reactos/drivers/storage/floppy/floppy.c
Amine Khaldi c424146e2c Create a branch for cmake bringup.
svn path=/branches/cmake-bringup/; revision=48236
2010-07-24 18:52:44 +00:00

1205 lines
44 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* ReactOS Floppy Driver
* Copyright (C) 2004, Vizzini (vizzini@plasmic.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* PROJECT: ReactOS Floppy Driver
* FILE: floppy.c
* PURPOSE: Main floppy driver routines
* PROGRAMMER: Vizzini (vizzini@plasmic.com)
* REVISIONS:
* 15-Feb-2004 vizzini - Created
* NOTES:
* - This driver is only designed to work with ISA-bus floppy controllers. This
* won't work on PCI-based controllers or on anything else with level-sensitive
* interrupts without modification. I don't think these controllers exist.
*
* ---- General to-do items ----
* TODO: Figure out why CreateClose isn't called any more. Seems to correspond
* with the driver not being unloadable.
* TODO: Think about StopDpcQueued -- could be a race; too tired atm to tell
* TODO: Clean up drive start/stop responsibilities (currently a mess...)
*
* ---- Support for proper media detection ----
* TODO: Handle MFM flag
* TODO: Un-hardcode the data rate from various places
* TODO: Proper media detection (right now we're hardcoded to 1.44)
* TODO: Media detection based on sector 1
*/
#include <ntddk.h>
#include <debug.h>
#include "floppy.h"
#include "hardware.h"
#include "csqrtns.h"
#include "ioctl.h"
#include "readwrite.h"
/*
* Global controller info structures. Each controller gets one. Since the system
* will probably have only one, with four being a very unlikely maximum, a static
* global array is easiest to deal with.
*/
static CONTROLLER_INFO gControllerInfo[MAX_CONTROLLERS];
static ULONG gNumberOfControllers = 0;
/* Queue thread management */
static KEVENT QueueThreadTerminate;
static PVOID QueueThreadObject;
static VOID NTAPI MotorStopDpcFunc(PKDPC UnusedDpc,
PVOID DeferredContext,
PVOID SystemArgument1,
PVOID SystemArgument2)
/*
* FUNCTION: Stop the floppy motor
* ARGUMENTS:
* UnusedDpc: DPC object that's going off
* DeferredContext: called with DRIVE_INFO for drive to turn off
* SystemArgument1: unused
* SystemArgument2: unused
* NOTES:
* - Must set an event to let other threads know we're done turning off the motor
* - Called back at DISPATCH_LEVEL
*/
{
PCONTROLLER_INFO ControllerInfo = (PCONTROLLER_INFO)DeferredContext;
UNREFERENCED_PARAMETER(SystemArgument1);
UNREFERENCED_PARAMETER(SystemArgument2);
UNREFERENCED_PARAMETER(UnusedDpc);
ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
ASSERT(ControllerInfo);
TRACE_(FLOPPY, "MotorStopDpcFunc called\n");
HwTurnOffMotor(ControllerInfo);
ControllerInfo->StopDpcQueued = FALSE;
KeSetEvent(&ControllerInfo->MotorStoppedEvent, EVENT_INCREMENT, FALSE);
}
VOID NTAPI StartMotor(PDRIVE_INFO DriveInfo)
/*
* FUNCTION: Start the motor, taking into account proper handling of the timer race
* ARGUMENTS:
* DriveInfo: drive to start
* NOTES:
* - Never call HwTurnOnMotor() directly
* - This protocol manages a race between the cancel timer and the requesting thread.
* You wouldn't want to turn on the motor and then cancel the timer, because the
* cancel dpc might fire in the meantime, and that'd un-do what you just did. If you
* cancel the timer first, but KeCancelTimer returns false, the dpc is already running,
* so you have to wait until the dpc is completly done running, or else you'll race
* with the turner-offer
* - PAGED_CODE because we wait
*/
{
PAGED_CODE();
ASSERT(DriveInfo);
TRACE_(FLOPPY, "StartMotor called\n");
if(DriveInfo->ControllerInfo->StopDpcQueued && !KeCancelTimer(&DriveInfo->ControllerInfo->MotorTimer))
{
/* Motor turner-offer is already running; wait for it to finish */
INFO_(FLOPPY, "StartMotor: motor turner-offer is already running; waiting for it\n");
KeWaitForSingleObject(&DriveInfo->ControllerInfo->MotorStoppedEvent, Executive, KernelMode, FALSE, NULL);
INFO_(FLOPPY, "StartMotor: wait satisfied\n");
}
DriveInfo->ControllerInfo->StopDpcQueued = FALSE;
if(HwTurnOnMotor(DriveInfo) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "StartMotor(): warning: HwTurnOnMotor failed\n");
}
}
VOID NTAPI StopMotor(PCONTROLLER_INFO ControllerInfo)
/*
* FUNCTION: Stop all motors on the controller
* ARGUMENTS:
* DriveInfo: Drive to stop
* NOTES:
* - Never call HwTurnOffMotor() directly
* - This manages the timer cancelation race (see StartMotor for details).
* All we have to do is set up a timer.
*/
{
LARGE_INTEGER StopTime;
ASSERT(ControllerInfo);
TRACE_(FLOPPY, "StopMotor called\n");
/* one relative second, in 100-ns units */
StopTime.QuadPart = 10000000;
StopTime.QuadPart *= -1;
KeClearEvent(&ControllerInfo->MotorStoppedEvent);
KeSetTimer(&ControllerInfo->MotorTimer, StopTime, &ControllerInfo->MotorStopDpc);
ControllerInfo->StopDpcQueued = TRUE;
}
VOID NTAPI WaitForControllerInterrupt(PCONTROLLER_INFO ControllerInfo)
/*
* FUNCTION: Wait for the controller to interrupt, and then clear the event
* ARGUMENTS:
* ControllerInfo: Controller to wait for
* NOTES:
* - There is a small chance that an unexpected or spurious interrupt could
* be lost with this clear/wait/clear scheme used in this driver. This is
* deemed to be an acceptable risk due to the unlikeliness of the scenario,
* and the fact that it'll probably work fine next time.
* - PAGED_CODE because it waits
*/
{
PAGED_CODE();
ASSERT(ControllerInfo);
KeWaitForSingleObject(&ControllerInfo->SynchEvent, Executive, KernelMode, FALSE, NULL);
KeClearEvent(&ControllerInfo->SynchEvent);
}
static DRIVER_DISPATCH CreateClose;
static NTSTATUS NTAPI CreateClose(PDEVICE_OBJECT DeviceObject,
PIRP Irp)
/*
* FUNCTION: Dispatch function called for Create and Close IRPs
* ARGUMENTS:
* DeviceObject: DeviceObject that is the target of the IRP
* Irp: IRP to process
* RETURNS:
* STATUS_SUCCESS in all cases
* NOTES:
* - The Microsoft sample drivers tend to return FILE_OPENED in Information, so I do too.
* - No reason to fail the device open
* - No state to track, so this routine is easy
* - Can be called <= DISPATCH_LEVEL
*
* TODO: Figure out why this isn't getting called
*/
{
UNREFERENCED_PARAMETER(DeviceObject);
TRACE_(FLOPPY, "CreateClose called\n");
Irp->IoStatus.Status = STATUS_SUCCESS;
Irp->IoStatus.Information = FILE_OPENED;
IoCompleteRequest(Irp, IO_DISK_INCREMENT);
return STATUS_SUCCESS;
}
static NTSTATUS NTAPI Recalibrate(PDRIVE_INFO DriveInfo)
/*
* FUNCTION: Start the recalibration process
* ARGUMENTS:
* DriveInfo: Pointer to the driveinfo struct associated with the targeted drive
* RETURNS:
* STATUS_SUCCESS on successful starting of the process
* STATUS_IO_DEVICE_ERROR if it fails
* NOTES:
* - Sometimes you have to do two recalibrations, particularly if the disk has <80 tracks.
* - PAGED_CODE because we wait
*/
{
NTSTATUS Status;
ULONG i;
PAGED_CODE();
ASSERT(DriveInfo);
/* first turn on the motor */
/* Must stop after every start, prior to return */
StartMotor(DriveInfo);
/* set the data rate */
WARN_(FLOPPY, "FIXME: UN-HARDCODE DATA RATE\n");
if(HwSetDataRate(DriveInfo->ControllerInfo, 0) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "Recalibrate: HwSetDataRate failed\n");
StopMotor(DriveInfo->ControllerInfo);
return STATUS_IO_DEVICE_ERROR;
}
/* clear the event just in case the last call forgot */
KeClearEvent(&DriveInfo->ControllerInfo->SynchEvent);
/* sometimes you have to do this twice; we'll just do it twice all the time since
* we don't know if the people calling this Recalibrate routine expect a disk to
* even be in the drive, and if so, if that disk is formatted.
*/
for(i = 0; i < 2; i++)
{
/* Send the command */
Status = HwRecalibrate(DriveInfo);
if(Status != STATUS_SUCCESS)
{
WARN_(FLOPPY, "Recalibrate: HwRecalibrate returned error\n");
continue;
}
WaitForControllerInterrupt(DriveInfo->ControllerInfo);
/* Get the results */
Status = HwRecalibrateResult(DriveInfo->ControllerInfo);
if(Status != STATUS_SUCCESS)
{
WARN_(FLOPPY, "Recalibrate: HwRecalibrateResult returned error\n");
break;
}
}
KeClearEvent(&DriveInfo->ControllerInfo->SynchEvent);
/* Must stop after every start, prior to return */
StopMotor(DriveInfo->ControllerInfo);
return Status;
}
NTSTATUS NTAPI ResetChangeFlag(PDRIVE_INFO DriveInfo)
/*
* FUNCTION: Reset the drive's change flag (as reflected in the DIR)
* ARGUMENTS:
* DriveInfo: the drive to reset
* RETURNS:
* STATUS_SUCCESS if the changeline is cleared
* STATUS_NO_MEDIA_IN_DEVICE if the changeline cannot be cleared
* STATUS_IO_DEVICE_ERROR if the controller cannot be communicated with
* NOTES:
* - Change reset procedure: recalibrate, seek 1, seek 0
* - If the line is still set after that, there's clearly no disk in the
* drive, so we return STATUS_NO_MEDIA_IN_DEVICE
* - PAGED_CODE because we wait
*/
{
BOOLEAN DiskChanged;
PAGED_CODE();
ASSERT(DriveInfo);
TRACE_(FLOPPY, "ResetChangeFlag called\n");
/* Try to recalibrate. We don't care if it works. */
Recalibrate(DriveInfo);
/* clear spurious interrupts in prep for seeks */
KeClearEvent(&DriveInfo->ControllerInfo->SynchEvent);
/* must re-start the drive because Recalibrate() stops it */
StartMotor(DriveInfo);
/* Seek to 1 */
if(HwSeek(DriveInfo, 1) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "ResetChangeFlag(): HwSeek failed; returning STATUS_IO_DEVICE_ERROR\n");
StopMotor(DriveInfo->ControllerInfo);
return STATUS_IO_DEVICE_ERROR;
}
WaitForControllerInterrupt(DriveInfo->ControllerInfo);
if(HwSenseInterruptStatus(DriveInfo->ControllerInfo) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "ResetChangeFlag(): HwSenseInterruptStatus failed; bailing out\n");
StopMotor(DriveInfo->ControllerInfo);
return STATUS_IO_DEVICE_ERROR;
}
/* Seek back to 0 */
if(HwSeek(DriveInfo, 0) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "ResetChangeFlag(): HwSeek failed; returning STATUS_IO_DEVICE_ERROR\n");
StopMotor(DriveInfo->ControllerInfo);
return STATUS_IO_DEVICE_ERROR;
}
WaitForControllerInterrupt(DriveInfo->ControllerInfo);
if(HwSenseInterruptStatus(DriveInfo->ControllerInfo) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "ResetChangeFlag(): HwSenseInterruptStatus #2 failed; bailing\n");
StopMotor(DriveInfo->ControllerInfo);
return STATUS_IO_DEVICE_ERROR;
}
/* Check the change bit */
if(HwDiskChanged(DriveInfo, &DiskChanged) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "ResetChangeFlag(): HwDiskChanged failed; returning STATUS_IO_DEVICE_ERROR\n");
StopMotor(DriveInfo->ControllerInfo);
return STATUS_IO_DEVICE_ERROR;
}
StopMotor(DriveInfo->ControllerInfo);
/* if the change flag is still set, there's probably no media in the drive. */
if(DiskChanged)
return STATUS_NO_MEDIA_IN_DEVICE;
/* else we're done! */
return STATUS_SUCCESS;
}
static VOID NTAPI Unload(PDRIVER_OBJECT DriverObject)
/*
* FUNCTION: Unload the driver from memory
* ARGUMENTS:
* DriverObject - The driver that is being unloaded
*/
{
ULONG i,j;
PAGED_CODE();
UNREFERENCED_PARAMETER(DriverObject);
TRACE_(FLOPPY, "unloading\n");
KeSetEvent(&QueueThreadTerminate, 0, FALSE);
KeWaitForSingleObject(QueueThreadObject, Executive, KernelMode, FALSE, 0);
ObDereferenceObject(QueueThreadObject);
for(i = 0; i < gNumberOfControllers; i++)
{
if(!gControllerInfo[i].Initialized)
continue;
for(j = 0; j < gControllerInfo[i].NumberOfDrives; j++)
{
if(!gControllerInfo[i].DriveInfo[j].Initialized)
continue;
if(gControllerInfo[i].DriveInfo[j].DeviceObject)
{
UNICODE_STRING Link;
RtlInitUnicodeString(&Link, gControllerInfo[i].DriveInfo[j].SymLinkBuffer);
IoDeleteSymbolicLink(&Link);
RtlInitUnicodeString(&Link, gControllerInfo[i].DriveInfo[j].ArcPathBuffer);
IoDeassignArcName(&Link);
IoDeleteDevice(gControllerInfo[i].DriveInfo[j].DeviceObject);
}
}
IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
/* Power down the controller */
if(HwPowerOff(&gControllerInfo[i]) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "unload: warning: HwPowerOff failed\n");
}
}
}
static NTSTATUS NTAPI ConfigCallback(PVOID Context,
PUNICODE_STRING PathName,
INTERFACE_TYPE BusType,
ULONG BusNumber,
PKEY_VALUE_FULL_INFORMATION *BusInformation,
CONFIGURATION_TYPE ControllerType,
ULONG ControllerNumber,
PKEY_VALUE_FULL_INFORMATION *ControllerInformation,
CONFIGURATION_TYPE PeripheralType,
ULONG PeripheralNumber,
PKEY_VALUE_FULL_INFORMATION *PeripheralInformation)
/*
* FUNCTION: Callback to IoQueryDeviceDescription, which tells us about our controllers
* ARGUMENTS:
* Context: Unused
* PathName: Unused
* BusType: Type of the bus that our controller is on
* BusNumber: Number of the bus that our controller is on
* BusInformation: Unused
* ControllerType: Unused
* ControllerNumber: Number of the controller that we're adding
* ControllerInformation: Full configuration information for our controller
* PeripheralType: Unused
* PeripheralNumber: Unused
* PeripheralInformation: Full configuration information for each drive on our controller
* RETURNS:
* STATUS_SUCCESS in all cases
* NOTES:
* - The only documentation I've found about the contents of these structures is
* from the various Microsoft floppy samples and from the DDK headers. They're
* very vague, though, so I'm only mostly sure that this stuff is correct, as
* the MS samples do things completely differently than I have done them. Seems
* to work in my VMWare, though.
* - Basically, the function gets all of the information (port, dma, irq) about the
* controller, and then loops through all of the drives presented in PeripheralInformation.
* - Each controller has a CONTROLLER_INFO created for it, and each drive has a DRIVE_INFO.
* - Device objects are created for each drive (not controller), as that's the targeted
* device in the eyes of the rest of the OS. Each DRIVE_INFO points to a single CONTROLLER_INFO.
* - We only support up to four controllers in the whole system, each of which supports up to four
* drives.
*/
{
PKEY_VALUE_FULL_INFORMATION ControllerFullDescriptor = ControllerInformation[IoQueryDeviceConfigurationData];
PCM_FULL_RESOURCE_DESCRIPTOR ControllerResourceDescriptor = (PCM_FULL_RESOURCE_DESCRIPTOR)((PCHAR)ControllerFullDescriptor +
ControllerFullDescriptor->DataOffset);
PKEY_VALUE_FULL_INFORMATION PeripheralFullDescriptor = PeripheralInformation[IoQueryDeviceConfigurationData];
PCM_FULL_RESOURCE_DESCRIPTOR PeripheralResourceDescriptor = (PCM_FULL_RESOURCE_DESCRIPTOR)((PCHAR)PeripheralFullDescriptor +
PeripheralFullDescriptor->DataOffset);
PCM_PARTIAL_RESOURCE_DESCRIPTOR PartialDescriptor;
PCM_FLOPPY_DEVICE_DATA FloppyDeviceData;
UCHAR i;
PAGED_CODE();
UNREFERENCED_PARAMETER(PeripheralType);
UNREFERENCED_PARAMETER(PeripheralNumber);
UNREFERENCED_PARAMETER(BusInformation);
UNREFERENCED_PARAMETER(Context);
UNREFERENCED_PARAMETER(ControllerType);
UNREFERENCED_PARAMETER(PathName);
TRACE_(FLOPPY, "ConfigCallback called with ControllerNumber %d\n", ControllerNumber);
gControllerInfo[gNumberOfControllers].ControllerNumber = ControllerNumber;
gControllerInfo[gNumberOfControllers].InterfaceType = BusType;
gControllerInfo[gNumberOfControllers].BusNumber = BusNumber;
/* Get controller interrupt level/vector, dma channel, and port base */
for(i = 0; i < ControllerResourceDescriptor->PartialResourceList.Count; i++)
{
KeInitializeEvent(&gControllerInfo[gNumberOfControllers].SynchEvent, NotificationEvent, FALSE);
PartialDescriptor = &ControllerResourceDescriptor->PartialResourceList.PartialDescriptors[i];
if(PartialDescriptor->Type == CmResourceTypeInterrupt)
{
gControllerInfo[gNumberOfControllers].Level = PartialDescriptor->u.Interrupt.Level;
gControllerInfo[gNumberOfControllers].Vector = PartialDescriptor->u.Interrupt.Vector;
if(PartialDescriptor->Flags & CM_RESOURCE_INTERRUPT_LATCHED)
gControllerInfo[gNumberOfControllers].InterruptMode = Latched;
else
gControllerInfo[gNumberOfControllers].InterruptMode = LevelSensitive;
}
else if(PartialDescriptor->Type == CmResourceTypePort)
{
PHYSICAL_ADDRESS TranslatedAddress;
ULONG AddressSpace = 0x1; /* I/O Port Range */
if(!HalTranslateBusAddress(BusType, BusNumber, PartialDescriptor->u.Port.Start, &AddressSpace, &TranslatedAddress))
{
WARN_(FLOPPY, "HalTranslateBusAddress failed; returning\n");
return STATUS_IO_DEVICE_ERROR;
}
if(AddressSpace == 0)
gControllerInfo[gNumberOfControllers].BaseAddress = MmMapIoSpace(TranslatedAddress, FDC_PORT_BYTES, MmNonCached);
else
gControllerInfo[gNumberOfControllers].BaseAddress = (PUCHAR)(ULONG_PTR)TranslatedAddress.QuadPart;
}
else if(PartialDescriptor->Type == CmResourceTypeDma)
gControllerInfo[gNumberOfControllers].Dma = PartialDescriptor->u.Dma.Channel;
}
/* Start with 0 drives, then go looking */
gControllerInfo[gNumberOfControllers].NumberOfDrives = 0;
/* learn about drives attached to controller */
for(i = 0; i < PeripheralResourceDescriptor->PartialResourceList.Count; i++)
{
PDRIVE_INFO DriveInfo = &gControllerInfo[gNumberOfControllers].DriveInfo[i];
PartialDescriptor = &PeripheralResourceDescriptor->PartialResourceList.PartialDescriptors[i];
if(PartialDescriptor->Type != CmResourceTypeDeviceSpecific)
continue;
FloppyDeviceData = (PCM_FLOPPY_DEVICE_DATA)(PartialDescriptor + 1);
DriveInfo->ControllerInfo = &gControllerInfo[gNumberOfControllers];
DriveInfo->UnitNumber = i;
DriveInfo->FloppyDeviceData.MaxDensity = FloppyDeviceData->MaxDensity;
DriveInfo->FloppyDeviceData.MountDensity = FloppyDeviceData->MountDensity;
DriveInfo->FloppyDeviceData.StepRateHeadUnloadTime = FloppyDeviceData->StepRateHeadUnloadTime;
DriveInfo->FloppyDeviceData.HeadLoadTime = FloppyDeviceData->HeadLoadTime;
DriveInfo->FloppyDeviceData.MotorOffTime = FloppyDeviceData->MotorOffTime;
DriveInfo->FloppyDeviceData.SectorLengthCode = FloppyDeviceData->SectorLengthCode;
DriveInfo->FloppyDeviceData.SectorPerTrack = FloppyDeviceData->SectorPerTrack;
DriveInfo->FloppyDeviceData.ReadWriteGapLength = FloppyDeviceData->ReadWriteGapLength;
DriveInfo->FloppyDeviceData.FormatGapLength = FloppyDeviceData->FormatGapLength;
DriveInfo->FloppyDeviceData.FormatFillCharacter = FloppyDeviceData->FormatFillCharacter;
DriveInfo->FloppyDeviceData.HeadSettleTime = FloppyDeviceData->HeadSettleTime;
DriveInfo->FloppyDeviceData.MotorSettleTime = FloppyDeviceData->MotorSettleTime;
DriveInfo->FloppyDeviceData.MaximumTrackValue = FloppyDeviceData->MaximumTrackValue;
DriveInfo->FloppyDeviceData.DataTransferLength = FloppyDeviceData->DataTransferLength;
/* Once it's all set up, acknowledge its existance in the controller info object */
gControllerInfo[gNumberOfControllers].NumberOfDrives++;
}
gControllerInfo[gNumberOfControllers].Populated = TRUE;
gNumberOfControllers++;
return STATUS_SUCCESS;
}
static BOOLEAN NTAPI Isr(PKINTERRUPT Interrupt,
PVOID ServiceContext)
/*
* FUNCTION: Interrupt service routine for the controllers
* ARGUMENTS:
* Interrupt: Interrupt object representing the interrupt that occured
* ServiceContext: Pointer to the ControllerInfo object that caused the interrupt
* RETURNS:
* TRUE in all cases (see notes)
* NOTES:
* - We should always be the target of the interrupt, being an edge-triggered ISA interrupt, but
* this won't be the case with a level-sensitive system like PCI
* - Note that it probably doesn't matter if the interrupt isn't dismissed, as it's edge-triggered.
* It probably won't keep re-interrupting.
* - There are two different ways to dismiss a floppy interrupt. If the command has a result phase
* (see intel datasheet), you dismiss the interrupt by reading the first data byte. If it does
* not, you dismiss the interrupt by doing a Sense Interrupt command. Again, because it's edge-
* triggered, this is safe to not do here, as we can just wait for the DPC.
* - Either way, we don't want to do this here. The controller shouldn't interrupt again, so we'll
* schedule a DPC to take care of it.
* - This driver really cannot shrare interrupts, as I don't know how to conclusively say
* whether it was our controller that interrupted or not. I just have to assume that any time
* my ISR gets called, it was my board that called it. Dumb design, yes, but it goes back to
* the semantics of ISA buses. That, and I don't know much about ISA drivers. :-)
* UPDATE: The high bit of Status Register A seems to work on non-AT controllers.
* - Called at DIRQL
*/
{
PCONTROLLER_INFO ControllerInfo = (PCONTROLLER_INFO)ServiceContext;
UNREFERENCED_PARAMETER(Interrupt);
ASSERT(ControllerInfo);
TRACE_(FLOPPY, "ISR called\n");
/*
* Due to the stupidity of the drive/controller relationship on the floppy drive, only one device object
* can have an active interrupt pending. Due to the nature of these IRPs, though, there will only ever
* be one thread expecting an interrupt at a time, and furthermore, Interrupts (outside of spurious ones)
* won't ever happen unless a thread is expecting them. Therefore, all we have to do is signal an event
* and we're done. Queue a DPC and leave.
*/
KeInsertQueueDpc(&ControllerInfo->Dpc, NULL, NULL);
return TRUE;
}
VOID NTAPI DpcForIsr(PKDPC UnusedDpc,
PVOID Context,
PVOID SystemArgument1,
PVOID SystemArgument2)
/*
* FUNCTION: This DPC gets queued by every ISR. Does the real per-interrupt work.
* ARGUMENTS:
* UnusedDpc: Pointer to the DPC object that represents our function
* DeviceObject: Device that this DPC is running for
* Irp: Unused
* Context: Pointer to our ControllerInfo struct
* NOTES:
* - This function just kicks off whatever the SynchEvent is and returns. We depend on
* the thing that caused the drive to interrupt to handle the work of clearing the interrupt.
* This enables us to get back to PASSIVE_LEVEL and not hog system time on a really stupid,
* slow, screwed-up piece of hardare.
* - If nothing is waiting for us to set the event, the interrupt is effectively lost and will
* never be dismissed. I wonder if this will become a problem.
* - Called at DISPATCH_LEVEL
*/
{
PCONTROLLER_INFO ControllerInfo = (PCONTROLLER_INFO)Context;
UNREFERENCED_PARAMETER(UnusedDpc);
UNREFERENCED_PARAMETER(SystemArgument1);
UNREFERENCED_PARAMETER(SystemArgument2);
ASSERT(ControllerInfo);
TRACE_(FLOPPY, "DpcForIsr called\n");
KeSetEvent(&ControllerInfo->SynchEvent, EVENT_INCREMENT, FALSE);
}
static NTSTATUS NTAPI InitController(PCONTROLLER_INFO ControllerInfo)
/*
* FUNCTION: Initialize a newly-found controller
* ARGUMENTS:
* ControllerInfo: pointer to the controller to be initialized
* RETURNS:
* STATUS_SUCCESS if the controller is successfully initialized
* STATUS_IO_DEVICE_ERROR otherwise
*/
{
int i;
UCHAR HeadLoadTime;
UCHAR HeadUnloadTime;
UCHAR StepRateTime;
PAGED_CODE();
ASSERT(ControllerInfo);
TRACE_(FLOPPY, "InitController called with Controller 0x%p\n", ControllerInfo);
KeClearEvent(&ControllerInfo->SynchEvent);
INFO_(FLOPPY, "InitController: resetting the controller\n");
/* Reset the controller */
if(HwReset(ControllerInfo) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "InitController: unable to reset controller\n");
return STATUS_IO_DEVICE_ERROR;
}
/* All controllers should support this so
* if we get something strange back then we
* know that this isn't a floppy controller
*/
if (HwGetVersion(ControllerInfo) <= 0)
{
WARN_(FLOPPY, "InitController: unable to contact controller\n");
return STATUS_NO_SUCH_DEVICE;
}
/* Reset the controller to avoid interrupt garbage on certain controllers */
if(HwReset(ControllerInfo) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "InitController: unable to reset controller #2\n");
return STATUS_IO_DEVICE_ERROR;
}
INFO_(FLOPPY, "InitController: setting data rate\n");
/* Set data rate */
if(HwSetDataRate(ControllerInfo, DRSR_DSEL_500KBPS) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "InitController: unable to set data rate\n");
return STATUS_IO_DEVICE_ERROR;
}
INFO_(FLOPPY, "InitController: waiting for initial interrupt\n");
/* Wait for an interrupt */
WaitForControllerInterrupt(ControllerInfo);
/* Reset means you have to clear each of the four interrupts (one per drive) */
for(i = 0; i < MAX_DRIVES_PER_CONTROLLER; i++)
{
INFO_(FLOPPY, "InitController: Sensing interrupt %d\n", i);
if(HwSenseInterruptStatus(ControllerInfo) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "InitController: Unable to clear interrupt 0x%x\n", i);
return STATUS_IO_DEVICE_ERROR;
}
}
INFO_(FLOPPY, "InitController: done sensing interrupts\n");
/* Next, see if we have the right version to do implied seek */
if(HwGetVersion(ControllerInfo) == VERSION_ENHANCED)
{
/* If so, set that up -- all defaults below except first TRUE for EIS */
if(HwConfigure(ControllerInfo, TRUE, TRUE, FALSE, 0, 0) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "InitController: unable to set up implied seek\n");
ControllerInfo->ImpliedSeeks = FALSE;
}
else
{
INFO_(FLOPPY, "InitController: implied seeks set!\n");
ControllerInfo->ImpliedSeeks = TRUE;
}
/*
* FIXME: Figure out the answer to the below
*
* I must admit that I'm really confused about the Model 30 issue. At least one
* important bit (the disk change bit in the DIR) is flipped if this is a Model 30
* controller. However, at least one other floppy driver believes that there are only
* two computers that are guaranteed to have a Model 30 controller:
* - IBM Thinkpad 750
* - IBM PS2e
*
* ...and another driver only lists a config option for "thinkpad", that flips
* the change line. A third driver doesn't mention the Model 30 issue at all.
*
* What I can't tell is whether or not the average, run-of-the-mill computer now has
* a Model 30 controller. For the time being, I'm going to wire this to FALSE,
* and just not support the computers mentioned above, while I try to figure out
* how ubiquitous these newfangled 30 thingies are.
*/
//ControllerInfo->Model30 = TRUE;
ControllerInfo->Model30 = FALSE;
}
else
{
INFO_(FLOPPY, "InitController: enhanced version not supported; disabling implied seeks\n");
ControllerInfo->ImpliedSeeks = FALSE;
ControllerInfo->Model30 = FALSE;
}
/* Specify */
WARN_(FLOPPY, "FIXME: Figure out speed\n");
HeadLoadTime = SPECIFY_HLT_500K;
HeadUnloadTime = SPECIFY_HUT_500K;
StepRateTime = SPECIFY_SRT_500K;
INFO_(FLOPPY, "InitController: issuing specify command to controller\n");
/* Don't disable DMA --> enable dma (dumb & confusing) */
if(HwSpecify(ControllerInfo, HeadLoadTime, HeadUnloadTime, StepRateTime, FALSE) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "InitController: unable to specify options\n");
return STATUS_IO_DEVICE_ERROR;
}
/* Init the stop stuff */
KeInitializeDpc(&ControllerInfo->MotorStopDpc, MotorStopDpcFunc, ControllerInfo);
KeInitializeTimer(&ControllerInfo->MotorTimer);
KeInitializeEvent(&ControllerInfo->MotorStoppedEvent, NotificationEvent, FALSE);
ControllerInfo->StopDpcQueued = FALSE;
/*
* Recalibrate each drive on the controller (depends on StartMotor, which depends on the timer stuff above)
* We don't even know if there is a disk in the drive, so this may not work, but that's OK.
*/
for(i = 0; i < ControllerInfo->NumberOfDrives; i++)
{
INFO_(FLOPPY, "InitController: recalibrating drive 0x%x on controller 0x%p\n", i, ControllerInfo);
Recalibrate(&ControllerInfo->DriveInfo[i]);
}
INFO_(FLOPPY, "InitController: done initializing; returning STATUS_SUCCESS\n");
return STATUS_SUCCESS;
}
static BOOLEAN NTAPI AddControllers(PDRIVER_OBJECT DriverObject)
/*
* FUNCTION: Called on initialization to find our controllers and build device and controller objects for them
* ARGUMENTS:
* DriverObject: Our driver's DriverObject (so we can create devices against it)
* RETURNS:
* FALSE if we can't allocate a device, adapter, or interrupt object, or if we fail to find any controllers
* TRUE otherwise (i.e. we have at least one fully-configured controller)
* NOTES:
* - Currently we only support ISA buses.
* - BUG: Windows 2000 seems to clobber the response from the IoQueryDeviceDescription callback, so now we
* just test a boolean value in the first object to see if it was completely populated. The same value
* is tested for each controller before we build device objects for it.
* TODO:
* - Report resource usage to the HAL
*/
{
INTERFACE_TYPE InterfaceType = Isa;
CONFIGURATION_TYPE ControllerType = DiskController;
CONFIGURATION_TYPE PeripheralType = FloppyDiskPeripheral;
KAFFINITY Affinity;
DEVICE_DESCRIPTION DeviceDescription;
UCHAR i;
UCHAR j;
PAGED_CODE();
/* Find our controllers on all ISA buses */
IoQueryDeviceDescription(&InterfaceType, 0, &ControllerType, 0, &PeripheralType, 0, ConfigCallback, 0);
/*
* w2k breaks the return val from ConfigCallback, so we have to hack around it, rather than just
* looking for a return value from ConfigCallback. We expect at least one controller.
*/
if(!gControllerInfo[0].Populated)
{
WARN_(FLOPPY, "AddControllers: failed to get controller info from registry\n");
return FALSE;
}
/* Now that we have a controller, set it up with the system */
for(i = 0; i < gNumberOfControllers; i++)
{
/* 0: Report resource usage to the kernel, to make sure they aren't assigned to anyone else */
/* FIXME: Implement me. */
/* 1: Set up interrupt */
gControllerInfo[i].MappedVector = HalGetInterruptVector(gControllerInfo[i].InterfaceType, gControllerInfo[i].BusNumber,
gControllerInfo[i].Level, gControllerInfo[i].Vector,
&gControllerInfo[i].MappedLevel, &Affinity);
/* Must set up the DPC before we connect the interrupt */
KeInitializeDpc(&gControllerInfo[i].Dpc, DpcForIsr, &gControllerInfo[i]);
INFO_(FLOPPY, "Connecting interrupt %d to controller%d (object 0x%p)\n", gControllerInfo[i].MappedVector,
i, &gControllerInfo[i]);
/* NOTE: We cannot share our interrupt, even on level-triggered buses. See Isr() for details. */
if(IoConnectInterrupt(&gControllerInfo[i].InterruptObject, Isr, &gControllerInfo[i], 0, gControllerInfo[i].MappedVector,
gControllerInfo[i].MappedLevel, gControllerInfo[i].MappedLevel, gControllerInfo[i].InterruptMode,
FALSE, Affinity, 0) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "AddControllers: unable to connect interrupt\n");
continue;
}
/* 2: Set up DMA */
memset(&DeviceDescription, 0, sizeof(DeviceDescription));
DeviceDescription.Version = DEVICE_DESCRIPTION_VERSION;
DeviceDescription.DmaChannel = gControllerInfo[i].Dma;
DeviceDescription.InterfaceType = gControllerInfo[i].InterfaceType;
DeviceDescription.BusNumber = gControllerInfo[i].BusNumber;
DeviceDescription.MaximumLength = 2*18*512; /* based on a 1.44MB floppy */
/* DMA 0,1,2,3 are 8-bit; 4,5,6,7 are 16-bit (4 is chain i think) */
DeviceDescription.DmaWidth = gControllerInfo[i].Dma > 3 ? Width16Bits: Width8Bits;
gControllerInfo[i].AdapterObject = HalGetAdapter(&DeviceDescription, &gControllerInfo[i].MapRegisters);
if(!gControllerInfo[i].AdapterObject)
{
WARN_(FLOPPY, "AddControllers: unable to allocate an adapter object\n");
IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
continue;
}
/* 2b: Initialize the new controller */
if(InitController(&gControllerInfo[i]) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "AddControllers(): Unable to set up controller %d - initialization failed\n", i);
IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
continue;
}
/* 2c: Set the controller's initlized flag so we know to release stuff in Unload */
gControllerInfo[i].Initialized = TRUE;
/* 3: per-drive setup */
for(j = 0; j < gControllerInfo[i].NumberOfDrives; j++)
{
WCHAR DeviceNameBuf[MAX_DEVICE_NAME];
UNICODE_STRING DeviceName;
UNICODE_STRING LinkName;
UNICODE_STRING ArcPath;
UCHAR DriveNumber;
INFO_(FLOPPY, "AddControllers(): Configuring drive %d on controller %d\n", i, j);
/*
* 3a: create a device object for the drive
* Controllers and drives are 0-based, so the combos are:
* 0: 0,0
* 1: 0,1
* 2: 0,2
* 3: 0,3
* 4: 1,0
* 5: 1,1
* ...
* 14: 3,2
* 15: 3,3
*/
DriveNumber = (UCHAR)(i*4 + j); /* loss of precision is OK; there are only 16 of 'em */
RtlZeroMemory(&DeviceNameBuf, MAX_DEVICE_NAME * sizeof(WCHAR));
swprintf(DeviceNameBuf, L"\\Device\\Floppy%d", DriveNumber);
RtlInitUnicodeString(&DeviceName, DeviceNameBuf);
if(IoCreateDevice(DriverObject, sizeof(PVOID), &DeviceName,
FILE_DEVICE_DISK, FILE_REMOVABLE_MEDIA | FILE_FLOPPY_DISKETTE, FALSE,
&gControllerInfo[i].DriveInfo[j].DeviceObject) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "AddControllers: unable to register a Device object\n");
IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
continue; /* continue on to next drive */
}
INFO_(FLOPPY, "AddControllers: New device: %S (0x%p)\n", DeviceNameBuf, gControllerInfo[i].DriveInfo[j].DeviceObject);
/* 3b.5: Create an ARC path in case we're booting from this drive */
swprintf(gControllerInfo[i].DriveInfo[j].ArcPathBuffer,
L"\\ArcName\\multi(%d)disk(%d)fdisk(%d)", gControllerInfo[i].BusNumber, i, DriveNumber);
RtlInitUnicodeString(&ArcPath, gControllerInfo[i].DriveInfo[j].ArcPathBuffer);
IoAssignArcName(&ArcPath, &DeviceName);
/* 3c: Set flags up */
gControllerInfo[i].DriveInfo[j].DeviceObject->Flags |= DO_DIRECT_IO;
/* 3d: Create a symlink */
swprintf(gControllerInfo[i].DriveInfo[j].SymLinkBuffer, L"\\DosDevices\\%c:", DriveNumber + 'A');
RtlInitUnicodeString(&LinkName, gControllerInfo[i].DriveInfo[j].SymLinkBuffer);
if(IoCreateSymbolicLink(&LinkName, &DeviceName) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "AddControllers: Unable to create a symlink for drive %d\n", DriveNumber);
IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
IoDeassignArcName(&ArcPath);
continue; /* continue to next drive */
}
/* 3e: Set up the DPC */
IoInitializeDpcRequest(gControllerInfo[i].DriveInfo[j].DeviceObject, (PIO_DPC_ROUTINE)DpcForIsr);
/* 3f: Point the device extension at our DriveInfo struct */
gControllerInfo[i].DriveInfo[j].DeviceObject->DeviceExtension = &gControllerInfo[i].DriveInfo[j];
/* 3g: neat comic strip */
/* 3h: set the initial media type to unknown */
memset(&gControllerInfo[i].DriveInfo[j].DiskGeometry, 0, sizeof(DISK_GEOMETRY));
gControllerInfo[i].DriveInfo[j].DiskGeometry.MediaType = Unknown;
/* 3i: Now that we're done, set the Initialized flag so we know to free this in Unload */
gControllerInfo[i].DriveInfo[j].Initialized = TRUE;
/* 3j: Clear the DO_DEVICE_INITIALIZING flag */
gControllerInfo[i].DriveInfo[j].DeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;
}
}
INFO_(FLOPPY, "AddControllers: --------------------------------------------> finished adding controllers\n");
return TRUE;
}
VOID NTAPI SignalMediaChanged(PDEVICE_OBJECT DeviceObject,
PIRP Irp)
/*
* FUNCTION: Process an IRP when the media has changed, and possibly notify the user
* ARGUMENTS:
* DeviceObject: DeviceObject associated with the IRP
* Irp: IRP that we're failing due to change
* NOTES:
* - This procedure is documented in the DDK by "Notifying the File System of Possible Media Changes",
* "IoSetHardErrorOrVerifyDevice", and by "Responding to Check-Verify Requests from the File System".
* - Callable at <= DISPATCH_LEVEL
*/
{
PDRIVE_INFO DriveInfo = DeviceObject->DeviceExtension;
TRACE_(FLOPPY, "SignalMediaChanged called\n");
DriveInfo->DiskChangeCount++;
/* If volume is not mounted, do NOT set verify and return STATUS_IO_DEVICE_ERROR */
if(!(DeviceObject->Vpb->Flags & VPB_MOUNTED))
{
Irp->IoStatus.Status = STATUS_IO_DEVICE_ERROR;
Irp->IoStatus.Information = 0;
return;
}
/* Notify the filesystem that it will need to verify the volume */
DeviceObject->Flags |= DO_VERIFY_VOLUME;
Irp->IoStatus.Status = STATUS_VERIFY_REQUIRED;
Irp->IoStatus.Information = 0;
/*
* If this is a user-based, threaded request, let the IO manager know to pop up a box asking
* the user to supply the correct media, but only if the error (which we just picked out above)
* is deemed by the IO manager to be "user induced". The reason we don't just unconditionally
* call IoSetHardError... is because MS might change the definition of "user induced" some day,
* and we don't want to have to remember to re-code this.
*/
if(Irp->Tail.Overlay.Thread && IoIsErrorUserInduced(Irp->IoStatus.Status))
IoSetHardErrorOrVerifyDevice(Irp, DeviceObject);
}
static VOID NTAPI QueueThread(PVOID Context)
/*
* FUNCTION: Thread that manages the queue and dispatches any queued requests
* ARGUMENTS:
* Context: unused
*/
{
PIRP Irp;
PIO_STACK_LOCATION Stack;
PDEVICE_OBJECT DeviceObject;
PVOID Objects[2];
PAGED_CODE();
UNREFERENCED_PARAMETER(Context);
Objects[0] = &QueueSemaphore;
Objects[1] = &QueueThreadTerminate;
for(;;)
{
KeWaitForMultipleObjects(2, Objects, WaitAny, Executive, KernelMode, FALSE, NULL, NULL);
if(KeReadStateEvent(&QueueThreadTerminate))
{
INFO_(FLOPPY, "QueueThread terminating\n");
return;
}
INFO_(FLOPPY, "QueueThread: servicing an IRP\n");
Irp = IoCsqRemoveNextIrp(&Csq, 0);
/* we won't get an irp if it was canceled */
if(!Irp)
{
INFO_(FLOPPY, "QueueThread: IRP queue empty\n");
continue;
}
DeviceObject = (PDEVICE_OBJECT)Irp->Tail.Overlay.DriverContext[0];
ASSERT(DeviceObject);
Stack = IoGetCurrentIrpStackLocation(Irp);
/* Decide what to do with the IRP */
switch(Stack->MajorFunction)
{
case IRP_MJ_READ:
case IRP_MJ_WRITE:
ReadWritePassive(DeviceObject->DeviceExtension, Irp);
break;
case IRP_MJ_DEVICE_CONTROL:
DeviceIoctlPassive(DeviceObject->DeviceExtension, Irp);
break;
default:
WARN_(FLOPPY, "QueueThread(): Unrecognized irp: mj: 0x%x\n", Stack->MajorFunction);
Irp->IoStatus.Status = STATUS_NOT_SUPPORTED;
Irp->IoStatus.Information = 0;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
}
}
}
NTSTATUS NTAPI DriverEntry(PDRIVER_OBJECT DriverObject,
PUNICODE_STRING RegistryPath)
/*
* FUNCTION: Entry-point for the driver
* ARGUMENTS:
* DriverObject: Our driver object
* RegistryPath: Unused
* RETURNS:
* STATUS_SUCCESS on successful initialization of at least one drive
* STATUS_NO_SUCH_DEVICE if we didn't find even one drive
* STATUS_UNSUCCESSFUL otherwise
*/
{
HANDLE ThreadHandle;
UNREFERENCED_PARAMETER(RegistryPath);
/*
* Set up dispatch routines
*/
DriverObject->MajorFunction[IRP_MJ_CREATE] = (PDRIVER_DISPATCH)CreateClose;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = (PDRIVER_DISPATCH)CreateClose;
DriverObject->MajorFunction[IRP_MJ_READ] = (PDRIVER_DISPATCH)ReadWrite;
DriverObject->MajorFunction[IRP_MJ_WRITE] = (PDRIVER_DISPATCH)ReadWrite;
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = (PDRIVER_DISPATCH)DeviceIoctl;
DriverObject->DriverUnload = Unload;
/*
* We depend on some zeroes in these structures. I know this is supposed to be
* initialized to 0 by the complier but this makes me feel beter.
*/
memset(&gControllerInfo, 0, sizeof(gControllerInfo));
/*
* Set up queue. This routine cannot fail (trust me, I wrote it).
*/
IoCsqInitialize(&Csq, CsqInsertIrp, CsqRemoveIrp, CsqPeekNextIrp,
CsqAcquireLock, CsqReleaseLock, CsqCompleteCanceledIrp);
/*
* ...and its lock
*/
KeInitializeSpinLock(&IrpQueueLock);
/*
* ...and the queue list itself
*/
InitializeListHead(&IrpQueue);
/*
* The queue is counted by a semaphore. The queue management thread
* blocks on this semaphore, so if requests come in faster than the queue
* thread can handle them, the semaphore count goes up.
*/
KeInitializeSemaphore(&QueueSemaphore, 0, 0x7fffffff);
/*
* Event to terminate that thread
*/
KeInitializeEvent(&QueueThreadTerminate, NotificationEvent, FALSE);
/*
* Create the queue processing thread. Save its handle in the global variable
* ThreadHandle so we can wait on its termination during Unload.
*/
if(PsCreateSystemThread(&ThreadHandle, THREAD_ALL_ACCESS, 0, 0, 0, QueueThread, 0) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "Unable to create system thread; failing init\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
if(ObReferenceObjectByHandle(ThreadHandle, STANDARD_RIGHTS_ALL, NULL, KernelMode, &QueueThreadObject, NULL) != STATUS_SUCCESS)
{
WARN_(FLOPPY, "Unable to reference returned thread handle; failing init\n");
return STATUS_UNSUCCESSFUL;
}
/*
* Close the handle, now that we have the object pointer and a reference of our own.
* The handle will certainly not be valid in the context of the caller next time we
* need it, as handles are process-specific.
*/
ZwClose(ThreadHandle);
/*
* Start the device discovery proces. Returns STATUS_SUCCESS if
* it finds even one drive attached to one controller.
*/
if(!AddControllers(DriverObject))
return STATUS_NO_SUCH_DEVICE;
return STATUS_SUCCESS;
}