alpha */
for (j=0;j<width;j++) {
alpha[j] = (GLint) ctx->Visual->AlphaScale;
}
/* write directly to device driver */
for (i=0;i<height;i++) {
/* each row of pixel data starts at 4-byte boundary */
GLubyte *src = (GLubyte *) pixels + i * bytes_per_row;
for (j=0;j<width;j++) {
red[j] = *src++;
green[j] = *src++;
blue[j] = *src++;
}
(*ctx->Driver.WriteColorSpan)( ctx, width, x, y+i,
red, green, blue, alpha, NULL);
}
result = GL_TRUE;
}
}
UNDEFARRAY( red );
UNDEFARRAY( green );
UNDEFARRAY( blue );
UNDEFARRAY( alpha );
return result;
}
/*
* Implements general glDrawPixels operation.
*/
static void drawpixels( GLcontext* ctx, GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid *pixels )
{
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glDrawPixels" );
return;
}
if (ctx->RenderMode==GL_RENDER) {
if (!ctx->Current.RasterPosValid) {
return;
}
switch (format) {
case GL_COLOR_INDEX:
draw_index_pixels( ctx, width, height, type, pixels );
break;
case GL_STENCIL_INDEX:
draw_stencil_pixels( ctx, width, height, type, pixels );
break;
case GL_DEPTH_COMPONENT:
draw_depth_pixels( ctx, width, height, type, pixels );
break;
case GL_RED:
case GL_GREEN:
case GL_BLUE:
case GL_ALPHA:
case GL_RGB:
case GL_BGR_EXT:
case GL_LUMINANCE:
case GL_LUMINANCE_ALPHA:
case GL_RGBA:
case GL_BGRA_EXT:
draw_color_pixels( ctx, width, height, format, type, pixels );
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glDrawPixels" );
}
}
else if (ctx->RenderMode==GL_FEEDBACK) {
if (ctx->Current.RasterPosValid) {
GLfloat color[4], texcoord[4], invq;
color[0] = ctx->Current.ByteColor[0] * ctx->Visual->InvRedScale;
color[1] = ctx->Current.ByteColor[1] * ctx->Visual->InvGreenScale;
color[2] = ctx->Current.ByteColor[2] * ctx->Visual->InvBlueScale;
color[3] = ctx->Current.ByteColor[3] * ctx->Visual->InvAlphaScale;
invq = 1.0F / ctx->Current.TexCoord[3];
texcoord[0] = ctx->Current.TexCoord[0] * invq;
texcoord[1] = ctx->Current.TexCoord[1] * invq;
texcoord[2] = ctx->Current.TexCoord[2] * invq;
texcoord[3] = ctx->Current.TexCoord[3];
FEEDBACK_TOKEN( ctx, (GLfloat) (GLint) GL_DRAW_PIXEL_TOKEN );
gl_feedback_vertex( ctx, ctx->Current.RasterPos[0],
ctx->Current.RasterPos[1],
ctx->Current.RasterPos[2],
ctx->Current.RasterPos[3],
color, ctx->Current.Index, texcoord );
}
}
else if (ctx->RenderMode==GL_SELECT) {
if (ctx->Current.RasterPosValid) {
gl_update_hitflag( ctx, ctx->Current.RasterPos[2] );
}
}
}
/*
* Compile OR Execute a glDrawPixels!
*/
void gl_DrawPixels( GLcontext* ctx, GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid *pixels )
{
GLvoid *image;
if (width<0 || height<0) {
gl_error( ctx, GL_INVALID_VALUE, "glDrawPixels" );
return;
}
if (ctx->NewState) {
gl_update_state(ctx);
}
/* Let the device driver take a crack at glDrawPixels */
if (!ctx->CompileFlag && ctx->Driver.DrawPixels) {
GLint x = (GLint) (ctx->Current.RasterPos[0] + 0.5F);
GLint y = (GLint) (ctx->Current.RasterPos[1] + 0.5F);
if ((*ctx->Driver.DrawPixels)( ctx, x, y, width, height,
format, type, GL_FALSE, pixels )) {
/* Device driver did the job */
return;
}
}
if (format==GL_RGB && type==GL_UNSIGNED_BYTE && ctx->FastDrawPixels
&& !ctx->CompileFlag && ctx->RenderMode==GL_RENDER
&& ctx->RasterMask==0 && ctx->CallDepth==0) {
/* optimized path */
if (quickdraw_rgb( ctx, width, height, pixels )) {
/* success */
return;
}
}
/* take the general path */
/* THIS IS A REAL HACK - FIX IN MESA 2.5
* If we're inside glCallList then we don't have to unpack the pixels again.
*/
if (ctx->CallDepth == 0) {
image = gl_unpack_pixels( ctx, width, height, format, type, pixels );
if (!image) {
gl_error( ctx, GL_OUT_OF_MEMORY, "glDrawPixels" );
return;
}
}
else {
image = (GLvoid *) pixels;
}
if (ctx->CompileFlag) {
gl_save_DrawPixels( ctx, width, height, format, type, image );
}
if (ctx->ExecuteFlag) {
drawpixels( ctx, width, height, format, type, image );
if (!ctx->CompileFlag) {
/* may discard unpacked image now */
if (image!=pixels)
free( image );
}
}
}