reactos/sdk/lib/3rdparty/libmpg123/synth_real.c
2021-06-11 15:33:08 +03:00

585 lines
13 KiB
C

/*
synth_real.c: The functions for synthesizing real (float) samples, at the end of decoding.
copyright 1995-2008 by the mpg123 project - free software under the terms of the LGPL 2.1
see COPYING and AUTHORS files in distribution or http://mpg123.org
initially written by Michael Hipp, heavily dissected and rearranged by Thomas Orgis
*/
#include "mpg123lib_intern.h"
#include "sample.h"
#include "debug.h"
#ifdef REAL_IS_FIXED
#error "Do not build this file with fixed point math!"
#else
/*
Part 3: All synth functions that produce float output.
What we need is just a special WRITE_SAMPLE. For the generic and i386 functions, that is.
The optimized synths would need to be changed internally to support float output.
*/
#define SAMPLE_T real
#define WRITE_SAMPLE(samples,sum,clip) WRITE_REAL_SAMPLE(samples,sum,clip)
/* Part 3a: All straight 1to1 decoding functions */
#define BLOCK 0x40 /* One decoding block is 64 samples. */
#define SYNTH_NAME synth_1to1_real
#include "synth.h"
#undef SYNTH_NAME
/* Mono-related synths; they wrap over _some_ synth_1to1_real (could be generic, could be i386). */
#define SYNTH_NAME fr->synths.plain[r_1to1][f_real]
#define MONO_NAME synth_1to1_real_mono
#define MONO2STEREO_NAME synth_1to1_real_m2s
#include "synth_mono.h"
#undef SYNTH_NAME
#undef MONO_NAME
#undef MONO2STEREO_NAME
#ifdef OPT_X86
#define NO_AUTOINCREMENT
#define SYNTH_NAME synth_1to1_real_i386
#include "synth.h"
#undef SYNTH_NAME
/* i386 uses the normal mono functions. */
#undef NO_AUTOINCREMENT
#endif
#undef BLOCK
/* At least one optimized real decoder... */
#ifdef OPT_X86_64
/* Assembler routines. */
int synth_1to1_real_x86_64_asm(real *window, real *b0, real *samples, int bo1);
int synth_1to1_real_s_x86_64_asm(real *window, real *b0l, real *b0r, real *samples, int bo1);
void dct64_real_x86_64(real *out0, real *out1, real *samples);
/* Hull for C mpg123 API */
int synth_1to1_real_x86_64(real *bandPtr,int channel, mpg123_handle *fr, int final)
{
real *samples = (real *) (fr->buffer.data+fr->buffer.fill);
real *b0, **buf;
int bo1;
#ifndef NO_EQUALIZER
if(fr->have_eq_settings) do_equalizer(bandPtr,channel,fr->equalizer);
#endif
if(!channel)
{
fr->bo--;
fr->bo &= 0xf;
buf = fr->real_buffs[0];
}
else
{
samples++;
buf = fr->real_buffs[1];
}
if(fr->bo & 0x1)
{
b0 = buf[0];
bo1 = fr->bo;
dct64_real_x86_64(buf[1]+((fr->bo+1)&0xf),buf[0]+fr->bo,bandPtr);
}
else
{
b0 = buf[1];
bo1 = fr->bo+1;
dct64_real_x86_64(buf[0]+fr->bo,buf[1]+fr->bo+1,bandPtr);
}
synth_1to1_real_x86_64_asm(fr->decwin, b0, samples, bo1);
if(final) fr->buffer.fill += 256;
return 0;
}
int synth_1to1_real_stereo_x86_64(real *bandPtr_l, real *bandPtr_r, mpg123_handle *fr)
{
real *samples = (real *) (fr->buffer.data+fr->buffer.fill);
real *b0l, *b0r, **bufl, **bufr;
int bo1;
#ifndef NO_EQUALIZER
if(fr->have_eq_settings)
{
do_equalizer(bandPtr_l,0,fr->equalizer);
do_equalizer(bandPtr_r,1,fr->equalizer);
}
#endif
fr->bo--;
fr->bo &= 0xf;
bufl = fr->real_buffs[0];
bufr = fr->real_buffs[1];
if(fr->bo & 0x1)
{
b0l = bufl[0];
b0r = bufr[0];
bo1 = fr->bo;
dct64_real_x86_64(bufl[1]+((fr->bo+1)&0xf),bufl[0]+fr->bo,bandPtr_l);
dct64_real_x86_64(bufr[1]+((fr->bo+1)&0xf),bufr[0]+fr->bo,bandPtr_r);
}
else
{
b0l = bufl[1];
b0r = bufr[1];
bo1 = fr->bo+1;
dct64_real_x86_64(bufl[0]+fr->bo,bufl[1]+fr->bo+1,bandPtr_l);
dct64_real_x86_64(bufr[0]+fr->bo,bufr[1]+fr->bo+1,bandPtr_r);
}
synth_1to1_real_s_x86_64_asm(fr->decwin, b0l, b0r, samples, bo1);
fr->buffer.fill += 256;
return 0;
}
#endif
#ifdef OPT_AVX
/* Assembler routines. */
#ifndef OPT_X86_64
int synth_1to1_real_x86_64_asm(real *window, real *b0, real *samples, int bo1);
#endif
int synth_1to1_real_s_avx_asm(real *window, real *b0l, real *b0r, real *samples, int bo1);
void dct64_real_avx(real *out0, real *out1, real *samples);
/* Hull for C mpg123 API */
int synth_1to1_real_avx(real *bandPtr,int channel, mpg123_handle *fr, int final)
{
real *samples = (real *) (fr->buffer.data+fr->buffer.fill);
real *b0, **buf;
int bo1;
#ifndef NO_EQUALIZER
if(fr->have_eq_settings) do_equalizer(bandPtr,channel,fr->equalizer);
#endif
if(!channel)
{
fr->bo--;
fr->bo &= 0xf;
buf = fr->real_buffs[0];
}
else
{
samples++;
buf = fr->real_buffs[1];
}
if(fr->bo & 0x1)
{
b0 = buf[0];
bo1 = fr->bo;
dct64_real_avx(buf[1]+((fr->bo+1)&0xf),buf[0]+fr->bo,bandPtr);
}
else
{
b0 = buf[1];
bo1 = fr->bo+1;
dct64_real_avx(buf[0]+fr->bo,buf[1]+fr->bo+1,bandPtr);
}
synth_1to1_real_x86_64_asm(fr->decwin, b0, samples, bo1);
if(final) fr->buffer.fill += 256;
return 0;
}
int synth_1to1_fltst_avx(real *bandPtr_l, real *bandPtr_r, mpg123_handle *fr)
{
real *samples = (real *) (fr->buffer.data+fr->buffer.fill);
real *b0l, *b0r, **bufl, **bufr;
int bo1;
#ifndef NO_EQUALIZER
if(fr->have_eq_settings)
{
do_equalizer(bandPtr_l,0,fr->equalizer);
do_equalizer(bandPtr_r,1,fr->equalizer);
}
#endif
fr->bo--;
fr->bo &= 0xf;
bufl = fr->real_buffs[0];
bufr = fr->real_buffs[1];
if(fr->bo & 0x1)
{
b0l = bufl[0];
b0r = bufr[0];
bo1 = fr->bo;
dct64_real_avx(bufl[1]+((fr->bo+1)&0xf),bufl[0]+fr->bo,bandPtr_l);
dct64_real_avx(bufr[1]+((fr->bo+1)&0xf),bufr[0]+fr->bo,bandPtr_r);
}
else
{
b0l = bufl[1];
b0r = bufr[1];
bo1 = fr->bo+1;
dct64_real_avx(bufl[0]+fr->bo,bufl[1]+fr->bo+1,bandPtr_l);
dct64_real_avx(bufr[0]+fr->bo,bufr[1]+fr->bo+1,bandPtr_r);
}
synth_1to1_real_s_avx_asm(fr->decwin, b0l, b0r, samples, bo1);
fr->buffer.fill += 256;
return 0;
}
#endif
#if defined(OPT_SSE) || defined(OPT_SSE_VINTAGE)
/* Assembler routines. */
int synth_1to1_real_sse_asm(real *window, real *b0, real *samples, int bo1);
int synth_1to1_real_s_sse_asm(real *window, real *b0l, real *b0r, real *samples, int bo1);
void dct64_real_sse(real *out0, real *out1, real *samples);
/* Hull for C mpg123 API */
int synth_1to1_real_sse(real *bandPtr,int channel, mpg123_handle *fr, int final)
{
real *samples = (real *) (fr->buffer.data+fr->buffer.fill);
real *b0, **buf;
int bo1;
#ifndef NO_EQUALIZER
if(fr->have_eq_settings) do_equalizer(bandPtr,channel,fr->equalizer);
#endif
if(!channel)
{
fr->bo--;
fr->bo &= 0xf;
buf = fr->real_buffs[0];
}
else
{
samples++;
buf = fr->real_buffs[1];
}
if(fr->bo & 0x1)
{
b0 = buf[0];
bo1 = fr->bo;
dct64_real_sse(buf[1]+((fr->bo+1)&0xf),buf[0]+fr->bo,bandPtr);
}
else
{
b0 = buf[1];
bo1 = fr->bo+1;
dct64_real_sse(buf[0]+fr->bo,buf[1]+fr->bo+1,bandPtr);
}
synth_1to1_real_sse_asm(fr->decwin, b0, samples, bo1);
if(final) fr->buffer.fill += 256;
return 0;
}
int synth_1to1_real_stereo_sse(real *bandPtr_l, real *bandPtr_r, mpg123_handle *fr)
{
real *samples = (real *) (fr->buffer.data+fr->buffer.fill);
real *b0l, *b0r, **bufl, **bufr;
int bo1;
#ifndef NO_EQUALIZER
if(fr->have_eq_settings)
{
do_equalizer(bandPtr_l,0,fr->equalizer);
do_equalizer(bandPtr_r,1,fr->equalizer);
}
#endif
fr->bo--;
fr->bo &= 0xf;
bufl = fr->real_buffs[0];
bufr = fr->real_buffs[1];
if(fr->bo & 0x1)
{
b0l = bufl[0];
b0r = bufr[0];
bo1 = fr->bo;
dct64_real_sse(bufl[1]+((fr->bo+1)&0xf),bufl[0]+fr->bo,bandPtr_l);
dct64_real_sse(bufr[1]+((fr->bo+1)&0xf),bufr[0]+fr->bo,bandPtr_r);
}
else
{
b0l = bufl[1];
b0r = bufr[1];
bo1 = fr->bo+1;
dct64_real_sse(bufl[0]+fr->bo,bufl[1]+fr->bo+1,bandPtr_l);
dct64_real_sse(bufr[0]+fr->bo,bufr[1]+fr->bo+1,bandPtr_r);
}
synth_1to1_real_s_sse_asm(fr->decwin, b0l, b0r, samples, bo1);
fr->buffer.fill += 256;
return 0;
}
#endif
#ifdef OPT_NEON
/* Assembler routines. */
int synth_1to1_real_neon_asm(real *window, real *b0, real *samples, int bo1);
int synth_1to1_real_s_neon_asm(real *window, real *b0l, real *b0r, real *samples, int bo1);
void dct64_real_neon(real *out0, real *out1, real *samples);
/* Hull for C mpg123 API */
int synth_1to1_real_neon(real *bandPtr,int channel, mpg123_handle *fr, int final)
{
real *samples = (real *) (fr->buffer.data+fr->buffer.fill);
real *b0, **buf;
int bo1;
#ifndef NO_EQUALIZER
if(fr->have_eq_settings) do_equalizer(bandPtr,channel,fr->equalizer);
#endif
if(!channel)
{
fr->bo--;
fr->bo &= 0xf;
buf = fr->real_buffs[0];
}
else
{
samples++;
buf = fr->real_buffs[1];
}
if(fr->bo & 0x1)
{
b0 = buf[0];
bo1 = fr->bo;
dct64_real_neon(buf[1]+((fr->bo+1)&0xf),buf[0]+fr->bo,bandPtr);
}
else
{
b0 = buf[1];
bo1 = fr->bo+1;
dct64_real_neon(buf[0]+fr->bo,buf[1]+fr->bo+1,bandPtr);
}
synth_1to1_real_neon_asm(fr->decwin, b0, samples, bo1);
if(final) fr->buffer.fill += 256;
return 0;
}
int synth_1to1_real_stereo_neon(real *bandPtr_l, real *bandPtr_r, mpg123_handle *fr)
{
real *samples = (real *) (fr->buffer.data+fr->buffer.fill);
real *b0l, *b0r, **bufl, **bufr;
int bo1;
#ifndef NO_EQUALIZER
if(fr->have_eq_settings)
{
do_equalizer(bandPtr_l,0,fr->equalizer);
do_equalizer(bandPtr_r,1,fr->equalizer);
}
#endif
fr->bo--;
fr->bo &= 0xf;
bufl = fr->real_buffs[0];
bufr = fr->real_buffs[1];
if(fr->bo & 0x1)
{
b0l = bufl[0];
b0r = bufr[0];
bo1 = fr->bo;
dct64_real_neon(bufl[1]+((fr->bo+1)&0xf),bufl[0]+fr->bo,bandPtr_l);
dct64_real_neon(bufr[1]+((fr->bo+1)&0xf),bufr[0]+fr->bo,bandPtr_r);
}
else
{
b0l = bufl[1];
b0r = bufr[1];
bo1 = fr->bo+1;
dct64_real_neon(bufl[0]+fr->bo,bufl[1]+fr->bo+1,bandPtr_l);
dct64_real_neon(bufr[0]+fr->bo,bufr[1]+fr->bo+1,bandPtr_r);
}
synth_1to1_real_s_neon_asm(fr->decwin, b0l, b0r, samples, bo1);
fr->buffer.fill += 256;
return 0;
}
#endif
#ifdef OPT_NEON64
/* Assembler routines. */
int synth_1to1_real_neon64_asm(real *window, real *b0, real *samples, int bo1);
int synth_1to1_real_s_neon64_asm(real *window, real *b0l, real *b0r, real *samples, int bo1);
void dct64_real_neon64(real *out0, real *out1, real *samples);
/* Hull for C mpg123 API */
int synth_1to1_real_neon64(real *bandPtr,int channel, mpg123_handle *fr, int final)
{
real *samples = (real *) (fr->buffer.data+fr->buffer.fill);
real *b0, **buf;
int bo1;
#ifndef NO_EQUALIZER
if(fr->have_eq_settings) do_equalizer(bandPtr,channel,fr->equalizer);
#endif
if(!channel)
{
fr->bo--;
fr->bo &= 0xf;
buf = fr->real_buffs[0];
}
else
{
samples++;
buf = fr->real_buffs[1];
}
if(fr->bo & 0x1)
{
b0 = buf[0];
bo1 = fr->bo;
dct64_real_neon64(buf[1]+((fr->bo+1)&0xf),buf[0]+fr->bo,bandPtr);
}
else
{
b0 = buf[1];
bo1 = fr->bo+1;
dct64_real_neon64(buf[0]+fr->bo,buf[1]+fr->bo+1,bandPtr);
}
synth_1to1_real_neon64_asm(fr->decwin, b0, samples, bo1);
if(final) fr->buffer.fill += 256;
return 0;
}
int synth_1to1_fltst_neon64(real *bandPtr_l, real *bandPtr_r, mpg123_handle *fr)
{
real *samples = (real *) (fr->buffer.data+fr->buffer.fill);
real *b0l, *b0r, **bufl, **bufr;
int bo1;
#ifndef NO_EQUALIZER
if(fr->have_eq_settings)
{
do_equalizer(bandPtr_l,0,fr->equalizer);
do_equalizer(bandPtr_r,1,fr->equalizer);
}
#endif
fr->bo--;
fr->bo &= 0xf;
bufl = fr->real_buffs[0];
bufr = fr->real_buffs[1];
if(fr->bo & 0x1)
{
b0l = bufl[0];
b0r = bufr[0];
bo1 = fr->bo;
dct64_real_neon64(bufl[1]+((fr->bo+1)&0xf),bufl[0]+fr->bo,bandPtr_l);
dct64_real_neon64(bufr[1]+((fr->bo+1)&0xf),bufr[0]+fr->bo,bandPtr_r);
}
else
{
b0l = bufl[1];
b0r = bufr[1];
bo1 = fr->bo+1;
dct64_real_neon64(bufl[0]+fr->bo,bufl[1]+fr->bo+1,bandPtr_l);
dct64_real_neon64(bufr[0]+fr->bo,bufr[1]+fr->bo+1,bandPtr_r);
}
synth_1to1_real_s_neon64_asm(fr->decwin, b0l, b0r, samples, bo1);
fr->buffer.fill += 256;
return 0;
}
#endif
#ifndef NO_DOWNSAMPLE
/*
Part 3b: 2to1 synth. Only generic and i386.
*/
#define BLOCK 0x20 /* One decoding block is 32 samples. */
#define SYNTH_NAME synth_2to1_real
#include "synth.h"
#undef SYNTH_NAME
/* Mono-related synths; they wrap over _some_ synth_2to1_real (could be generic, could be i386). */
#define SYNTH_NAME fr->synths.plain[r_2to1][f_real]
#define MONO_NAME synth_2to1_real_mono
#define MONO2STEREO_NAME synth_2to1_real_m2s
#include "synth_mono.h"
#undef SYNTH_NAME
#undef MONO_NAME
#undef MONO2STEREO_NAME
#ifdef OPT_X86
#define NO_AUTOINCREMENT
#define SYNTH_NAME synth_2to1_real_i386
#include "synth.h"
#undef SYNTH_NAME
/* i386 uses the normal mono functions. */
#undef NO_AUTOINCREMENT
#endif
#undef BLOCK
/*
Part 3c: 4to1 synth. Only generic and i386.
*/
#define BLOCK 0x10 /* One decoding block is 16 samples. */
#define SYNTH_NAME synth_4to1_real
#include "synth.h"
#undef SYNTH_NAME
/* Mono-related synths; they wrap over _some_ synth_4to1_real (could be generic, could be i386). */
#define SYNTH_NAME fr->synths.plain[r_4to1][f_real]
#define MONO_NAME synth_4to1_real_mono
#define MONO2STEREO_NAME synth_4to1_real_m2s
#include "synth_mono.h"
#undef SYNTH_NAME
#undef MONO_NAME
#undef MONO2STEREO_NAME
#ifdef OPT_X86
#define NO_AUTOINCREMENT
#define SYNTH_NAME synth_4to1_real_i386
#include "synth.h"
#undef SYNTH_NAME
/* i386 uses the normal mono functions. */
#undef NO_AUTOINCREMENT
#endif
#undef BLOCK
#endif /* NO_DOWNSAMPLE */
#ifndef NO_NTOM
/*
Part 3d: ntom synth.
Same procedure as above... Just no extra play anymore, straight synth that may use an optimized dct64.
*/
/* These are all in one header, there's no flexibility to gain. */
#define SYNTH_NAME synth_ntom_real
#define MONO_NAME synth_ntom_real_mono
#define MONO2STEREO_NAME synth_ntom_real_m2s
#include "synth_ntom.h"
#undef SYNTH_NAME
#undef MONO_NAME
#undef MONO2STEREO_NAME
#endif
#undef SAMPLE_T
#undef WRITE_SAMPLE
#endif /* non-fixed type */