reactos/drivers/usb/usbehci/hardware.cpp
2018-08-04 19:19:34 +02:00

1490 lines
42 KiB
C++

/*
* PROJECT: ReactOS Universal Serial Bus Bulk Enhanced Host Controller Interface
* LICENSE: GPL - See COPYING in the top level directory
* FILE: drivers/usb/usbehci/hcd_controller.cpp
* PURPOSE: USB EHCI device driver.
* PROGRAMMERS:
* Michael Martin (michael.martin@reactos.org)
* Johannes Anderwald (johannes.anderwald@reactos.org)
*/
#include "usbehci.h"
#define NDEBUG
#include <debug.h>
typedef VOID __stdcall HD_INIT_CALLBACK(IN PVOID CallBackContext);
BOOLEAN
NTAPI
InterruptServiceRoutine(
IN PKINTERRUPT Interrupt,
IN PVOID ServiceContext);
VOID
NTAPI
EhciDeferredRoutine(
IN PKDPC Dpc,
IN PVOID DeferredContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2);
VOID
NTAPI
StatusChangeWorkItemRoutine(PVOID Context);
class CUSBHardwareDevice : public IEHCIHardwareDevice
{
public:
STDMETHODIMP QueryInterface( REFIID InterfaceId, PVOID* Interface);
STDMETHODIMP_(ULONG) AddRef()
{
InterlockedIncrement(&m_Ref);
return m_Ref;
}
STDMETHODIMP_(ULONG) Release()
{
InterlockedDecrement(&m_Ref);
if (!m_Ref)
{
delete this;
return 0;
}
return m_Ref;
}
// com
IMP_IUSBHARDWAREDEVICE
IMP_IUSBEHCIHARDWARE
// local
BOOLEAN InterruptService();
VOID PrintCapabilities();
NTSTATUS StartController();
NTSTATUS StopController();
NTSTATUS ResetController();
// friend function
friend BOOLEAN NTAPI InterruptServiceRoutine(IN PKINTERRUPT Interrupt, IN PVOID ServiceContext);
friend VOID NTAPI EhciDeferredRoutine(IN PKDPC Dpc, IN PVOID DeferredContext, IN PVOID SystemArgument1, IN PVOID SystemArgument2);
friend VOID NTAPI StatusChangeWorkItemRoutine(PVOID Context);
// constructor / destructor
CUSBHardwareDevice(IUnknown *OuterUnknown){}
virtual ~CUSBHardwareDevice(){}
protected:
LONG m_Ref; // reference count
PDRIVER_OBJECT m_DriverObject; // driver object
PDEVICE_OBJECT m_PhysicalDeviceObject; // pdo
PDEVICE_OBJECT m_FunctionalDeviceObject; // fdo (hcd controller)
PDEVICE_OBJECT m_NextDeviceObject; // lower device object
KSPIN_LOCK m_Lock; // hardware lock
PKINTERRUPT m_Interrupt; // interrupt object
KDPC m_IntDpcObject; // dpc object for deferred isr processing
PVOID VirtualBase; // virtual base for memory manager
PHYSICAL_ADDRESS PhysicalAddress; // physical base for memory manager
PULONG m_Base; // EHCI operational port base registers
PDMA_ADAPTER m_Adapter; // dma adapter object
ULONG m_MapRegisters; // map registers count
EHCI_CAPS m_Capabilities; // EHCI caps
USHORT m_VendorID; // vendor id
USHORT m_DeviceID; // device id
PQUEUE_HEAD AsyncQueueHead; // async queue head terminator
PEHCIQUEUE m_UsbQueue; // usb request queue
PDMAMEMORYMANAGER m_MemoryManager; // memory manager
HD_INIT_CALLBACK* m_SCECallBack; // status change callback routine
PVOID m_SCEContext; // status change callback routine context
BOOLEAN m_DoorBellRingInProgress; // door bell ring in progress
WORK_QUEUE_ITEM m_StatusChangeWorkItem; // work item for status change callback
volatile LONG m_StatusChangeWorkItemStatus; // work item status
ULONG m_SyncFramePhysAddr; // periodic frame list physical address
BUS_INTERFACE_STANDARD m_BusInterface; // pci bus interface
BOOLEAN m_PortResetInProgress[0xF]; // stores reset in progress (vbox hack)
// read register
ULONG EHCI_READ_REGISTER_ULONG(ULONG Offset);
// write register
VOID EHCI_WRITE_REGISTER_ULONG(ULONG Offset, ULONG Value);
};
//=================================================================================================
// COM
//
NTSTATUS
STDMETHODCALLTYPE
CUSBHardwareDevice::QueryInterface(
IN REFIID refiid,
OUT PVOID* Output)
{
if (IsEqualGUIDAligned(refiid, IID_IUnknown))
{
*Output = PVOID(PUNKNOWN(this));
PUNKNOWN(*Output)->AddRef();
return STATUS_SUCCESS;
}
return STATUS_UNSUCCESSFUL;
}
LPCSTR
STDMETHODCALLTYPE
CUSBHardwareDevice::GetUSBType()
{
return "USBEHCI";
}
NTSTATUS
STDMETHODCALLTYPE
CUSBHardwareDevice::Initialize(
PDRIVER_OBJECT DriverObject,
PDEVICE_OBJECT FunctionalDeviceObject,
PDEVICE_OBJECT PhysicalDeviceObject,
PDEVICE_OBJECT LowerDeviceObject)
{
PCI_COMMON_CONFIG PciConfig;
NTSTATUS Status;
ULONG BytesRead;
DPRINT("CUSBHardwareDevice::Initialize\n");
//
// Create DMAMemoryManager for use with QueueHeads and Transfer Descriptors.
//
Status = CreateDMAMemoryManager(&m_MemoryManager);
if (!NT_SUCCESS(Status))
{
DPRINT1("Failed to create DMAMemoryManager Object\n");
return Status;
}
//
// Create the UsbQueue class that will handle the Asynchronous and Periodic Schedules
//
Status = CreateUSBQueue((PUSBQUEUE*)&m_UsbQueue);
if (!NT_SUCCESS(Status))
{
DPRINT1("Failed to create UsbQueue!\n");
return Status;
}
//
// store device objects
//
m_DriverObject = DriverObject;
m_FunctionalDeviceObject = FunctionalDeviceObject;
m_PhysicalDeviceObject = PhysicalDeviceObject;
m_NextDeviceObject = LowerDeviceObject;
//
// initialize device lock
//
KeInitializeSpinLock(&m_Lock);
//
// initialize status change work item
//
ExInitializeWorkItem(&m_StatusChangeWorkItem, StatusChangeWorkItemRoutine, PVOID(this));
m_VendorID = 0;
m_DeviceID = 0;
Status = GetBusInterface(PhysicalDeviceObject, &m_BusInterface);
if (!NT_SUCCESS(Status))
{
DPRINT1("Failed to get BusInterface!\n");
return Status;
}
BytesRead = (*m_BusInterface.GetBusData)(m_BusInterface.Context,
PCI_WHICHSPACE_CONFIG,
&PciConfig,
0,
PCI_COMMON_HDR_LENGTH);
if (BytesRead != PCI_COMMON_HDR_LENGTH)
{
DPRINT1("Failed to get pci config information!\n");
return STATUS_SUCCESS;
}
m_VendorID = PciConfig.VendorID;
m_DeviceID = PciConfig.DeviceID;
return STATUS_SUCCESS;
}
VOID
STDMETHODCALLTYPE
CUSBHardwareDevice::SetCommandRegister(PEHCI_USBCMD_CONTENT UsbCmd)
{
PULONG Register;
Register = (PULONG)UsbCmd;
WRITE_REGISTER_ULONG((PULONG)((PUCHAR)m_Base + EHCI_USBCMD), *Register);
}
VOID
STDMETHODCALLTYPE
CUSBHardwareDevice::GetCommandRegister(PEHCI_USBCMD_CONTENT UsbCmd)
{
PULONG Register;
Register = (PULONG)UsbCmd;
*Register = READ_REGISTER_ULONG((PULONG)((PUCHAR)m_Base + EHCI_USBCMD));
}
ULONG
CUSBHardwareDevice::EHCI_READ_REGISTER_ULONG(ULONG Offset)
{
return READ_REGISTER_ULONG((PULONG)((PUCHAR)m_Base + Offset));
}
VOID
CUSBHardwareDevice::EHCI_WRITE_REGISTER_ULONG(ULONG Offset, ULONG Value)
{
WRITE_REGISTER_ULONG((PULONG)((PUCHAR)m_Base + Offset), Value);
}
VOID
CUSBHardwareDevice::PrintCapabilities()
{
if (m_Capabilities.HCSParams.PortPowerControl)
{
DPRINT1("Controller EHCI has Port Power Control\n");
}
DPRINT1("Controller Port Routing Rules %lu\n", m_Capabilities.HCSParams.PortRouteRules);
DPRINT1("Number of Ports per Companion Controller %lu\n", m_Capabilities.HCSParams.PortPerCHC);
DPRINT1("Number of Companion Controller %lu\n", m_Capabilities.HCSParams.CHCCount);
if (m_Capabilities.HCSParams.PortIndicator)
{
DPRINT1("Controller has Port Indicators Support\n");
}
if (m_Capabilities.HCSParams.DbgPortNum)
{
DPRINT1("Controller has Debug Port Support At Port %x\n", m_Capabilities.HCSParams.DbgPortNum);
}
if (m_Capabilities.HCCParams.EECPCapable)
{
DPRINT1("Controller has Extended Capabilities Support\n");
}
if (m_Capabilities.HCCParams.ParkMode)
{
DPRINT1("Controller supports Asynchronous Schedule Park\n");
}
if (m_Capabilities.HCCParams.VarFrameList)
{
DPRINT1("Controller supports Programmable Frame List Size\n");
}
if (m_Capabilities.HCCParams.CurAddrBits)
{
DPRINT1("Controller uses 64-Bit Addressing\n");
}
}
NTSTATUS
STDMETHODCALLTYPE
CUSBHardwareDevice::PnpStart(
PCM_RESOURCE_LIST RawResources,
PCM_RESOURCE_LIST TranslatedResources)
{
ULONG Index, Count;
PCM_PARTIAL_RESOURCE_DESCRIPTOR ResourceDescriptor;
DEVICE_DESCRIPTION DeviceDescription;
PHYSICAL_ADDRESS AsyncPhysicalAddress;
PVOID ResourceBase;
NTSTATUS Status;
UCHAR Value;
UCHAR PortCount;
DPRINT("CUSBHardwareDevice::PnpStart\n");
for(Index = 0; Index < TranslatedResources->List[0].PartialResourceList.Count; Index++)
{
//
// get resource descriptor
//
ResourceDescriptor = &TranslatedResources->List[0].PartialResourceList.PartialDescriptors[Index];
switch(ResourceDescriptor->Type)
{
case CmResourceTypeInterrupt:
{
KeInitializeDpc(&m_IntDpcObject,
EhciDeferredRoutine,
this);
Status = IoConnectInterrupt(&m_Interrupt,
InterruptServiceRoutine,
(PVOID)this,
NULL,
ResourceDescriptor->u.Interrupt.Vector,
(KIRQL)ResourceDescriptor->u.Interrupt.Level,
(KIRQL)ResourceDescriptor->u.Interrupt.Level,
(KINTERRUPT_MODE)(ResourceDescriptor->Flags & CM_RESOURCE_INTERRUPT_LATCHED),
(ResourceDescriptor->ShareDisposition != CmResourceShareDeviceExclusive),
ResourceDescriptor->u.Interrupt.Affinity,
FALSE);
if (!NT_SUCCESS(Status))
{
//
// failed to register interrupt
//
DPRINT1("IoConnect Interrupt failed with %x\n", Status);
return Status;
}
break;
}
case CmResourceTypeMemory:
{
//
// get resource base
//
ResourceBase = MmMapIoSpace(ResourceDescriptor->u.Memory.Start, ResourceDescriptor->u.Memory.Length, MmNonCached);
if (!ResourceBase)
{
//
// failed to map registers
//
DPRINT1("MmMapIoSpace failed\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Get controllers capabilities
//
m_Capabilities.Length = READ_REGISTER_UCHAR((PUCHAR)ResourceBase + EHCI_CAPLENGTH);
m_Capabilities.HCIVersion = READ_REGISTER_USHORT((PUSHORT)((ULONG_PTR)ResourceBase + EHCI_HCIVERSION));
m_Capabilities.HCSParamsLong = READ_REGISTER_ULONG((PULONG)((ULONG_PTR)ResourceBase + EHCI_HCSPARAMS));
m_Capabilities.HCCParamsLong = READ_REGISTER_ULONG((PULONG)((ULONG_PTR)ResourceBase + EHCI_HCCPARAMS));
DPRINT1("Controller Capabilities Length 0x%x\n", m_Capabilities.Length);
DPRINT1("Controller EHCI Version 0x%x\n", m_Capabilities.HCIVersion);
DPRINT1("Controller EHCI Caps HCSParamsLong 0x%lx\n", m_Capabilities.HCSParamsLong);
DPRINT1("Controller EHCI Caps HCCParamsLong 0x%lx\n", m_Capabilities.HCCParamsLong);
DPRINT1("Controller has %lu Ports\n", m_Capabilities.HCSParams.PortCount);
//
// print capabilities
//
PrintCapabilities();
if (m_Capabilities.HCSParams.PortRouteRules)
{
Count = 0;
PortCount = max(m_Capabilities.HCSParams.PortCount/2, (m_Capabilities.HCSParams.PortCount+1)/2);
do
{
//
// each entry is a 4 bit field EHCI 2.2.5
//
Value = READ_REGISTER_UCHAR((PUCHAR)(ULONG_PTR)ResourceBase + EHCI_HCSP_PORTROUTE + Count);
m_Capabilities.PortRoute[Count*2] = (Value & 0xF0);
if ((Count*2) + 1 < m_Capabilities.HCSParams.PortCount)
m_Capabilities.PortRoute[(Count*2)+1] = (Value & 0x0F);
Count++;
} while(Count < PortCount);
}
//
// Set m_Base to the address of Operational Register Space
//
m_Base = (PULONG)((ULONG_PTR)ResourceBase + m_Capabilities.Length);
break;
}
}
}
//
// zero device description
//
RtlZeroMemory(&DeviceDescription, sizeof(DEVICE_DESCRIPTION));
//
// initialize device description
//
DeviceDescription.Version = DEVICE_DESCRIPTION_VERSION;
DeviceDescription.Master = TRUE;
DeviceDescription.ScatterGather = TRUE;
DeviceDescription.Dma32BitAddresses = TRUE;
DeviceDescription.DmaWidth = Width32Bits;
DeviceDescription.InterfaceType = PCIBus;
DeviceDescription.MaximumLength = MAXULONG;
//
// get dma adapter
//
m_Adapter = IoGetDmaAdapter(m_PhysicalDeviceObject, &DeviceDescription, &m_MapRegisters);
if (!m_Adapter)
{
//
// failed to get dma adapter
//
DPRINT1("Failed to acquire dma adapter\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Create Common Buffer
//
VirtualBase = m_Adapter->DmaOperations->AllocateCommonBuffer(m_Adapter,
PAGE_SIZE * 4,
&PhysicalAddress,
FALSE);
if (!VirtualBase)
{
DPRINT1("Failed to allocate a common buffer\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Initialize the DMAMemoryManager
//
Status = m_MemoryManager->Initialize(this, &m_Lock, PAGE_SIZE * 4, VirtualBase, PhysicalAddress, 32);
if (!NT_SUCCESS(Status))
{
DPRINT1("Failed to initialize the DMAMemoryManager\n");
return Status;
}
//
// Create a queuehead for the Async Register
//
m_MemoryManager->Allocate(sizeof(QUEUE_HEAD), (PVOID*)&AsyncQueueHead, &AsyncPhysicalAddress);
AsyncQueueHead->PhysicalAddr = AsyncPhysicalAddress.LowPart;
AsyncQueueHead->HorizontalLinkPointer = AsyncQueueHead->PhysicalAddr | QH_TYPE_QH;
AsyncQueueHead->EndPointCharacteristics.HeadOfReclamation = TRUE;
AsyncQueueHead->EndPointCharacteristics.EndPointSpeed = QH_ENDPOINT_HIGHSPEED;
AsyncQueueHead->Token.Bits.Halted = TRUE;
AsyncQueueHead->EndPointCapabilities.NumberOfTransactionPerFrame = 0x01;
AsyncQueueHead->NextPointer = TERMINATE_POINTER;
AsyncQueueHead->CurrentLinkPointer = TERMINATE_POINTER;
InitializeListHead(&AsyncQueueHead->LinkedQueueHeads);
//
// Initialize the UsbQueue now that we have an AdapterObject.
//
Status = m_UsbQueue->Initialize(PUSBHARDWAREDEVICE(this), m_Adapter, m_MemoryManager, &m_Lock);
if (!NT_SUCCESS(Status))
{
DPRINT1("Failed to Initialize the UsbQueue\n");
return Status;
}
//
// Start the controller
//
DPRINT1("Starting Controller\n");
Status = StartController();
//
// done
//
return Status;
}
NTSTATUS
STDMETHODCALLTYPE
CUSBHardwareDevice::PnpStop(void)
{
UNIMPLEMENTED;
return STATUS_NOT_IMPLEMENTED;
}
NTSTATUS
STDMETHODCALLTYPE
CUSBHardwareDevice::GetDeviceDetails(
OUT OPTIONAL PUSHORT VendorId,
OUT OPTIONAL PUSHORT DeviceId,
OUT OPTIONAL PULONG NumberOfPorts,
OUT OPTIONAL PULONG Speed)
{
if (VendorId)
*VendorId = m_VendorID;
if (DeviceId)
*DeviceId = m_DeviceID;
if (NumberOfPorts)
*NumberOfPorts = m_Capabilities.HCSParams.PortCount;
//FIXME: What to returned here?
if (Speed)
*Speed = 0x200;
return STATUS_SUCCESS;
}
NTSTATUS
STDMETHODCALLTYPE
CUSBHardwareDevice::GetDMA(
OUT struct IDMAMemoryManager **OutDMAMemoryManager)
{
if (!m_MemoryManager)
return STATUS_UNSUCCESSFUL;
*OutDMAMemoryManager = m_MemoryManager;
return STATUS_SUCCESS;
}
NTSTATUS
STDMETHODCALLTYPE
CUSBHardwareDevice::GetUSBQueue(
OUT struct IUSBQueue **OutUsbQueue)
{
if (!m_UsbQueue)
return STATUS_UNSUCCESSFUL;
*OutUsbQueue = m_UsbQueue;
return STATUS_SUCCESS;
}
NTSTATUS
CUSBHardwareDevice::StartController(void)
{
EHCI_USBCMD_CONTENT UsbCmd;
ULONG UsbSts, FailSafe, ExtendedCapsSupport, Caps, Index;
UCHAR Value;
LARGE_INTEGER Timeout;
//
// are extended caps supported
//
ExtendedCapsSupport = (m_Capabilities.HCCParamsLong >> EHCI_ECP_SHIFT) & EHCI_ECP_MASK;
if (ExtendedCapsSupport)
{
DPRINT1("[EHCI] Extended Caps Support detected!\n");
//
// sanity check
//
ASSERT(ExtendedCapsSupport >= PCI_COMMON_HDR_LENGTH);
m_BusInterface.GetBusData(m_BusInterface.Context, PCI_WHICHSPACE_CONFIG, &Caps, ExtendedCapsSupport, sizeof(ULONG));
//
// OS Handoff Synchronization support capability. EHCI 5.1
//
if ((Caps & EHCI_LEGSUP_CAPID_MASK) == EHCI_LEGSUP_CAPID)
{
//
// is it bios owned
//
if ((Caps & EHCI_LEGSUP_BIOSOWNED))
{
DPRINT1("[EHCI] Controller is BIOS owned, acquiring control\n");
//
// acquire ownership
//
Value = 1;
m_BusInterface.SetBusData(m_BusInterface.Context, PCI_WHICHSPACE_CONFIG, &Value, ExtendedCapsSupport+3, sizeof(UCHAR));
for(Index = 0; Index < 20; Index++)
{
//
// get status
//
m_BusInterface.GetBusData(m_BusInterface.Context, PCI_WHICHSPACE_CONFIG, &Caps, ExtendedCapsSupport, sizeof(ULONG));
if ((Caps & EHCI_LEGSUP_BIOSOWNED))
{
//
// lets wait a bit
//
Timeout.QuadPart = 50;
DPRINT1("Waiting %lu milliseconds for port reset\n", Timeout.LowPart);
//
// convert to 100 ns units (absolute)
//
Timeout.QuadPart *= -10000;
//
// perform the wait
//
KeDelayExecutionThread(KernelMode, FALSE, &Timeout);
}
}
if ((Caps & EHCI_LEGSUP_BIOSOWNED))
{
//
// failed to acquire ownership
//
DPRINT1("[EHCI] failed to acquire ownership\n");
}
else if ((Caps & EHCI_LEGSUP_OSOWNED))
{
//
// HC OS Owned Semaphore EHCI 2.1.7
//
DPRINT1("[EHCI] acquired ownership\n");
}
#if 0
//
// explicitly clear the bios owned flag 2.1.7
//
Value = 0;
m_BusInterface.SetBusData(m_BusInterface.Context, PCI_WHICHSPACE_CONFIG, &Value, ExtendedCapsSupport+2, sizeof(UCHAR));
//
// clear SMI interrupt EHCI 2.1.8
//
Caps = 4;
m_BusInterface.SetBusData(m_BusInterface.Context, PCI_WHICHSPACE_CONFIG, &Caps, ExtendedCapsSupport+4, sizeof(ULONG));
#endif
}
}
}
//
// get command register
//
GetCommandRegister(&UsbCmd);
//
// disable running schedules
//
UsbCmd.PeriodicEnable = FALSE;
UsbCmd.AsyncEnable = FALSE;
SetCommandRegister(&UsbCmd);
//
// Wait for execution to start
//
for (FailSafe = 100; FailSafe > 1; FailSafe--)
{
KeStallExecutionProcessor(100);
UsbSts = EHCI_READ_REGISTER_ULONG(EHCI_USBSTS);
if (!(UsbSts & EHCI_STS_PSS) && (UsbSts & EHCI_STS_ASS))
{
break;
}
}
if ((UsbSts & (EHCI_STS_PSS | EHCI_STS_ASS)))
{
DPRINT1("Failed to stop running schedules %x\n", UsbSts);
//ASSERT(FALSE);
}
//
// Stop the controller if its running
//
UsbSts = EHCI_READ_REGISTER_ULONG(EHCI_USBSTS);
if (!(UsbSts & EHCI_STS_HALT))
{
DPRINT1("Stopping Controller %x\n", UsbSts);
StopController();
}
//
// Reset the controller
//
ResetController();
//
// check caps
//
if (m_Capabilities.HCCParams.CurAddrBits)
{
//
// disable 64-bit addressing
//
EHCI_WRITE_REGISTER_ULONG(EHCI_CTRLDSSEGMENT, 0x0);
}
//
// Enable Interrupts and start execution
//
ULONG Mask = EHCI_USBINTR_INTE | EHCI_USBINTR_ERR | EHCI_USBINTR_ASYNC | EHCI_USBINTR_HSERR | EHCI_USBINTR_PC;
EHCI_WRITE_REGISTER_ULONG(EHCI_USBINTR, Mask);
KeStallExecutionProcessor(10);
ULONG Status = EHCI_READ_REGISTER_ULONG(EHCI_USBINTR);
DPRINT1("Interrupt Mask %x\n", Status);
ASSERT((Status & Mask) == Mask);
//
// Assign the SyncList Register
//
EHCI_WRITE_REGISTER_ULONG(EHCI_PERIODICLISTBASE, m_SyncFramePhysAddr);
//
// Set Schedules to Enable and Interrupt Threshold to 1ms.
//
RtlZeroMemory(&UsbCmd, sizeof(EHCI_USBCMD_CONTENT));
UsbCmd.PeriodicEnable = TRUE;
UsbCmd.IntThreshold = 0x8; //1ms
UsbCmd.Run = TRUE;
UsbCmd.FrameListSize = 0x0; //1024
if (m_Capabilities.HCCParams.ParkMode)
{
//
// enable async park mode
//
UsbCmd.AsyncParkEnable = TRUE;
UsbCmd.AsyncParkCount = 3;
}
SetCommandRegister(&UsbCmd);
//
// Wait for execution to start
//
for (FailSafe = 100; FailSafe > 1; FailSafe--)
{
KeStallExecutionProcessor(100);
UsbSts = EHCI_READ_REGISTER_ULONG(EHCI_USBSTS);
if (!(UsbSts & EHCI_STS_HALT) && (UsbSts & EHCI_STS_PSS))
{
break;
}
}
if (UsbSts & EHCI_STS_HALT)
{
DPRINT1("Could not start execution on the controller\n");
//ASSERT(FALSE);
return STATUS_UNSUCCESSFUL;
}
if (!(UsbSts & EHCI_STS_PSS))
{
DPRINT1("Could not enable periodic scheduling\n");
//ASSERT(FALSE);
return STATUS_UNSUCCESSFUL;
}
//
// Assign the AsyncList Register
//
EHCI_WRITE_REGISTER_ULONG(EHCI_ASYNCLISTBASE, AsyncQueueHead->PhysicalAddr);
//
// get command register
//
GetCommandRegister(&UsbCmd);
//
// preserve bits
//
UsbCmd.AsyncEnable = TRUE;
//
// enable async
//
SetCommandRegister(&UsbCmd);
//
// Wait for execution to start
//
for (FailSafe = 100; FailSafe > 1; FailSafe--)
{
KeStallExecutionProcessor(100);
UsbSts = EHCI_READ_REGISTER_ULONG(EHCI_USBSTS);
if ((UsbSts & EHCI_STS_ASS))
{
break;
}
}
if (!(UsbSts & EHCI_STS_ASS))
{
DPRINT1("Failed to enable async schedule UsbSts %x\n", UsbSts);
//ASSERT(FALSE);
return STATUS_UNSUCCESSFUL;
}
DPRINT1("UsbSts %x\n", UsbSts);
GetCommandRegister(&UsbCmd);
DPRINT1("UsbCmd.PeriodicEnable %x\n", UsbCmd.PeriodicEnable);
DPRINT1("UsbCmd.AsyncEnable %x\n", UsbCmd.AsyncEnable);
DPRINT1("UsbCmd.IntThreshold %x\n", UsbCmd.IntThreshold);
DPRINT1("UsbCmd.Run %x\n", UsbCmd.Run);
DPRINT1("UsbCmd.FrameListSize %x\n", UsbCmd.FrameListSize);
//
// Set port routing to EHCI controller
//
EHCI_WRITE_REGISTER_ULONG(EHCI_CONFIGFLAG, 1);
DPRINT1("EHCI Started!\n");
return STATUS_SUCCESS;
}
NTSTATUS
CUSBHardwareDevice::StopController(void)
{
EHCI_USBCMD_CONTENT UsbCmd;
ULONG UsbSts, FailSafe;
//
// Disable Interrupts and stop execution
//
EHCI_WRITE_REGISTER_ULONG (EHCI_USBINTR, 0);
GetCommandRegister(&UsbCmd);
UsbCmd.Run = FALSE;
SetCommandRegister(&UsbCmd);
for (FailSafe = 100; FailSafe > 1; FailSafe--)
{
KeStallExecutionProcessor(10);
UsbSts = EHCI_READ_REGISTER_ULONG(EHCI_USBSTS);
if (UsbSts & EHCI_STS_HALT)
{
break;
}
}
if (!(UsbSts & EHCI_STS_HALT))
{
DPRINT1("EHCI ERROR: Controller is not responding to Stop request!\n");
return STATUS_UNSUCCESSFUL;
}
return STATUS_SUCCESS;
}
NTSTATUS
CUSBHardwareDevice::ResetController(void)
{
EHCI_USBCMD_CONTENT UsbCmd;
ULONG FailSafe;
GetCommandRegister(&UsbCmd);
UsbCmd.HCReset = TRUE;
SetCommandRegister(&UsbCmd);
for (FailSafe = 100; FailSafe > 1; FailSafe--)
{
KeStallExecutionProcessor(100);
GetCommandRegister(&UsbCmd);
if (!UsbCmd.HCReset)
break;
}
if (UsbCmd.HCReset)
{
DPRINT1("EHCI ERROR: Controller is not responding to reset request!\n");
return STATUS_UNSUCCESSFUL;
}
return STATUS_SUCCESS;
}
NTSTATUS
STDMETHODCALLTYPE
CUSBHardwareDevice::ResetPort(
IN ULONG PortIndex)
{
ULONG PortStatus;
LARGE_INTEGER Timeout;
if (PortIndex > m_Capabilities.HCSParams.PortCount)
return STATUS_UNSUCCESSFUL;
PortStatus = EHCI_READ_REGISTER_ULONG(EHCI_PORTSC + (4 * PortIndex));
ASSERT(!EHCI_IS_LOW_SPEED(PortStatus));
ASSERT(PortStatus & EHCI_PRT_CONNECTED);
//
// Reset and clean enable
//
PortStatus |= EHCI_PRT_RESET;
PortStatus &= EHCI_PORTSC_DATAMASK;
EHCI_WRITE_REGISTER_ULONG(EHCI_PORTSC + (4 * PortIndex), PortStatus);
//
// delay is 50 ms for port reset as per USB 2.0 spec
//
Timeout.QuadPart = 50;
DPRINT1("Waiting %lu milliseconds for port reset\n", Timeout.LowPart);
//
// convert to 100 ns units (absolute)
//
Timeout.QuadPart *= -10000;
//
// perform the wait
//
KeDelayExecutionThread(KernelMode, FALSE, &Timeout);
return STATUS_SUCCESS;
}
NTSTATUS
STDMETHODCALLTYPE
CUSBHardwareDevice::GetPortStatus(
ULONG PortId,
OUT USHORT *PortStatus,
OUT USHORT *PortChange)
{
ULONG Value;
USHORT Status = 0, Change = 0;
if (PortId > m_Capabilities.HCSParams.PortCount)
return STATUS_UNSUCCESSFUL;
//
// Get the value of the Port Status and Control Register
//
Value = EHCI_READ_REGISTER_ULONG(EHCI_PORTSC + (4 * PortId));
//
// If the PowerPortControl is 0 then host controller does not have power control switches
if (!m_Capabilities.HCSParams.PortPowerControl)
{
Status |= USB_PORT_STATUS_POWER;
}
else
{
// Check the value of PortPower
if (Value & EHCI_PRT_POWER)
{
Status |= USB_PORT_STATUS_POWER;
}
}
// Get Connected Status
if (Value & EHCI_PRT_CONNECTED)
{
Status |= USB_PORT_STATUS_CONNECT;
// EHCI only supports high speed
Status |= USB_PORT_STATUS_HIGH_SPEED;
}
// Get Enabled Status
if (Value & EHCI_PRT_ENABLED)
Status |= USB_PORT_STATUS_ENABLE;
// Is it suspended?
if (Value & EHCI_PRT_SUSPEND)
Status |= USB_PORT_STATUS_SUSPEND;
// a overcurrent is active?
if (Value & EHCI_PRT_OVERCURRENTACTIVE)
Status |= USB_PORT_STATUS_OVER_CURRENT;
// In a reset state?
if ((Value & EHCI_PRT_RESET) || m_PortResetInProgress[PortId])
{
Status |= USB_PORT_STATUS_RESET;
Change |= USB_PORT_STATUS_RESET;
}
// This indicates a connect or disconnect
if (Value & EHCI_PRT_CONNECTSTATUSCHANGE)
Change |= USB_PORT_STATUS_CONNECT;
// This is set to indicate a critical port error
if (Value & EHCI_PRT_ENABLEDSTATUSCHANGE)
Change |= USB_PORT_STATUS_ENABLE;
*PortStatus = Status;
*PortChange = Change;
return STATUS_SUCCESS;
}
NTSTATUS
STDMETHODCALLTYPE
CUSBHardwareDevice::ClearPortStatus(
ULONG PortId,
ULONG Status)
{
ULONG Value;
LARGE_INTEGER Timeout;
DPRINT("CUSBHardwareDevice::ClearPortStatus PortId %x Feature %x\n", PortId, Status);
if (PortId > m_Capabilities.HCSParams.PortCount)
return STATUS_UNSUCCESSFUL;
if (Status == C_PORT_RESET)
{
// reset done
m_PortResetInProgress[PortId] = FALSE;
// Clear reset
Value = EHCI_READ_REGISTER_ULONG(EHCI_PORTSC + (4 * PortId));
Value &= (EHCI_PORTSC_DATAMASK | EHCI_PRT_ENABLED);
Value &= ~EHCI_PRT_RESET;
EHCI_WRITE_REGISTER_ULONG(EHCI_PORTSC + (4 * PortId), Value);
//
// wait for reset bit to clear
//
do
{
Value = EHCI_READ_REGISTER_ULONG(EHCI_PORTSC + (4 * PortId));
if (!(Value & EHCI_PRT_RESET))
break;
KeStallExecutionProcessor(20);
} while (TRUE);
//
// delay is 50 ms
//
Timeout.QuadPart = 50;
DPRINT1("Waiting %lu milliseconds for port to recover after reset\n", Timeout.LowPart);
//
// convert to 100 ns units (absolute)
//
Timeout.QuadPart *= -10000;
//
// perform the wait
//
KeDelayExecutionThread(KernelMode, FALSE, &Timeout);
//
// check the port status after reset
//
Value = EHCI_READ_REGISTER_ULONG(EHCI_PORTSC + (4 * PortId));
if (!(Value & EHCI_PRT_CONNECTED))
{
DPRINT1("No device is here after reset. Bad controller/device?\n");
return STATUS_UNSUCCESSFUL;
}
else if (EHCI_IS_LOW_SPEED(Value))
{
DPRINT1("Low speed device connected. Releasing ownership\n");
EHCI_WRITE_REGISTER_ULONG(EHCI_PORTSC + (4 * PortId), Value | EHCI_PRT_RELEASEOWNERSHIP);
return STATUS_DEVICE_NOT_CONNECTED;
}
else if (!(Value & EHCI_PRT_ENABLED))
{
DPRINT1("Full speed device connected. Releasing ownership\n");
EHCI_WRITE_REGISTER_ULONG(EHCI_PORTSC + (4 * PortId), Value | EHCI_PRT_RELEASEOWNERSHIP);
return STATUS_DEVICE_NOT_CONNECTED;
}
else
{
DPRINT1("High speed device connected\n");
return STATUS_SUCCESS;
}
}
else if (Status == C_PORT_CONNECTION)
{
//
// reset status change bits
//
Value = EHCI_READ_REGISTER_ULONG(EHCI_PORTSC + (4 * PortId));
EHCI_WRITE_REGISTER_ULONG(EHCI_PORTSC + (4 * PortId), Value);
if (Value & EHCI_PRT_CONNECTED)
{
//
// delay is 100 ms
//
Timeout.QuadPart = 100;
DPRINT1("Waiting %lu milliseconds for port to stabilize after connection\n", Timeout.LowPart);
//
// convert to 100 ns units (absolute)
//
Timeout.QuadPart *= -10000;
//
// perform the wait
//
KeDelayExecutionThread(KernelMode, FALSE, &Timeout);
}
}
return STATUS_SUCCESS;
}
NTSTATUS
STDMETHODCALLTYPE
CUSBHardwareDevice::SetPortFeature(
ULONG PortId,
ULONG Feature)
{
DPRINT("CUSBHardwareDevice::SetPortFeature\n");
if (PortId > m_Capabilities.HCSParams.PortCount)
return STATUS_UNSUCCESSFUL;
if (Feature == PORT_ENABLE)
{
//
// FIXME: EHCI Ports can only be disabled via reset
//
DPRINT1("PORT_ENABLE not supported for EHCI\n");
}
if (Feature == PORT_RESET)
{
//
// call the helper
//
ResetPort(PortId);
// reset in progress
m_PortResetInProgress[PortId] = TRUE;
//
// is there a status change callback
//
if (m_SCECallBack != NULL)
{
//
// issue callback
//
m_SCECallBack(m_SCEContext);
}
}
if (Feature == PORT_POWER)
{
if (m_Capabilities.HCSParams.PortPowerControl)
{
ULONG Value;
LARGE_INTEGER Timeout;
//
// enable port power
//
Value = EHCI_READ_REGISTER_ULONG(EHCI_PORTSC + (4 * PortId)) | EHCI_PRT_POWER;
EHCI_WRITE_REGISTER_ULONG(EHCI_PORTSC + (4 * PortId), Value);
//
// delay is 20 ms
//
Timeout.QuadPart = 20;
DPRINT1("Waiting %lu milliseconds for port power up\n", Timeout.LowPart);
//
// convert to 100 ns units (absolute)
//
Timeout.QuadPart *= -10000;
//
// perform the wait
//
KeDelayExecutionThread(KernelMode, FALSE, &Timeout);
}
}
return STATUS_SUCCESS;
}
VOID
STDMETHODCALLTYPE
CUSBHardwareDevice::SetAsyncListRegister(
ULONG PhysicalAddress)
{
EHCI_WRITE_REGISTER_ULONG(EHCI_ASYNCLISTBASE, PhysicalAddress);
}
VOID
STDMETHODCALLTYPE
CUSBHardwareDevice::SetPeriodicListRegister(
ULONG PhysicalAddress)
{
//
// store physical address
//
m_SyncFramePhysAddr = PhysicalAddress;
}
struct _QUEUE_HEAD *
STDMETHODCALLTYPE
CUSBHardwareDevice::GetAsyncListQueueHead()
{
return AsyncQueueHead;
}
ULONG
STDMETHODCALLTYPE
CUSBHardwareDevice::GetPeriodicListRegister()
{
UNIMPLEMENTED;
return NULL;
}
VOID
STDMETHODCALLTYPE
CUSBHardwareDevice::SetStatusChangeEndpointCallBack(
PVOID CallBack,
PVOID Context)
{
m_SCECallBack = (HD_INIT_CALLBACK*)CallBack;
m_SCEContext = Context;
}
BOOLEAN
NTAPI
InterruptServiceRoutine(
IN PKINTERRUPT Interrupt,
IN PVOID ServiceContext)
{
CUSBHardwareDevice *This;
ULONG CStatus;
This = (CUSBHardwareDevice*) ServiceContext;
CStatus = This->EHCI_READ_REGISTER_ULONG(EHCI_USBSTS);
CStatus &= (EHCI_ERROR_INT | EHCI_STS_INT | EHCI_STS_IAA | EHCI_STS_PCD | EHCI_STS_FLR);
DPRINT("InterruptServiceRoutine CStatus %lx\n", CStatus);
//
// Check that it belongs to EHCI
//
if (!CStatus)
return FALSE;
//
// Clear the Status
//
This->EHCI_WRITE_REGISTER_ULONG(EHCI_USBSTS, CStatus);
if (CStatus & EHCI_STS_FATAL)
{
This->StopController();
DPRINT1("EHCI: Host System Error!\n");
return TRUE;
}
if (CStatus & EHCI_ERROR_INT)
{
DPRINT1("EHCI Status = 0x%x\n", CStatus);
}
if (CStatus & EHCI_STS_HALT)
{
DPRINT1("Host Error Unexpected Halt\n");
// FIXME: Reset controller\n");
return TRUE;
}
KeInsertQueueDpc(&This->m_IntDpcObject, This, UlongToPtr(CStatus));
return TRUE;
}
VOID NTAPI
EhciDeferredRoutine(
IN PKDPC Dpc,
IN PVOID DeferredContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2)
{
CUSBHardwareDevice *This;
ULONG CStatus, PortStatus, PortCount, i, ShouldRingDoorBell, QueueSCEWorkItem;
NTSTATUS Status = STATUS_SUCCESS;
EHCI_USBCMD_CONTENT UsbCmd;
This = (CUSBHardwareDevice*) SystemArgument1;
CStatus = PtrToUlong(SystemArgument2);
DPRINT("EhciDeferredRoutine CStatus %lx\n", CStatus);
//
// check for completion of async schedule
//
if (CStatus & (EHCI_STS_RECL| EHCI_STS_INT | EHCI_ERROR_INT))
{
//
// check if there is a door bell ring in progress
//
if (This->m_DoorBellRingInProgress == FALSE)
{
if (CStatus & EHCI_ERROR_INT)
{
//
// controller reported error
//
DPRINT1("CStatus %lx\n", CStatus);
//ASSERT(FALSE);
}
//
// inform IUSBQueue of a completed queue head
//
This->m_UsbQueue->InterruptCallback(Status, &ShouldRingDoorBell);
//
// was a queue head completed?
//
if (ShouldRingDoorBell)
{
//
// set door ring bell in progress status flag
//
This->m_DoorBellRingInProgress = TRUE;
//
// get command register
//
This->GetCommandRegister(&UsbCmd);
//
// set door rang bell bit
//
UsbCmd.DoorBell = TRUE;
//
// update command status
//
This->SetCommandRegister(&UsbCmd);
}
}
}
//
// check if the controller has acknowledged the door bell
//
if (CStatus & EHCI_STS_IAA)
{
//
// controller has acknowledged, assert we rang the bell
//
PC_ASSERT(This->m_DoorBellRingInProgress == TRUE);
//
// now notify IUSBQueue that it can free completed requests
//
This->m_UsbQueue->CompleteAsyncRequests();
//
// door ring bell completed
//
This->m_DoorBellRingInProgress = FALSE;
}
This->GetDeviceDetails(NULL, NULL, &PortCount, NULL);
if (CStatus & EHCI_STS_PCD)
{
QueueSCEWorkItem = FALSE;
for (i = 0; i < PortCount; i++)
{
PortStatus = This->EHCI_READ_REGISTER_ULONG(EHCI_PORTSC + (4 * i));
//
// Device connected or removed
//
if (PortStatus & EHCI_PRT_CONNECTSTATUSCHANGE)
{
if (PortStatus & EHCI_PRT_CONNECTED)
{
DPRINT1("Device connected on port %lu\n", i);
if (This->m_Capabilities.HCSParams.CHCCount)
{
if (PortStatus & EHCI_PRT_ENABLED)
{
DPRINT1("Misbehaving controller. Port should be disabled at this point\n");
}
if (EHCI_IS_LOW_SPEED(PortStatus))
{
DPRINT1("Low speed device connected. Releasing ownership\n");
This->EHCI_WRITE_REGISTER_ULONG(EHCI_PORTSC + (4 * i), PortStatus | EHCI_PRT_RELEASEOWNERSHIP);
continue;
}
}
//
// work to do
//
QueueSCEWorkItem = TRUE;
}
else
{
DPRINT1("Device disconnected on port %lu\n", i);
//
// work to do
//
QueueSCEWorkItem = TRUE;
}
}
}
//
// is there a status change callback and a high speed device connected / disconnected
//
if (QueueSCEWorkItem && This->m_SCECallBack != NULL)
{
if (InterlockedCompareExchange(&This->m_StatusChangeWorkItemStatus, 1, 0) == 0)
{
//
// queue work item for processing
//
ExQueueWorkItem(&This->m_StatusChangeWorkItem, DelayedWorkQueue);
}
}
}
return;
}
VOID
NTAPI
StatusChangeWorkItemRoutine(
PVOID Context)
{
//
// cast to hardware object
//
CUSBHardwareDevice * This = (CUSBHardwareDevice*)Context;
//
// is there a callback
//
if (This->m_SCECallBack)
{
//
// issue callback
//
This->m_SCECallBack(This->m_SCEContext);
}
//
// reset active status
//
InterlockedDecrement(&This->m_StatusChangeWorkItemStatus);
}
NTSTATUS
NTAPI
CreateUSBHardware(
PUSBHARDWAREDEVICE *OutHardware)
{
PUSBHARDWAREDEVICE This;
This = new(NonPagedPool, TAG_USBEHCI) CUSBHardwareDevice(0);
if (!This)
return STATUS_INSUFFICIENT_RESOURCES;
This->AddRef();
// return result
*OutHardware = (PUSBHARDWAREDEVICE)This;
return STATUS_SUCCESS;
}