reactos/ntoskrnl/ke/i386/cpu.c
Jérôme Gardou c16ad873a6 sync with trunk (r46275)
svn path=/branches/reactos-yarotows/; revision=46279
2010-03-19 21:09:21 +00:00

1504 lines
44 KiB
C

/*
* PROJECT: ReactOS Kernel
* LICENSE: GPL - See COPYING in the top level directory
* FILE: ntoskrnl/ke/i386/cpu.c
* PURPOSE: Routines for CPU-level support
* PROGRAMMERS: Alex Ionescu (alex.ionescu@reactos.org)
*/
/* INCLUDES *****************************************************************/
#include <ntoskrnl.h>
#define NDEBUG
#include <debug.h>
/* GLOBALS *******************************************************************/
/* The TSS to use for Double Fault Traps (INT 0x9) */
UCHAR KiDoubleFaultTSS[KTSS_IO_MAPS];
/* The TSS to use for NMI Fault Traps (INT 0x2) */
UCHAR KiNMITSS[KTSS_IO_MAPS];
/* CPU Features and Flags */
ULONG KeI386CpuType;
ULONG KeI386CpuStep;
ULONG KeProcessorArchitecture;
ULONG KeProcessorLevel;
ULONG KeProcessorRevision;
ULONG KeFeatureBits;
ULONG KiFastSystemCallDisable;
ULONG KeI386NpxPresent = 0;
ULONG KiMXCsrMask = 0;
ULONG MxcsrFeatureMask = 0;
ULONG KeI386XMMIPresent = 0;
ULONG KeI386FxsrPresent = 0;
ULONG KeI386MachineType;
ULONG Ke386Pae = FALSE;
ULONG Ke386NoExecute = FALSE;
ULONG KeLargestCacheLine = 0x40;
ULONG KeDcacheFlushCount = 0;
ULONG KeIcacheFlushCount = 0;
ULONG KiDmaIoCoherency = 0;
ULONG KePrefetchNTAGranularity = 32;
CHAR KeNumberProcessors;
KAFFINITY KeActiveProcessors = 1;
BOOLEAN KiI386PentiumLockErrataPresent;
BOOLEAN KiSMTProcessorsPresent;
/* The distance between SYSEXIT and IRETD return modes */
UCHAR KiSystemCallExitAdjust;
/* The offset that was applied -- either 0 or the value above */
UCHAR KiSystemCallExitAdjusted;
/* Whether the adjustment was already done once */
BOOLEAN KiFastCallCopyDoneOnce;
/* Flush data */
volatile LONG KiTbFlushTimeStamp;
/* CPU Signatures */
static const CHAR CmpIntelID[] = "GenuineIntel";
static const CHAR CmpAmdID[] = "AuthenticAMD";
static const CHAR CmpCyrixID[] = "CyrixInstead";
static const CHAR CmpTransmetaID[] = "GenuineTMx86";
static const CHAR CmpCentaurID[] = "CentaurHauls";
static const CHAR CmpRiseID[] = "RiseRiseRise";
/* SUPPORT ROUTINES FOR MSVC COMPATIBILITY ***********************************/
VOID
NTAPI
CPUID(IN ULONG InfoType,
OUT PULONG CpuInfoEax,
OUT PULONG CpuInfoEbx,
OUT PULONG CpuInfoEcx,
OUT PULONG CpuInfoEdx)
{
ULONG CpuInfo[4];
/* Perform the CPUID Operation */
__cpuid((int*)CpuInfo, InfoType);
/* Return the results */
*CpuInfoEax = CpuInfo[0];
*CpuInfoEbx = CpuInfo[1];
*CpuInfoEcx = CpuInfo[2];
*CpuInfoEdx = CpuInfo[3];
}
VOID
NTAPI
WRMSR(IN ULONG Register,
IN LONGLONG Value)
{
/* Write to the MSR */
__writemsr(Register, Value);
}
LONGLONG
FASTCALL
RDMSR(IN ULONG Register)
{
/* Read from the MSR */
return __readmsr(Register);
}
/* FUNCTIONS *****************************************************************/
VOID
NTAPI
KiSetProcessorType(VOID)
{
ULONG EFlags, NewEFlags;
ULONG Reg, Dummy;
ULONG Stepping, Type;
/* Start by assuming no CPUID data */
KeGetCurrentPrcb()->CpuID = 0;
/* Save EFlags */
EFlags = __readeflags();
/* XOR out the ID bit and update EFlags */
NewEFlags = EFlags ^ EFLAGS_ID;
__writeeflags(NewEFlags);
/* Get them back and see if they were modified */
NewEFlags = __readeflags();
if (NewEFlags != EFlags)
{
/* The modification worked, so CPUID exists. Set the ID Bit again. */
EFlags |= EFLAGS_ID;
__writeeflags(EFlags);
/* Peform CPUID 0 to see if CPUID 1 is supported */
CPUID(0, &Reg, &Dummy, &Dummy, &Dummy);
if (Reg > 0)
{
/* Do CPUID 1 now */
CPUID(1, &Reg, &Dummy, &Dummy, &Dummy);
/*
* Get the Stepping and Type. The stepping contains both the
* Model and the Step, while the Type contains the returned Type.
* We ignore the family.
*
* For the stepping, we convert this: zzzzzzxy into this: x0y
*/
Stepping = Reg & 0xF0;
Stepping <<= 4;
Stepping += (Reg & 0xFF);
Stepping &= 0xF0F;
Type = Reg & 0xF00;
Type >>= 8;
/* Save them in the PRCB */
KeGetCurrentPrcb()->CpuID = TRUE;
KeGetCurrentPrcb()->CpuType = (UCHAR)Type;
KeGetCurrentPrcb()->CpuStep = (USHORT)Stepping;
}
else
{
DPRINT1("CPUID Support lacking\n");
}
}
else
{
DPRINT1("CPUID Support lacking\n");
}
/* Restore EFLAGS */
__writeeflags(EFlags);
}
ULONG
NTAPI
KiGetCpuVendor(VOID)
{
PKPRCB Prcb = KeGetCurrentPrcb();
ULONG Vendor[5];
ULONG Temp;
/* Assume no Vendor ID and fail if no CPUID Support. */
Prcb->VendorString[0] = 0;
if (!Prcb->CpuID) return 0;
/* Get the Vendor ID and null-terminate it */
CPUID(0, &Vendor[0], &Vendor[1], &Vendor[2], &Vendor[3]);
Vendor[4] = 0;
/* Re-arrange vendor string */
Temp = Vendor[2];
Vendor[2] = Vendor[3];
Vendor[3] = Temp;
/* Copy it to the PRCB and null-terminate it again */
RtlCopyMemory(Prcb->VendorString,
&Vendor[1],
sizeof(Prcb->VendorString) - sizeof(CHAR));
Prcb->VendorString[sizeof(Prcb->VendorString) - sizeof(CHAR)] = ANSI_NULL;
/* Now check the CPU Type */
if (!strcmp(Prcb->VendorString, CmpIntelID))
{
return CPU_INTEL;
}
else if (!strcmp(Prcb->VendorString, CmpAmdID))
{
return CPU_AMD;
}
else if (!strcmp(Prcb->VendorString, CmpCyrixID))
{
DPRINT1("Cyrix CPU support not fully tested!\n");
return CPU_CYRIX;
}
else if (!strcmp(Prcb->VendorString, CmpTransmetaID))
{
DPRINT1("Transmeta CPU support not fully tested!\n");
return CPU_TRANSMETA;
}
else if (!strcmp(Prcb->VendorString, CmpCentaurID))
{
DPRINT1("Centaur CPU support not fully tested!\n");
return CPU_CENTAUR;
}
else if (!strcmp(Prcb->VendorString, CmpRiseID))
{
DPRINT1("Rise CPU support not fully tested!\n");
return CPU_RISE;
}
/* Invalid CPU */
return 0;
}
ULONG
NTAPI
KiGetFeatureBits(VOID)
{
PKPRCB Prcb = KeGetCurrentPrcb();
ULONG Vendor;
ULONG FeatureBits = KF_WORKING_PTE;
ULONG Reg[4], Dummy;
BOOLEAN ExtendedCPUID = TRUE;
ULONG CpuFeatures = 0;
/* Get the Vendor ID */
Vendor = KiGetCpuVendor();
/* Make sure we got a valid vendor ID at least. */
if (!Vendor) return FeatureBits;
/* Get the CPUID Info. Features are in Reg[3]. */
CPUID(1, &Reg[0], &Reg[1], &Dummy, &Reg[3]);
/* Set the initial APIC ID */
Prcb->InitialApicId = (UCHAR)(Reg[1] >> 24);
switch (Vendor)
{
/* Intel CPUs */
case CPU_INTEL:
/* Check if it's a P6 */
if (Prcb->CpuType == 6)
{
/* Perform the special sequence to get the MicroCode Signature */
WRMSR(0x8B, 0);
CPUID(1, &Dummy, &Dummy, &Dummy, &Dummy);
Prcb->UpdateSignature.QuadPart = RDMSR(0x8B);
}
else if (Prcb->CpuType == 5)
{
/* On P5, enable workaround for the LOCK errata. */
KiI386PentiumLockErrataPresent = TRUE;
}
/* Check for broken P6 with bad SMP PTE implementation */
if (((Reg[0] & 0x0FF0) == 0x0610 && (Reg[0] & 0x000F) <= 0x9) ||
((Reg[0] & 0x0FF0) == 0x0630 && (Reg[0] & 0x000F) <= 0x4))
{
/* Remove support for correct PTE support. */
FeatureBits &= ~KF_WORKING_PTE;
}
/* Check if the CPU is too old to support SYSENTER */
if ((Prcb->CpuType < 6) ||
((Prcb->CpuType == 6) && (Prcb->CpuStep < 0x0303)))
{
/* Disable it */
Reg[3] &= ~0x800;
}
/* Set the current features */
CpuFeatures = Reg[3];
break;
/* AMD CPUs */
case CPU_AMD:
/* Check if this is a K5 or K6. (family 5) */
if ((Reg[0] & 0x0F00) == 0x0500)
{
/* Get the Model Number */
switch (Reg[0] & 0x00F0)
{
/* Model 1: K5 - 5k86 (initial models) */
case 0x0010:
/* Check if this is Step 0 or 1. They don't support PGE */
if ((Reg[0] & 0x000F) > 0x03) break;
/* Model 0: K5 - SSA5 */
case 0x0000:
/* Model 0 doesn't support PGE at all. */
Reg[3] &= ~0x2000;
break;
/* Model 8: K6-2 */
case 0x0080:
/* K6-2, Step 8 and over have support for MTRR. */
if ((Reg[0] & 0x000F) >= 0x8) FeatureBits |= KF_AMDK6MTRR;
break;
/* Model 9: K6-III
Model D: K6-2+, K6-III+ */
case 0x0090:
case 0x00D0:
FeatureBits |= KF_AMDK6MTRR;
break;
}
}
else if((Reg[0] & 0x0F00) < 0x0500)
{
/* Families below 5 don't support PGE, PSE or CMOV at all */
Reg[3] &= ~(0x08 | 0x2000 | 0x8000);
/* They also don't support advanced CPUID functions. */
ExtendedCPUID = FALSE;
}
/* Set the current features */
CpuFeatures = Reg[3];
break;
/* Cyrix CPUs */
case CPU_CYRIX:
/* FIXME: CMPXCGH8B */
break;
/* Transmeta CPUs */
case CPU_TRANSMETA:
/* Enable CMPXCHG8B if the family (>= 5), model and stepping (>= 4.2) support it */
if ((Reg[0] & 0x0FFF) >= 0x0542)
{
WRMSR(0x80860004, RDMSR(0x80860004) | 0x0100);
FeatureBits |= KF_CMPXCHG8B;
}
break;
/* Centaur, IDT, Rise and VIA CPUs */
case CPU_CENTAUR:
case CPU_RISE:
/* These CPUs don't report the presence of CMPXCHG8B through CPUID.
However, this feature exists and operates properly without any additional steps. */
FeatureBits |= KF_CMPXCHG8B;
break;
}
/* Convert all CPUID Feature bits into our format */
if (CpuFeatures & 0x00000002) FeatureBits |= KF_V86_VIS | KF_CR4;
if (CpuFeatures & 0x00000008) FeatureBits |= KF_LARGE_PAGE | KF_CR4;
if (CpuFeatures & 0x00000010) FeatureBits |= KF_RDTSC;
if (CpuFeatures & 0x00000100) FeatureBits |= KF_CMPXCHG8B;
if (CpuFeatures & 0x00000800) FeatureBits |= KF_FAST_SYSCALL;
if (CpuFeatures & 0x00001000) FeatureBits |= KF_MTRR;
if (CpuFeatures & 0x00002000) FeatureBits |= KF_GLOBAL_PAGE | KF_CR4;
if (CpuFeatures & 0x00008000) FeatureBits |= KF_CMOV;
if (CpuFeatures & 0x00010000) FeatureBits |= KF_PAT;
if (CpuFeatures & 0x00200000) FeatureBits |= KF_DTS;
if (CpuFeatures & 0x00800000) FeatureBits |= KF_MMX;
if (CpuFeatures & 0x01000000) FeatureBits |= KF_FXSR;
if (CpuFeatures & 0x02000000) FeatureBits |= KF_XMMI;
if (CpuFeatures & 0x04000000) FeatureBits |= KF_XMMI64;
/* Check if the CPU has hyper-threading */
if (CpuFeatures & 0x10000000)
{
/* Set the number of logical CPUs */
Prcb->LogicalProcessorsPerPhysicalProcessor = (UCHAR)(Reg[1] >> 16);
if (Prcb->LogicalProcessorsPerPhysicalProcessor > 1)
{
/* We're on dual-core */
KiSMTProcessorsPresent = TRUE;
}
}
else
{
/* We only have a single CPU */
Prcb->LogicalProcessorsPerPhysicalProcessor = 1;
}
/* Check if CPUID 0x80000000 is supported */
if (ExtendedCPUID)
{
/* Do the call */
CPUID(0x80000000, &Reg[0], &Dummy, &Dummy, &Dummy);
if ((Reg[0] & 0xffffff00) == 0x80000000)
{
/* Check if CPUID 0x80000001 is supported */
if (Reg[0] >= 0x80000001)
{
/* Check which extended features are available. */
CPUID(0x80000001, &Dummy, &Dummy, &Dummy, &Reg[3]);
/* Check if NX-bit is supported */
if (Reg[3] & 0x00100000) FeatureBits |= KF_NX_BIT;
/* Now handle each features for each CPU Vendor */
switch (Vendor)
{
case CPU_AMD:
case CPU_CENTAUR:
if (Reg[3] & 0x80000000) FeatureBits |= KF_3DNOW;
break;
}
}
}
}
/* Return the Feature Bits */
return FeatureBits;
}
VOID
NTAPI
KiGetCacheInformation(VOID)
{
PKIPCR Pcr = (PKIPCR)KeGetPcr();
ULONG Vendor;
ULONG Data[4], Dummy;
ULONG CacheRequests = 0, i;
ULONG CurrentRegister;
UCHAR RegisterByte;
ULONG Size, Associativity = 0, CacheLine = 64, CurrentSize = 0;
BOOLEAN FirstPass = TRUE;
/* Set default L2 size */
Pcr->SecondLevelCacheSize = 0;
/* Get the Vendor ID and make sure we support CPUID */
Vendor = KiGetCpuVendor();
if (!Vendor) return;
/* Check the Vendor ID */
switch (Vendor)
{
/* Handle Intel case */
case CPU_INTEL:
/*Check if we support CPUID 2 */
CPUID(0, &Data[0], &Dummy, &Dummy, &Dummy);
if (Data[0] >= 2)
{
/* We need to loop for the number of times CPUID will tell us to */
do
{
/* Do the CPUID call */
CPUID(2, &Data[0], &Data[1], &Data[2], &Data[3]);
/* Check if it was the first call */
if (FirstPass)
{
/*
* The number of times to loop is the first byte. Read
* it and then destroy it so we don't get confused.
*/
CacheRequests = Data[0] & 0xFF;
Data[0] &= 0xFFFFFF00;
/* Don't go over this again */
FirstPass = FALSE;
}
/* Loop all 4 registers */
for (i = 0; i < 4; i++)
{
/* Get the current register */
CurrentRegister = Data[i];
/*
* If the upper bit is set, then this register should
* be skipped.
*/
if (CurrentRegister & 0x80000000) continue;
/* Keep looping for every byte inside this register */
while (CurrentRegister)
{
/* Read a byte, skip a byte. */
RegisterByte = (UCHAR)(CurrentRegister & 0xFF);
CurrentRegister >>= 8;
if (!RegisterByte) continue;
/*
* Valid values are from 0x40 (0 bytes) to 0x49
* (32MB), or from 0x80 to 0x89 (same size but
* 8-way associative.
*/
if (((RegisterByte > 0x40) && (RegisterByte <= 0x47)) ||
((RegisterByte > 0x78) && (RegisterByte <= 0x7C)) ||
((RegisterByte > 0x80) && (RegisterByte <= 0x85)))
{
/* Compute associativity */
Associativity = 4;
if (RegisterByte >= 0x79) Associativity = 8;
/* Mask out only the first nibble */
RegisterByte &= 0x07;
/* Check if this cache is bigger than the last */
Size = 0x10000 << RegisterByte;
if ((Size / Associativity) > CurrentSize)
{
/* Set the L2 Cache Size and Associativity */
CurrentSize = Size / Associativity;
Pcr->SecondLevelCacheSize = Size;
Pcr->SecondLevelCacheAssociativity = Associativity;
}
}
else if ((RegisterByte > 0x21) && (RegisterByte <= 0x29))
{
/* Set minimum cache line size */
if (CacheLine < 128) CacheLine = 128;
/* Hard-code size/associativity */
Associativity = 8;
switch (RegisterByte)
{
case 0x22:
Size = 512 * 1024;
Associativity = 4;
break;
case 0x23:
Size = 1024 * 1024;
break;
case 0x25:
Size = 2048 * 1024;
break;
case 0x29:
Size = 4096 * 1024;
break;
default:
Size = 0;
break;
}
/* Check if this cache is bigger than the last */
if ((Size / Associativity) > CurrentSize)
{
/* Set the L2 Cache Size and Associativity */
CurrentSize = Size / Associativity;
Pcr->SecondLevelCacheSize = Size;
Pcr->SecondLevelCacheAssociativity = Associativity;
}
}
else if (((RegisterByte > 0x65) && (RegisterByte < 0x69)) ||
(RegisterByte == 0x2C) || (RegisterByte == 0xF0))
{
/* Indicates L1 cache line of 64 bytes */
KePrefetchNTAGranularity = 64;
}
else if (RegisterByte == 0xF1)
{
/* Indicates L1 cache line of 128 bytes */
KePrefetchNTAGranularity = 128;
}
else if (((RegisterByte >= 0x4A) && (RegisterByte <= 0x4C)) ||
(RegisterByte == 0x78) ||
(RegisterByte == 0x7D) ||
(RegisterByte == 0x7F) ||
(RegisterByte == 0x86) ||
(RegisterByte == 0x87))
{
/* Set minimum cache line size */
if (CacheLine < 64) CacheLine = 64;
/* Hard-code size/associativity */
switch (RegisterByte)
{
case 0x4A:
Size = 4 * 1024 * 1024;
Associativity = 8;
break;
case 0x4B:
Size = 6 * 1024 * 1024;
Associativity = 12;
break;
case 0x4C:
Size = 8 * 1024 * 1024;
Associativity = 16;
break;
case 0x78:
Size = 1 * 1024 * 1024;
Associativity = 4;
break;
case 0x7D:
Size = 2 * 1024 * 1024;
Associativity = 8;
break;
case 0x7F:
Size = 512 * 1024;
Associativity = 2;
break;
case 0x86:
Size = 512 * 1024;
Associativity = 4;
break;
case 0x87:
Size = 1 * 1024 * 1024;
Associativity = 8;
break;
default:
Size = 0;
break;
}
/* Check if this cache is bigger than the last */
if ((Size / Associativity) > CurrentSize)
{
/* Set the L2 Cache Size and Associativity */
CurrentSize = Size / Associativity;
Pcr->SecondLevelCacheSize = Size;
Pcr->SecondLevelCacheAssociativity = Associativity;
}
}
}
}
} while (--CacheRequests);
}
break;
case CPU_AMD:
/* Check if we support CPUID 0x80000005 */
CPUID(0x80000000, &Data[0], &Data[1], &Data[2], &Data[3]);
if (Data[0] >= 0x80000006)
{
/* Get L1 size first */
CPUID(0x80000005, &Data[0], &Data[1], &Data[2], &Data[3]);
KePrefetchNTAGranularity = Data[2] & 0xFF;
/* Check if we support CPUID 0x80000006 */
CPUID(0x80000000, &Data[0], &Data[1], &Data[2], &Data[3]);
if (Data[0] >= 0x80000006)
{
/* Get 2nd level cache and tlb size */
CPUID(0x80000006, &Data[0], &Data[1], &Data[2], &Data[3]);
/* Cache line size */
CacheLine = Data[2] & 0xFF;
/* Hardcode associativity */
RegisterByte = Data[2] >> 12;
switch (RegisterByte)
{
case 2:
Associativity = 2;
break;
case 4:
Associativity = 4;
break;
case 6:
Associativity = 8;
break;
case 8:
case 15:
Associativity = 16;
break;
default:
Associativity = 1;
break;
}
/* Compute size */
Size = (Data[2] >> 16) << 10;
/* Hack for Model 6, Steping 300 */
if ((KeGetCurrentPrcb()->CpuType == 6) &&
(KeGetCurrentPrcb()->CpuStep == 0x300))
{
/* Stick 64K in there */
Size = 64 * 1024;
}
/* Set the L2 Cache Size and associativity */
Pcr->SecondLevelCacheSize = Size;
Pcr->SecondLevelCacheAssociativity = Associativity;
}
}
break;
case CPU_CYRIX:
case CPU_TRANSMETA:
case CPU_CENTAUR:
case CPU_RISE:
/* FIXME */
break;
}
/* Set the cache line */
if (CacheLine > KeLargestCacheLine) KeLargestCacheLine = CacheLine;
DPRINT1("Prefetch Cache: %d bytes\tL2 Cache: %d bytes\tL2 Cache Line: %d bytes\tL2 Cache Associativity: %d\n",
KePrefetchNTAGranularity,
Pcr->SecondLevelCacheSize,
KeLargestCacheLine,
Pcr->SecondLevelCacheAssociativity);
}
VOID
NTAPI
KiSetCR0Bits(VOID)
{
ULONG Cr0;
/* Save current CR0 */
Cr0 = __readcr0();
/* If this is a 486, enable Write-Protection */
if (KeGetCurrentPrcb()->CpuType > 3) Cr0 |= CR0_WP;
/* Set new Cr0 */
__writecr0(Cr0);
}
VOID
NTAPI
KiInitializeTSS2(IN PKTSS Tss,
IN PKGDTENTRY TssEntry OPTIONAL)
{
PUCHAR p;
/* Make sure the GDT Entry is valid */
if (TssEntry)
{
/* Set the Limit */
TssEntry->LimitLow = sizeof(KTSS) - 1;
TssEntry->HighWord.Bits.LimitHi = 0;
}
/* Now clear the I/O Map */
ASSERT(IOPM_COUNT == 1);
RtlFillMemory(Tss->IoMaps[0].IoMap, IOPM_FULL_SIZE, 0xFF);
/* Initialize Interrupt Direction Maps */
p = (PUCHAR)(Tss->IoMaps[0].DirectionMap);
RtlZeroMemory(p, IOPM_DIRECTION_MAP_SIZE);
/* Add DPMI support for interrupts */
p[0] = 4;
p[3] = 0x18;
p[4] = 0x18;
/* Initialize the default Interrupt Direction Map */
p = Tss->IntDirectionMap;
RtlZeroMemory(Tss->IntDirectionMap, IOPM_DIRECTION_MAP_SIZE);
/* Add DPMI support */
p[0] = 4;
p[3] = 0x18;
p[4] = 0x18;
}
VOID
NTAPI
KiInitializeTSS(IN PKTSS Tss)
{
/* Set an invalid map base */
Tss->IoMapBase = KiComputeIopmOffset(IO_ACCESS_MAP_NONE);
/* Disable traps during Task Switches */
Tss->Flags = 0;
/* Set LDT and Ring 0 SS */
Tss->LDT = 0;
Tss->Ss0 = KGDT_R0_DATA;
}
VOID
FASTCALL
Ki386InitializeTss(IN PKTSS Tss,
IN PKIDTENTRY Idt,
IN PKGDTENTRY Gdt)
{
PKGDTENTRY TssEntry, TaskGateEntry;
/* Initialize the boot TSS. */
TssEntry = &Gdt[KGDT_TSS / sizeof(KGDTENTRY)];
TssEntry->HighWord.Bits.Type = I386_TSS;
TssEntry->HighWord.Bits.Pres = 1;
TssEntry->HighWord.Bits.Dpl = 0;
KiInitializeTSS2(Tss, TssEntry);
KiInitializeTSS(Tss);
/* Load the task register */
Ke386SetTr(KGDT_TSS);
/* Setup the Task Gate for Double Fault Traps */
TaskGateEntry = (PKGDTENTRY)&Idt[8];
TaskGateEntry->HighWord.Bits.Type = I386_TASK_GATE;
TaskGateEntry->HighWord.Bits.Pres = 1;
TaskGateEntry->HighWord.Bits.Dpl = 0;
((PKIDTENTRY)TaskGateEntry)->Selector = KGDT_DF_TSS;
/* Initialize the TSS used for handling double faults. */
Tss = (PKTSS)KiDoubleFaultTSS;
KiInitializeTSS(Tss);
Tss->CR3 = __readcr3();
Tss->Esp0 = KiDoubleFaultStack;
Tss->Esp = KiDoubleFaultStack;
Tss->Eip = PtrToUlong(KiTrap08);
Tss->Cs = KGDT_R0_CODE;
Tss->Fs = KGDT_R0_PCR;
Tss->Ss = Ke386GetSs();
Tss->Es = KGDT_R3_DATA | RPL_MASK;
Tss->Ds = KGDT_R3_DATA | RPL_MASK;
/* Setup the Double Trap TSS entry in the GDT */
TssEntry = &Gdt[KGDT_DF_TSS / sizeof(KGDTENTRY)];
TssEntry->HighWord.Bits.Type = I386_TSS;
TssEntry->HighWord.Bits.Pres = 1;
TssEntry->HighWord.Bits.Dpl = 0;
TssEntry->BaseLow = (USHORT)((ULONG_PTR)Tss & 0xFFFF);
TssEntry->HighWord.Bytes.BaseMid = (UCHAR)((ULONG_PTR)Tss >> 16);
TssEntry->HighWord.Bytes.BaseHi = (UCHAR)((ULONG_PTR)Tss >> 24);
TssEntry->LimitLow = KTSS_IO_MAPS;
/* Now setup the NMI Task Gate */
TaskGateEntry = (PKGDTENTRY)&Idt[2];
TaskGateEntry->HighWord.Bits.Type = I386_TASK_GATE;
TaskGateEntry->HighWord.Bits.Pres = 1;
TaskGateEntry->HighWord.Bits.Dpl = 0;
((PKIDTENTRY)TaskGateEntry)->Selector = KGDT_NMI_TSS;
/* Initialize the actual TSS */
Tss = (PKTSS)KiNMITSS;
KiInitializeTSS(Tss);
Tss->CR3 = __readcr3();
Tss->Esp0 = KiDoubleFaultStack;
Tss->Esp = KiDoubleFaultStack;
Tss->Eip = PtrToUlong(KiTrap02);
Tss->Cs = KGDT_R0_CODE;
Tss->Fs = KGDT_R0_PCR;
Tss->Ss = Ke386GetSs();
Tss->Es = KGDT_R3_DATA | RPL_MASK;
Tss->Ds = KGDT_R3_DATA | RPL_MASK;
/* And its associated TSS Entry */
TssEntry = &Gdt[KGDT_NMI_TSS / sizeof(KGDTENTRY)];
TssEntry->HighWord.Bits.Type = I386_TSS;
TssEntry->HighWord.Bits.Pres = 1;
TssEntry->HighWord.Bits.Dpl = 0;
TssEntry->BaseLow = (USHORT)((ULONG_PTR)Tss & 0xFFFF);
TssEntry->HighWord.Bytes.BaseMid = (UCHAR)((ULONG_PTR)Tss >> 16);
TssEntry->HighWord.Bytes.BaseHi = (UCHAR)((ULONG_PTR)Tss >> 24);
TssEntry->LimitLow = KTSS_IO_MAPS;
}
VOID
NTAPI
KeFlushCurrentTb(VOID)
{
/* Flush the TLB by resetting CR3 */
__writecr3(__readcr3());
}
VOID
NTAPI
KiRestoreProcessorControlState(PKPROCESSOR_STATE ProcessorState)
{
PKGDTENTRY TssEntry;
//
// Restore the CR registers
//
__writecr0(ProcessorState->SpecialRegisters.Cr0);
Ke386SetCr2(ProcessorState->SpecialRegisters.Cr2);
__writecr3(ProcessorState->SpecialRegisters.Cr3);
if (KeFeatureBits & KF_CR4) __writecr4(ProcessorState->SpecialRegisters.Cr4);
//
// Restore the DR registers
//
__writedr(0, ProcessorState->SpecialRegisters.KernelDr0);
__writedr(1, ProcessorState->SpecialRegisters.KernelDr1);
__writedr(2, ProcessorState->SpecialRegisters.KernelDr2);
__writedr(3, ProcessorState->SpecialRegisters.KernelDr3);
__writedr(6, ProcessorState->SpecialRegisters.KernelDr6);
__writedr(7, ProcessorState->SpecialRegisters.KernelDr7);
//
// Restore GDT and IDT
//
Ke386SetGlobalDescriptorTable(&ProcessorState->SpecialRegisters.Gdtr.Limit);
__lidt(&ProcessorState->SpecialRegisters.Idtr.Limit);
//
// Clear the busy flag so we don't crash if we reload the same selector
//
TssEntry = (PKGDTENTRY)(ProcessorState->SpecialRegisters.Gdtr.Base +
ProcessorState->SpecialRegisters.Tr);
TssEntry->HighWord.Bytes.Flags1 &= ~0x2;
//
// Restore TSS and LDT
//
Ke386SetTr(ProcessorState->SpecialRegisters.Tr);
Ke386SetLocalDescriptorTable(ProcessorState->SpecialRegisters.Ldtr);
}
VOID
NTAPI
KiSaveProcessorControlState(OUT PKPROCESSOR_STATE ProcessorState)
{
/* Save the CR registers */
ProcessorState->SpecialRegisters.Cr0 = __readcr0();
ProcessorState->SpecialRegisters.Cr2 = __readcr2();
ProcessorState->SpecialRegisters.Cr3 = __readcr3();
ProcessorState->SpecialRegisters.Cr4 = (KeFeatureBits & KF_CR4) ?
__readcr4() : 0;
/* Save the DR registers */
ProcessorState->SpecialRegisters.KernelDr0 = __readdr(0);
ProcessorState->SpecialRegisters.KernelDr1 = __readdr(1);
ProcessorState->SpecialRegisters.KernelDr2 = __readdr(2);
ProcessorState->SpecialRegisters.KernelDr3 = __readdr(3);
ProcessorState->SpecialRegisters.KernelDr6 = __readdr(6);
ProcessorState->SpecialRegisters.KernelDr7 = __readdr(7);
__writedr(7, 0);
/* Save GDT, IDT, LDT and TSS */
Ke386GetGlobalDescriptorTable(&ProcessorState->SpecialRegisters.Gdtr.Limit);
__sidt(&ProcessorState->SpecialRegisters.Idtr.Limit);
ProcessorState->SpecialRegisters.Tr = Ke386GetTr();
ProcessorState->SpecialRegisters.Ldtr = Ke386GetLocalDescriptorTable();
}
VOID
NTAPI
KiInitializeMachineType(VOID)
{
/* Set the Machine Type we got from NTLDR */
KeI386MachineType = KeLoaderBlock->u.I386.MachineType & 0x000FF;
}
ULONG_PTR
NTAPI
KiLoadFastSyscallMachineSpecificRegisters(IN ULONG_PTR Context)
{
/* Set CS and ESP */
WRMSR(0x174, KGDT_R0_CODE);
WRMSR(0x175, (ULONG_PTR)KeGetCurrentPrcb()->DpcStack);
/* Set LSTAR */
WRMSR(0x176, (ULONG_PTR)KiFastCallEntry);
return 0;
}
VOID
NTAPI
KiRestoreFastSyscallReturnState(VOID)
{
/* Check if the CPU Supports fast system call */
if (KeFeatureBits & KF_FAST_SYSCALL)
{
/* Check if it has been disabled */
if (!KiFastSystemCallDisable)
{
/* Do an IPI to enable it */
KeIpiGenericCall(KiLoadFastSyscallMachineSpecificRegisters, 0);
/* It's enabled, so use the proper exit stub */
KiFastCallExitHandler = KiSystemCallSysExitReturn;
DPRINT1("Support for SYSENTER detected.\n");
}
else
{
/* Disable fast system call */
KeFeatureBits &= ~KF_FAST_SYSCALL;
KiFastCallExitHandler = KiSystemCallTrapReturn;
DPRINT1("Support for SYSENTER disabled.\n");
}
}
else
{
/* Use the IRET handler */
KiFastCallExitHandler = KiSystemCallTrapReturn;
DPRINT1("No support for SYSENTER detected.\n");
}
}
ULONG_PTR
NTAPI
Ki386EnableDE(IN ULONG_PTR Context)
{
/* Enable DE */
__writecr4(__readcr4() | CR4_DE);
return 0;
}
ULONG_PTR
NTAPI
Ki386EnableFxsr(IN ULONG_PTR Context)
{
/* Enable FXSR */
__writecr4(__readcr4() | CR4_FXSR);
return 0;
}
ULONG_PTR
NTAPI
Ki386EnableXMMIExceptions(IN ULONG_PTR Context)
{
PKIDTENTRY IdtEntry;
/* Get the IDT Entry for Interrupt 0x13 */
IdtEntry = &((PKIPCR)KeGetPcr())->IDT[0x13];
/* Set it up */
IdtEntry->Selector = KGDT_R0_CODE;
IdtEntry->Offset = ((ULONG_PTR)KiTrap13 & 0xFFFF);
IdtEntry->ExtendedOffset = ((ULONG_PTR)KiTrap13 >> 16) & 0xFFFF;
((PKIDT_ACCESS)&IdtEntry->Access)->Dpl = 0;
((PKIDT_ACCESS)&IdtEntry->Access)->Present = 1;
((PKIDT_ACCESS)&IdtEntry->Access)->SegmentType = I386_INTERRUPT_GATE;
/* Enable XMMI exceptions */
__writecr4(__readcr4() | CR4_XMMEXCPT);
return 0;
}
VOID
NTAPI
KiI386PentiumLockErrataFixup(VOID)
{
KDESCRIPTOR IdtDescriptor;
PKIDTENTRY NewIdt, NewIdt2;
/* Allocate memory for a new IDT */
NewIdt = ExAllocatePool(NonPagedPool, 2 * PAGE_SIZE);
/* Put everything after the first 7 entries on a new page */
NewIdt2 = (PVOID)((ULONG_PTR)NewIdt + PAGE_SIZE - (7 * sizeof(KIDTENTRY)));
/* Disable interrupts */
_disable();
/* Get the current IDT and copy it */
__sidt(&IdtDescriptor.Limit);
RtlCopyMemory(NewIdt2,
(PVOID)IdtDescriptor.Base,
IdtDescriptor.Limit + 1);
IdtDescriptor.Base = (ULONG)NewIdt2;
/* Set the new IDT */
__lidt(&IdtDescriptor.Limit);
((PKIPCR)KeGetPcr())->IDT = NewIdt2;
/* Restore interrupts */
_enable();
/* Set the first 7 entries as read-only to produce a fault */
MmSetPageProtect(NULL, NewIdt, PAGE_READONLY);
}
BOOLEAN
NTAPI
KeDisableInterrupts(VOID)
{
ULONG Flags;
BOOLEAN Return;
/* Get EFLAGS and check if the interrupt bit is set */
Flags = __readeflags();
Return = (Flags & EFLAGS_INTERRUPT_MASK) ? TRUE: FALSE;
/* Disable interrupts */
_disable();
return Return;
}
BOOLEAN
NTAPI
KeInvalidateAllCaches(VOID)
{
/* Only supported on Pentium Pro and higher */
if (KeI386CpuType < 6) return FALSE;
/* Invalidate all caches */
__wbinvd();
return TRUE;
}
VOID
FASTCALL
KeZeroPages(IN PVOID Address,
IN ULONG Size)
{
/* Not using XMMI in this routine */
RtlZeroMemory(Address, Size);
}
VOID
NTAPI
KiSaveProcessorState(IN PKTRAP_FRAME TrapFrame,
IN PKEXCEPTION_FRAME ExceptionFrame)
{
PKPRCB Prcb = KeGetCurrentPrcb();
//
// Save full context
//
Prcb->ProcessorState.ContextFrame.ContextFlags = CONTEXT_FULL |
CONTEXT_DEBUG_REGISTERS;
KeTrapFrameToContext(TrapFrame, NULL, &Prcb->ProcessorState.ContextFrame);
//
// Save control registers
//
KiSaveProcessorControlState(&Prcb->ProcessorState);
}
BOOLEAN
NTAPI
KiIsNpxPresent(VOID)
{
ULONG Cr0;
USHORT Magic;
/* Set magic */
Magic = 0xFFFF;
/* Read CR0 and mask out FPU flags */
Cr0 = __readcr0() & ~(CR0_MP | CR0_TS | CR0_EM | CR0_ET);
/* Store on FPU stack */
asm volatile ("fninit;" "fnstsw %0" : "+m"(Magic));
/* Magic should now be cleared */
if (Magic & 0xFF)
{
/* You don't have an FPU -- enable emulation for now */
__writecr0(Cr0 | CR0_EM | CR0_TS);
return FALSE;
}
/* You have an FPU, enable it */
Cr0 |= CR0_ET;
/* Enable INT 16 on 486 and higher */
if (KeGetCurrentPrcb()->CpuType >= 3) Cr0 |= CR0_NE;
/* Set FPU state */
__writecr0(Cr0 | CR0_EM | CR0_TS);
return TRUE;
}
BOOLEAN
NTAPI
KiIsNpxErrataPresent(VOID)
{
BOOLEAN ErrataPresent;
ULONG Cr0;
volatile double Value1, Value2;
/* Disable interrupts */
_disable();
/* Read CR0 and remove FPU flags */
Cr0 = __readcr0();
__writecr0(Cr0 & ~(CR0_MP | CR0_TS | CR0_EM));
/* Initialize FPU state */
asm volatile ("fninit");
/* Multiply the magic values and divide, we should get the result back */
Value1 = 4195835.0;
Value2 = 3145727.0;
ErrataPresent = (Value1 * Value2 / 3145727.0) != 4195835.0;
/* Restore CR0 */
__writecr0(Cr0);
/* Enable interrupts */
_enable();
/* Return if there's an errata */
return ErrataPresent;
}
NTAPI
VOID
KiFlushNPXState(IN PFLOATING_SAVE_AREA SaveArea)
{
ULONG EFlags, Cr0;
PKTHREAD Thread, NpxThread;
PFX_SAVE_AREA FxSaveArea;
/* Save volatiles and disable interrupts */
EFlags = __readeflags();
_disable();
/* Save the PCR and get the current thread */
Thread = KeGetCurrentThread();
/* Check if we're already loaded */
if (Thread->NpxState != NPX_STATE_LOADED)
{
/* If there's nothing to load, quit */
if (!SaveArea) return;
/* Need FXSR support for this */
ASSERT(KeI386FxsrPresent == TRUE);
/* Check for sane CR0 */
Cr0 = __readcr0();
if (Cr0 & (CR0_MP | CR0_TS | CR0_EM))
{
/* Mask out FPU flags */
__writecr0(Cr0 & ~(CR0_MP | CR0_TS | CR0_EM));
}
/* Get the NPX thread and check its FPU state */
NpxThread = KeGetCurrentPrcb()->NpxThread;
if ((NpxThread) && (NpxThread->NpxState == NPX_STATE_LOADED))
{
/* Get the FX frame and store the state there */
FxSaveArea = KiGetThreadNpxArea(NpxThread);
Ke386FxSave(FxSaveArea);
/* NPX thread has lost its state */
NpxThread->NpxState = NPX_STATE_NOT_LOADED;
}
/* Now load NPX state from the NPX area */
FxSaveArea = KiGetThreadNpxArea(Thread);
Ke386FxStore(FxSaveArea);
}
else
{
/* Check for sane CR0 */
Cr0 = __readcr0();
if (Cr0 & (CR0_MP | CR0_TS | CR0_EM))
{
/* Mask out FPU flags */
__writecr0(Cr0 & ~(CR0_MP | CR0_TS | CR0_EM));
}
/* Get FX frame */
FxSaveArea = KiGetThreadNpxArea(Thread);
Thread->NpxState = NPX_STATE_NOT_LOADED;
/* Save state if supported by CPU */
if (KeI386FxsrPresent) Ke386FxSave(FxSaveArea);
}
/* Now save the FN state wherever it was requested */
if (SaveArea) Ke386FnSave(SaveArea);
/* Clear NPX thread */
KeGetCurrentPrcb()->NpxThread = NULL;
/* Add the CR0 from the NPX frame */
Cr0 |= NPX_STATE_NOT_LOADED;
Cr0 |= FxSaveArea->Cr0NpxState;
__writecr0(Cr0);
/* Restore interrupt state */
__writeeflags(EFlags);
}
/* PUBLIC FUNCTIONS **********************************************************/
/*
* @implemented
*/
VOID
NTAPI
KiCoprocessorError(VOID)
{
PFX_SAVE_AREA NpxArea;
/* Get the FPU area */
NpxArea = KiGetThreadNpxArea(KeGetCurrentThread());
/* Set CR0_TS */
NpxArea->Cr0NpxState = CR0_TS;
__writecr0(__readcr0() | CR0_TS);
}
/*
* @implemented
*/
NTSTATUS
NTAPI
KeSaveFloatingPointState(OUT PKFLOATING_SAVE Save)
{
PFNSAVE_FORMAT FpState;
ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
DPRINT1("%s is not really implemented\n", __FUNCTION__);
/* check if we are doing software emulation */
if (!KeI386NpxPresent) return STATUS_ILLEGAL_FLOAT_CONTEXT;
FpState = ExAllocatePool(NonPagedPool, sizeof (FNSAVE_FORMAT));
if (!FpState) return STATUS_INSUFFICIENT_RESOURCES;
*((PVOID *) Save) = FpState;
#ifdef __GNUC__
asm volatile("fnsave %0\n\t" : "=m" (*FpState));
#else
__asm
{
fnsave [FpState]
};
#endif
KeGetCurrentThread()->DispatcherHeader.NpxIrql = KeGetCurrentIrql();
return STATUS_SUCCESS;
}
/*
* @implemented
*/
NTSTATUS
NTAPI
KeRestoreFloatingPointState(IN PKFLOATING_SAVE Save)
{
PFNSAVE_FORMAT FpState = *((PVOID *) Save);
ASSERT(KeGetCurrentThread()->DispatcherHeader.NpxIrql == KeGetCurrentIrql());
DPRINT1("%s is not really implemented\n", __FUNCTION__);
#ifdef __GNUC__
asm volatile("fnclex\n\t");
asm volatile("frstor %0\n\t" : "=m" (*FpState));
#else
__asm
{
fnclex
frstor [FpState]
};
#endif
ExFreePool(FpState);
return STATUS_SUCCESS;
}
/*
* @implemented
*/
ULONG
NTAPI
KeGetRecommendedSharedDataAlignment(VOID)
{
/* Return the global variable */
return KeLargestCacheLine;
}
VOID
NTAPI
KiFlushTargetEntireTb(IN PKIPI_CONTEXT PacketContext,
IN PVOID Ignored1,
IN PVOID Ignored2,
IN PVOID Ignored3)
{
/* Signal this packet as done */
KiIpiSignalPacketDone(PacketContext);
/* Flush the TB for the Current CPU */
KeFlushCurrentTb();
}
/*
* @implemented
*/
VOID
NTAPI
KeFlushEntireTb(IN BOOLEAN Invalid,
IN BOOLEAN AllProcessors)
{
KIRQL OldIrql;
#ifdef CONFIG_SMP
KAFFINITY TargetAffinity;
PKPRCB Prcb = KeGetCurrentPrcb();
#endif
/* Raise the IRQL for the TB Flush */
OldIrql = KeRaiseIrqlToSynchLevel();
#ifdef CONFIG_SMP
/* FIXME: Use KiTbFlushTimeStamp to synchronize TB flush */
/* Get the current processor affinity, and exclude ourselves */
TargetAffinity = KeActiveProcessors;
TargetAffinity &= ~Prcb->SetMember;
/* Make sure this is MP */
if (TargetAffinity)
{
/* Send an IPI TB flush to the other processors */
KiIpiSendPacket(TargetAffinity,
KiFlushTargetEntireTb,
NULL,
0,
NULL);
}
#endif
/* Flush the TB for the Current CPU, and update the flush stamp */
KeFlushCurrentTb();
#ifdef CONFIG_SMP
/* If this is MP, wait for the other processors to finish */
if (TargetAffinity)
{
/* Sanity check */
ASSERT(Prcb == (volatile PKPRCB)KeGetCurrentPrcb());
/* FIXME: TODO */
ASSERTMSG("Not yet implemented\n", FALSE);
}
#endif
/* Update the flush stamp and return to original IRQL */
InterlockedExchangeAdd(&KiTbFlushTimeStamp, 1);
KeLowerIrql(OldIrql);
}
/*
* @implemented
*/
VOID
NTAPI
KeSetDmaIoCoherency(IN ULONG Coherency)
{
/* Save the coherency globally */
KiDmaIoCoherency = Coherency;
}
/*
* @implemented
*/
KAFFINITY
NTAPI
KeQueryActiveProcessors(VOID)
{
PAGED_CODE();
/* Simply return the number of active processors */
return KeActiveProcessors;
}
/*
* @implemented
*/
VOID
__cdecl
KeSaveStateForHibernate(IN PKPROCESSOR_STATE State)
{
/* Capture the context */
RtlCaptureContext(&State->ContextFrame);
/* Capture the control state */
KiSaveProcessorControlState(State);
}