reactos/drivers/bus/acpi/busmgr/bus.c

1826 lines
44 KiB
C

/*
* acpi_bus.c - ACPI Bus Driver ($Revision: 80 $)
*
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
/*
* Modified for ReactOS and latest ACPICA
* Copyright (C)2009 Samuel Serapion
*/
#include <precomp.h>
#define NDEBUG
#include <debug.h>
#define _COMPONENT ACPI_BUS_COMPONENT
ACPI_MODULE_NAME ("acpi_bus")
#define WALK_UP 0
#define WALK_DOWN 1
#define STRUCT_TO_INT(s) (*((int*)&s))
#define HAS_CHILDREN(d) ((d)->children.next != &((d)->children))
#define HAS_SIBLINGS(d) (((d)->parent) && ((d)->node.next != &(d)->parent->children))
#define NODE_TO_DEVICE(n) (list_entry(n, struct acpi_device, node))
int event_is_open;
extern void acpi_pic_sci_set_trigger(unsigned int irq, UINT16 trigger);
typedef int (*acpi_bus_walk_callback)(struct acpi_device*, int, void*);
struct acpi_device *acpi_root;
KSPIN_LOCK acpi_bus_event_lock;
LIST_HEAD(acpi_bus_event_list);
//DECLARE_WAIT_QUEUE_HEAD(acpi_bus_event_queue);
KEVENT AcpiEventQueue;
KDPC event_dpc;
int ProcessorCount, PowerDeviceCount, PowerButtonCount, FixedPowerButtonCount;
int FixedSleepButtonCount, SleepButtonCount, ThermalZoneCount;
static int
acpi_device_register (
struct acpi_device *device,
struct acpi_device *parent)
{
int result = 0;
if (!device)
return_VALUE(AE_BAD_PARAMETER);
return_VALUE(result);
}
static int
acpi_device_unregister (
struct acpi_device *device)
{
if (!device)
return_VALUE(AE_BAD_PARAMETER);
#ifdef CONFIG_LDM
put_device(&device->dev);
#endif /*CONFIG_LDM*/
return_VALUE(0);
}
/* --------------------------------------------------------------------------
Device Management
-------------------------------------------------------------------------- */
void
acpi_bus_data_handler (
ACPI_HANDLE handle,
void *context)
{
DPRINT1("acpi_bus_data_handler not implemented\n");
/* TBD */
return;
}
int
acpi_bus_get_device (
ACPI_HANDLE handle,
struct acpi_device **device)
{
ACPI_STATUS status = AE_OK;
if (!device)
return_VALUE(AE_BAD_PARAMETER);
/* TBD: Support fixed-feature devices */
status = AcpiGetData(handle, acpi_bus_data_handler, (void**)device);
if (ACPI_FAILURE(status) || !*device) {
DPRINT( "Error getting context for object [%p]\n",
handle);
return_VALUE(AE_NOT_FOUND);
}
return 0;
}
ACPI_STATUS acpi_bus_get_status_handle(ACPI_HANDLE handle,
unsigned long long *sta)
{
ACPI_STATUS status;
status = acpi_evaluate_integer(handle, "_STA", NULL, sta);
if (ACPI_SUCCESS(status))
return AE_OK;
if (status == AE_NOT_FOUND) {
*sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED |
ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING;
return AE_OK;
}
return status;
}
int
acpi_bus_get_status (
struct acpi_device *device)
{
ACPI_STATUS status;
unsigned long long sta;
status = acpi_bus_get_status_handle(device->handle, &sta);
if (ACPI_FAILURE(status))
return -1;
STRUCT_TO_INT(device->status) = (int) sta;
if (device->status.functional && !device->status.present) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] status [%08x]: "
"functional but not present;\n",
device->pnp.bus_id,
(UINT32) STRUCT_TO_INT(device->status)));
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] status [%08x]\n",
device->pnp.bus_id,
(UINT32) STRUCT_TO_INT(device->status)));
return 0;
}
void acpi_bus_private_data_handler(ACPI_HANDLE handle,
void *context)
{
return;
}
int acpi_bus_get_private_data(ACPI_HANDLE handle, void **data)
{
ACPI_STATUS status = AE_OK;
if (!*data)
return -1;
status = AcpiGetData(handle, acpi_bus_private_data_handler, data);
if (ACPI_FAILURE(status) || !*data) {
DPRINT("No context for object [%p]\n", handle);
return -1;
}
return 0;
}
/* --------------------------------------------------------------------------
Power Management
-------------------------------------------------------------------------- */
int
acpi_bus_get_power (
ACPI_HANDLE handle,
int *state)
{
int result = 0;
ACPI_STATUS status = 0;
struct acpi_device *device = NULL;
unsigned long long psc = 0;
result = acpi_bus_get_device(handle, &device);
if (result)
return_VALUE(result);
*state = ACPI_STATE_UNKNOWN;
if (!device->flags.power_manageable) {
/* TBD: Non-recursive algorithm for walking up hierarchy */
if (device->parent)
*state = device->parent->power.state;
else
*state = ACPI_STATE_D0;
}
else {
/*
* Get the device's power state either directly (via _PSC) or
* indirectly (via power resources).
*/
if (device->power.flags.explicit_get) {
status = acpi_evaluate_integer(device->handle, "_PSC",
NULL, &psc);
if (ACPI_FAILURE(status))
return_VALUE(AE_NOT_FOUND);
device->power.state = (int) psc;
}
else if (device->power.flags.power_resources) {
result = acpi_power_get_inferred_state(device);
if (result)
return_VALUE(result);
}
*state = device->power.state;
}
DPRINT("Device [%s] power state is D%d\n",
device->pnp.bus_id, device->power.state);
return_VALUE(0);
}
int
acpi_bus_set_power (
ACPI_HANDLE handle,
int state)
{
int result = 0;
ACPI_STATUS status = AE_OK;
struct acpi_device *device = NULL;
char object_name[5] = {'_','P','S','0'+state,'\0'};
result = acpi_bus_get_device(handle, &device);
if (result)
return_VALUE(result);
if ((state < ACPI_STATE_D0) || (state > ACPI_STATE_D3))
return_VALUE(AE_BAD_PARAMETER);
/* Make sure this is a valid target state */
if (!device->flags.power_manageable) {
DPRINT1( "Device is not power manageable\n");
return_VALUE(AE_NOT_FOUND);
}
/*
* Get device's current power state
*/
//if (!acpi_power_nocheck) {
/*
* Maybe the incorrect power state is returned on the bogus
* bios, which is different with the real power state.
* For example: the bios returns D0 state and the real power
* state is D3. OS expects to set the device to D0 state. In
* such case if OS uses the power state returned by the BIOS,
* the device can't be transisted to the correct power state.
* So if the acpi_power_nocheck is set, it is unnecessary to
* get the power state by calling acpi_bus_get_power.
*/
acpi_bus_get_power(device->handle, &device->power.state);
//}
if ((state == device->power.state) && !device->flags.force_power_state) {
DPRINT1("Device is already at D%d\n", state);
return 0;
}
if (!device->power.states[state].flags.valid) {
DPRINT1( "Device does not support D%d\n", state);
return AE_NOT_FOUND;
}
if (device->parent && (state < device->parent->power.state)) {
DPRINT1( "Cannot set device to a higher-powered state than parent\n");
return AE_NOT_FOUND;
}
/*
* Transition Power
* ----------------
* On transitions to a high-powered state we first apply power (via
* power resources) then evalute _PSx. Conversely for transitions to
* a lower-powered state.
*/
if (state < device->power.state) {
if (device->power.flags.power_resources) {
result = acpi_power_transition(device, state);
if (result)
goto end;
}
if (device->power.states[state].flags.explicit_set) {
status = AcpiEvaluateObject(device->handle,
object_name, NULL, NULL);
if (ACPI_FAILURE(status)) {
result = AE_NOT_FOUND;
goto end;
}
}
}
else {
if (device->power.states[state].flags.explicit_set) {
status = AcpiEvaluateObject(device->handle,
object_name, NULL, NULL);
if (ACPI_FAILURE(status)) {
result = AE_NOT_FOUND;
goto end;
}
}
if (device->power.flags.power_resources) {
result = acpi_power_transition(device, state);
if (result)
goto end;
}
}
end:
if (result)
DPRINT( "Error transitioning device [%s] to D%d\n",
device->pnp.bus_id, state);
else
DPRINT("Device [%s] transitioned to D%d\n",
device->pnp.bus_id, state);
return result;
}
BOOLEAN acpi_bus_power_manageable(ACPI_HANDLE handle)
{
struct acpi_device *device;
int result;
result = acpi_bus_get_device(handle, &device);
return result ? 0 : device->flags.power_manageable;
}
BOOLEAN acpi_bus_can_wakeup(ACPI_HANDLE handle)
{
struct acpi_device *device;
int result;
result = acpi_bus_get_device(handle, &device);
return result ? 0 : device->wakeup.flags.valid;
}
static int
acpi_bus_get_power_flags (
struct acpi_device *device)
{
ACPI_STATUS status = 0;
ACPI_HANDLE handle = 0;
UINT32 i = 0;
if (!device)
return AE_NOT_FOUND;
/*
* Power Management Flags
*/
status = AcpiGetHandle(device->handle, "_PSC", &handle);
if (ACPI_SUCCESS(status))
device->power.flags.explicit_get = 1;
status = AcpiGetHandle(device->handle, "_IRC", &handle);
if (ACPI_SUCCESS(status))
device->power.flags.inrush_current = 1;
status = AcpiGetHandle(device->handle, "_PRW", &handle);
if (ACPI_SUCCESS(status))
device->flags.wake_capable = 1;
/*
* Enumerate supported power management states
*/
for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3; i++) {
struct acpi_device_power_state *ps = &device->power.states[i];
char object_name[5] = {'_','P','R','0'+i,'\0'};
/* Evaluate "_PRx" to se if power resources are referenced */
status = acpi_evaluate_reference(device->handle, object_name, NULL,
&ps->resources);
if (ACPI_SUCCESS(status) && ps->resources.count) {
device->power.flags.power_resources = 1;
ps->flags.valid = 1;
}
/* Evaluate "_PSx" to see if we can do explicit sets */
object_name[2] = 'S';
status = AcpiGetHandle(device->handle, object_name, &handle);
if (ACPI_SUCCESS(status)) {
ps->flags.explicit_set = 1;
ps->flags.valid = 1;
}
/* State is valid if we have some power control */
if (ps->resources.count || ps->flags.explicit_set)
ps->flags.valid = 1;
ps->power = -1; /* Unknown - driver assigned */
ps->latency = -1; /* Unknown - driver assigned */
}
/* Set defaults for D0 and D3 states (always valid) */
device->power.states[ACPI_STATE_D0].flags.valid = 1;
device->power.states[ACPI_STATE_D0].power = 100;
device->power.states[ACPI_STATE_D3].flags.valid = 1;
device->power.states[ACPI_STATE_D3].power = 0;
device->power.state = ACPI_STATE_UNKNOWN;
return 0;
}
/* --------------------------------------------------------------------------
Performance Management
-------------------------------------------------------------------------- */
static int
acpi_bus_get_perf_flags (
struct acpi_device *device)
{
if (!device)
return AE_NOT_FOUND;
device->performance.state = ACPI_STATE_UNKNOWN;
return 0;
}
/* --------------------------------------------------------------------------
Event Management
-------------------------------------------------------------------------- */
void
NTAPI
acpi_bus_generate_event_dpc(PKDPC Dpc,
PVOID DeferredContext,
PVOID SystemArgument1,
PVOID SystemArgument2)
{
struct acpi_bus_event *event;
struct acpi_device *device = SystemArgument1;
ULONG_PTR TypeData = (ULONG_PTR)SystemArgument2;
KIRQL OldIrql;
event = ExAllocatePoolWithTag(NonPagedPool,sizeof(struct acpi_bus_event), 'epcA');
if (!event)
return;
sprintf(event->device_class, "%s", device->pnp.device_class);
sprintf(event->bus_id, "%s", device->pnp.bus_id);
event->type = (TypeData & 0xFF000000) >> 24;
event->data = (TypeData & 0x00FFFFFF);
KeAcquireSpinLock(&acpi_bus_event_lock, &OldIrql);
list_add_tail(&event->node, &acpi_bus_event_list);
KeReleaseSpinLock(&acpi_bus_event_lock, OldIrql);
KeSetEvent(&AcpiEventQueue, IO_NO_INCREMENT, FALSE);
}
int
acpi_bus_generate_event (
struct acpi_device *device,
UINT8 type,
int data)
{
ULONG_PTR TypeData = 0;
DPRINT("acpi_bus_generate_event\n");
if (!device)
return_VALUE(AE_BAD_PARAMETER);
/* drop event on the floor if no one's listening */
if (!event_is_open)
return_VALUE(0);
/* Data shouldn't even get near 24 bits */
ASSERT(!(data & 0xFF000000));
TypeData = data;
TypeData |= type << 24;
KeInsertQueueDpc(&event_dpc, device, (PVOID)TypeData);
return_VALUE(0);
}
int
acpi_bus_receive_event (
struct acpi_bus_event *event)
{
// unsigned long flags = 0;
struct acpi_bus_event *entry = NULL;
KIRQL OldIrql;
//DECLARE_WAITQUEUE(wait, current);
DPRINT("acpi_bus_receive_event\n");
if (!event)
return AE_BAD_PARAMETER;
event_is_open++;
KeWaitForSingleObject(&AcpiEventQueue,
Executive,
KernelMode,
FALSE,
NULL);
event_is_open--;
KeClearEvent(&AcpiEventQueue);
if (list_empty(&acpi_bus_event_list))
return_VALUE(AE_NOT_FOUND);
// spin_lock_irqsave(&acpi_bus_event_lock, flags);
KeAcquireSpinLock(&acpi_bus_event_lock, &OldIrql);
entry = list_entry(acpi_bus_event_list.next, struct acpi_bus_event, node);
if (entry)
list_del(&entry->node);
KeReleaseSpinLock(&acpi_bus_event_lock, OldIrql);
// spin_unlock_irqrestore(&acpi_bus_event_lock, flags);
if (!entry)
return_VALUE(AE_NOT_FOUND);
memcpy(event, entry, sizeof(struct acpi_bus_event));
ExFreePoolWithTag(entry, 'epcA');
return_VALUE(0);
}
/* --------------------------------------------------------------------------
Namespace Management
-------------------------------------------------------------------------- */
/**
* acpi_bus_walk
* -------------
* Used to walk the ACPI Bus's device namespace. Can walk down (depth-first)
* or up. Able to parse starting at any node in the namespace. Note that a
* callback return value of -249 will terminate the walk.
*
* @start: starting point
* callback: function to call for every device encountered while parsing
* direction: direction to parse (up or down)
* @data: context for this search operation
*/
static int
acpi_bus_walk (
struct acpi_device *start,
acpi_bus_walk_callback callback,
int direction,
void *data)
{
int result = 0;
int level = 0;
struct acpi_device *device = NULL;
if (!start || !callback)
return AE_BAD_PARAMETER;
device = start;
/*
* Parse Namespace
* ---------------
* Parse a given subtree (specified by start) in the given direction.
* Walking 'up' simply means that we execute the callback on leaf
* devices prior to their parents (useful for things like removing
* or powering down a subtree).
*/
while (device) {
if (direction == WALK_DOWN)
if (-249 == callback(device, level, data))
break;
/* Depth First */
if (HAS_CHILDREN(device)) {
device = NODE_TO_DEVICE(device->children.next);
++level;
continue;
}
if (direction == WALK_UP)
if (-249 == callback(device, level, data))
break;
/* Now Breadth */
if (HAS_SIBLINGS(device)) {
device = NODE_TO_DEVICE(device->node.next);
continue;
}
/* Scope Exhausted - Find Next */
while ((device = device->parent)) {
--level;
if (HAS_SIBLINGS(device)) {
device = NODE_TO_DEVICE(device->node.next);
break;
}
}
}
if ((direction == WALK_UP) && (result == 0))
callback(start, level, data);
return result;
}
/* --------------------------------------------------------------------------
Notification Handling
-------------------------------------------------------------------------- */
static void
acpi_bus_check_device (ACPI_HANDLE handle)
{
struct acpi_device *device;
ACPI_STATUS status = 0;
struct acpi_device_status old_status;
if (acpi_bus_get_device(handle, &device))
return;
if (!device)
return;
old_status = device->status;
/*
* Make sure this device's parent is present before we go about
* messing with the device.
*/
if (device->parent && !device->parent->status.present) {
device->status = device->parent->status;
return;
}
status = acpi_bus_get_status(device);
if (ACPI_FAILURE(status))
return;
if (STRUCT_TO_INT(old_status) == STRUCT_TO_INT(device->status))
return;
/*
* Device Insertion/Removal
*/
if ((device->status.present) && !(old_status.present)) {
DPRINT("Device insertion detected\n");
/* TBD: Handle device insertion */
}
else if (!(device->status.present) && (old_status.present)) {
DPRINT("Device removal detected\n");
/* TBD: Handle device removal */
}
}
static void
acpi_bus_check_scope (ACPI_HANDLE handle)
{
/* Status Change? */
acpi_bus_check_device(handle);
/*
* TBD: Enumerate child devices within this device's scope and
* run acpi_bus_check_device()'s on them.
*/
}
/**
* acpi_bus_notify
* ---------------
* Callback for all 'system-level' device notifications (values 0x00-0x7F).
*/
static void
acpi_bus_notify (
ACPI_HANDLE handle,
UINT32 type,
void *data)
{
struct acpi_device *device = NULL;
struct acpi_driver *driver;
DPRINT1("Notification %#02x to handle %p\n", type, handle);
//blocking_notifier_call_chain(&acpi_bus_notify_list,
// type, (void *)handle);
acpi_bus_get_device(handle, &device);
switch (type) {
case ACPI_NOTIFY_BUS_CHECK:
DPRINT("Received BUS CHECK notification for device [%s]\n",
device ? device->pnp.bus_id : "n/a");
acpi_bus_check_scope(handle);
/*
* TBD: We'll need to outsource certain events to non-ACPI
* drivers via the device manager (device.c).
*/
break;
case ACPI_NOTIFY_DEVICE_CHECK:
DPRINT("Received DEVICE CHECK notification for device [%s]\n",
device ? device->pnp.bus_id : "n/a");
acpi_bus_check_device(handle);
/*
* TBD: We'll need to outsource certain events to non-ACPI
* drivers via the device manager (device.c).
*/
break;
case ACPI_NOTIFY_DEVICE_WAKE:
DPRINT("Received DEVICE WAKE notification for device [%s]\n",
device ? device->pnp.bus_id : "n/a");
acpi_bus_check_device(handle);
/*
* TBD: We'll need to outsource certain events to non-ACPI
* drivers via the device manager (device.c).
*/
break;
case ACPI_NOTIFY_EJECT_REQUEST:
DPRINT1("Received EJECT REQUEST notification for device [%s]\n",
device ? device->pnp.bus_id : "n/a");
/* TBD */
break;
case ACPI_NOTIFY_DEVICE_CHECK_LIGHT:
DPRINT1("Received DEVICE CHECK LIGHT notification for device [%s]\n",
device ? device->pnp.bus_id : "n/a");
/* TBD: Exactly what does 'light' mean? */
break;
case ACPI_NOTIFY_FREQUENCY_MISMATCH:
DPRINT1("Received FREQUENCY MISMATCH notification for device [%s]\n",
device ? device->pnp.bus_id : "n/a");
/* TBD */
break;
case ACPI_NOTIFY_BUS_MODE_MISMATCH:
DPRINT1("Received BUS MODE MISMATCH notification for device [%s]\n",
device ? device->pnp.bus_id : "n/a");
/* TBD */
break;
case ACPI_NOTIFY_POWER_FAULT:
DPRINT1("Received POWER FAULT notification for device [%s]\n",
device ? device->pnp.bus_id : "n/a");
/* TBD */
break;
default:
DPRINT1("Received unknown/unsupported notification [%08x] for device [%s]\n",
type, device ? device->pnp.bus_id : "n/a");
break;
}
if (device) {
driver = device->driver;
if (driver && driver->ops.notify &&
(driver->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS))
driver->ops.notify(device, type);
}
}
/* --------------------------------------------------------------------------
Driver Management
-------------------------------------------------------------------------- */
static LIST_HEAD(acpi_bus_drivers);
//static DECLARE_MUTEX(acpi_bus_drivers_lock);
static FAST_MUTEX acpi_bus_drivers_lock;
/**
* acpi_bus_match
* --------------
* Checks the device's hardware (_HID) or compatible (_CID) ids to see if it
* matches the specified driver's criteria.
*/
static int
acpi_bus_match (
struct acpi_device *device,
struct acpi_driver *driver)
{
int error = 0;
if (device->flags.hardware_id)
if (strstr(driver->ids, device->pnp.hardware_id))
goto Done;
if (device->flags.compatible_ids) {
ACPI_PNP_DEVICE_ID_LIST *cid_list = device->pnp.cid_list;
int i;
/* compare multiple _CID entries against driver ids */
for (i = 0; i < cid_list->Count; i++)
{
if (strstr(driver->ids, cid_list->Ids[i].String))
goto Done;
}
}
error = -2;
Done:
return error;
}
/**
* acpi_bus_driver_init
* --------------------
* Used to initialize a device via its device driver. Called whenever a
* driver is bound to a device. Invokes the driver's add() and start() ops.
*/
static int
acpi_bus_driver_init (
struct acpi_device *device,
struct acpi_driver *driver)
{
int result = 0;
if (!device || !driver)
return_VALUE(AE_BAD_PARAMETER);
if (!driver->ops.add)
return_VALUE(-38);
result = driver->ops.add(device);
if (result) {
device->driver = NULL;
//acpi_driver_data(device) = NULL;
return_VALUE(result);
}
device->driver = driver;
/*
* TBD - Configuration Management: Assign resources to device based
* upon possible configuration and currently allocated resources.
*/
if (driver->ops.start) {
result = driver->ops.start(device);
if (result && driver->ops.remove)
driver->ops.remove(device, ACPI_BUS_REMOVAL_NORMAL);
return_VALUE(result);
}
DPRINT("Driver successfully bound to device\n");
if (driver->ops.scan) {
driver->ops.scan(device);
}
return_VALUE(0);
}
/**
* acpi_bus_attach
* -------------
* Callback for acpi_bus_walk() used to find devices that match a specific
* driver's criteria and then attach the driver.
*/
static int
acpi_bus_attach (
struct acpi_device *device,
int level,
void *data)
{
int result = 0;
struct acpi_driver *driver = NULL;
if (!device || !data)
return_VALUE(AE_BAD_PARAMETER);
driver = (struct acpi_driver *) data;
if (device->driver)
return_VALUE(-9);
if (!device->status.present)
return_VALUE(AE_NOT_FOUND);
result = acpi_bus_match(device, driver);
if (result)
return_VALUE(result);
DPRINT("Found driver [%s] for device [%s]\n",
driver->name, device->pnp.bus_id);
result = acpi_bus_driver_init(device, driver);
if (result)
return_VALUE(result);
down(&acpi_bus_drivers_lock);
++driver->references;
up(&acpi_bus_drivers_lock);
return_VALUE(0);
}
/**
* acpi_bus_unattach
* -----------------
* Callback for acpi_bus_walk() used to find devices that match a specific
* driver's criteria and unattach the driver.
*/
static int
acpi_bus_unattach (
struct acpi_device *device,
int level,
void *data)
{
int result = 0;
struct acpi_driver *driver = (struct acpi_driver *) data;
if (!device || !driver)
return_VALUE(AE_BAD_PARAMETER);
if (device->driver != driver)
return_VALUE(-6);
if (!driver->ops.remove)
return_VALUE(-23);
result = driver->ops.remove(device, ACPI_BUS_REMOVAL_NORMAL);
if (result)
return_VALUE(result);
device->driver = NULL;
acpi_driver_data(device) = NULL;
down(&acpi_bus_drivers_lock);
driver->references--;
up(&acpi_bus_drivers_lock);
return_VALUE(0);
}
/**
* acpi_bus_find_driver
* --------------------
* Parses the list of registered drivers looking for a driver applicable for
* the specified device.
*/
static int
acpi_bus_find_driver (
struct acpi_device *device)
{
int result = AE_NOT_FOUND;
struct list_head *entry = NULL;
struct acpi_driver *driver = NULL;
if (!device || device->driver)
return_VALUE(AE_BAD_PARAMETER);
down(&acpi_bus_drivers_lock);
list_for_each(entry, &acpi_bus_drivers) {
driver = list_entry(entry, struct acpi_driver, node);
if (acpi_bus_match(device, driver))
continue;
result = acpi_bus_driver_init(device, driver);
if (!result)
++driver->references;
break;
}
up(&acpi_bus_drivers_lock);
return_VALUE(result);
}
/**
* acpi_bus_register_driver
* ------------------------
* Registers a driver with the ACPI bus. Searches the namespace for all
* devices that match the driver's criteria and binds.
*/
int
acpi_bus_register_driver (
struct acpi_driver *driver)
{
if (!driver)
return_VALUE(AE_BAD_PARAMETER);
//if (acpi_disabled)
// return_VALUE(AE_NOT_FOUND);
down(&acpi_bus_drivers_lock);
list_add_tail(&driver->node, &acpi_bus_drivers);
up(&acpi_bus_drivers_lock);
acpi_bus_walk(acpi_root, acpi_bus_attach,
WALK_DOWN, driver);
return_VALUE(driver->references);
}
/**
* acpi_bus_unregister_driver
* --------------------------
* Unregisters a driver with the ACPI bus. Searches the namespace for all
* devices that match the driver's criteria and unbinds.
*/
void
acpi_bus_unregister_driver (
struct acpi_driver *driver)
{
if (!driver)
return;
acpi_bus_walk(acpi_root, acpi_bus_unattach, WALK_UP, driver);
if (driver->references)
return;
down(&acpi_bus_drivers_lock);
list_del(&driver->node);
up(&acpi_bus_drivers_lock);
return;
}
/* --------------------------------------------------------------------------
Device Enumeration
-------------------------------------------------------------------------- */
static int
acpi_bus_get_flags (
struct acpi_device *device)
{
ACPI_STATUS status = AE_OK;
ACPI_HANDLE temp = NULL;
/* Presence of _STA indicates 'dynamic_status' */
status = AcpiGetHandle(device->handle, "_STA", &temp);
if (ACPI_SUCCESS(status))
device->flags.dynamic_status = 1;
/* Presence of _CID indicates 'compatible_ids' */
status = AcpiGetHandle(device->handle, "_CID", &temp);
if (ACPI_SUCCESS(status))
device->flags.compatible_ids = 1;
/* Presence of _RMV indicates 'removable' */
status = AcpiGetHandle(device->handle, "_RMV", &temp);
if (ACPI_SUCCESS(status))
device->flags.removable = 1;
/* Presence of _EJD|_EJ0 indicates 'ejectable' */
status = AcpiGetHandle(device->handle, "_EJD", &temp);
if (ACPI_SUCCESS(status))
device->flags.ejectable = 1;
else {
status = AcpiGetHandle(device->handle, "_EJ0", &temp);
if (ACPI_SUCCESS(status))
device->flags.ejectable = 1;
}
/* Presence of _LCK indicates 'lockable' */
status = AcpiGetHandle(device->handle, "_LCK", &temp);
if (ACPI_SUCCESS(status))
device->flags.lockable = 1;
/* Presence of _PS0|_PR0 indicates 'power manageable' */
status = AcpiGetHandle(device->handle, "_PS0", &temp);
if (ACPI_FAILURE(status))
status = AcpiGetHandle(device->handle, "_PR0", &temp);
if (ACPI_SUCCESS(status))
device->flags.power_manageable = 1;
/* TBD: Performance management */
return_VALUE(0);
}
int
acpi_bus_add (
struct acpi_device **child,
struct acpi_device *parent,
ACPI_HANDLE handle,
int type)
{
int result = 0;
ACPI_STATUS status = AE_OK;
struct acpi_device *device = NULL;
char bus_id[5] = {'?',0};
ACPI_BUFFER buffer;
ACPI_DEVICE_INFO *info = NULL;
char *hid = NULL;
char *uid = NULL;
ACPI_PNP_DEVICE_ID_LIST *cid_list = NULL;
int i = 0;
acpi_unique_id static_uid_buffer;
if (!child)
return_VALUE(AE_BAD_PARAMETER);
device = ExAllocatePoolWithTag(NonPagedPool,sizeof(struct acpi_device), 'DpcA');
if (!device) {
DPRINT1("Memory allocation error\n");
return_VALUE(-12);
}
memset(device, 0, sizeof(struct acpi_device));
device->handle = handle;
device->parent = parent;
/*
* Bus ID
* ------
* The device's Bus ID is simply the object name.
* TBD: Shouldn't this value be unique (within the ACPI namespace)?
*/
switch (type) {
case ACPI_BUS_TYPE_SYSTEM:
snprintf(device->pnp.bus_id, sizeof(device->pnp.bus_id), "%s", "ACPI");
break;
case ACPI_BUS_TYPE_POWER_BUTTONF:
case ACPI_BUS_TYPE_POWER_BUTTON:
snprintf(device->pnp.bus_id, sizeof(device->pnp.bus_id), "%s", "PWRF");
break;
case ACPI_BUS_TYPE_SLEEP_BUTTONF:
case ACPI_BUS_TYPE_SLEEP_BUTTON:
snprintf(device->pnp.bus_id, sizeof(device->pnp.bus_id), "%s", "SLPF");
break;
default:
buffer.Length = sizeof(bus_id);
buffer.Pointer = bus_id;
AcpiGetName(handle, ACPI_SINGLE_NAME, &buffer);
/* Clean up trailing underscores (if any) */
for (i = 3; i > 1; i--) {
if (bus_id[i] == '_')
bus_id[i] = '\0';
else
break;
}
snprintf(device->pnp.bus_id, sizeof(device->pnp.bus_id), "%s", bus_id);
buffer.Pointer = NULL;
break;
}
/*
* Flags
* -----
* Get prior to calling acpi_bus_get_status() so we know whether
* or not _STA is present. Note that we only look for object
* handles -- cannot evaluate objects until we know the device is
* present and properly initialized.
*/
result = acpi_bus_get_flags(device);
if (result)
goto end;
/*
* Status
* ------
* See if the device is present. We always assume that non-Device()
* objects (e.g. thermal zones, power resources, processors, etc.) are
* present, functioning, etc. (at least when parent object is present).
* Note that _STA has a different meaning for some objects (e.g.
* power resources) so we need to be careful how we use it.
*/
switch (type) {
case ACPI_BUS_TYPE_DEVICE:
result = acpi_bus_get_status(device);
if (result)
goto end;
break;
default:
STRUCT_TO_INT(device->status) = 0x0F;
break;
}
if (!device->status.present) {
result = -2;
goto end;
}
/*
* Initialize Device
* -----------------
* TBD: Synch with Core's enumeration/initialization process.
*/
/*
* Hardware ID, Unique ID, & Bus Address
* -------------------------------------
*/
switch (type) {
case ACPI_BUS_TYPE_DEVICE:
status = AcpiGetObjectInfo(handle,&info);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Error reading device info\n"));
result = AE_NOT_FOUND;
info = NULL;
goto end;
}
if (info->Valid & ACPI_VALID_HID)
hid = info->HardwareId.String;
if (info->Valid & ACPI_VALID_UID)
uid = info->UniqueId.String;
if (info->Valid & ACPI_VALID_CID) {
cid_list = &info->CompatibleIdList;
device->pnp.cid_list = ExAllocatePoolWithTag(NonPagedPool,cid_list->ListSize, 'DpcA');
if (device->pnp.cid_list) {
char *p = (char *)&device->pnp.cid_list->Ids[cid_list->Count];
device->pnp.cid_list->Count = cid_list->Count;
device->pnp.cid_list->ListSize = cid_list->ListSize;
for (i = 0; i < cid_list->Count; i++) {
device->pnp.cid_list->Ids[i].Length = cid_list->Ids[i].Length;
device->pnp.cid_list->Ids[i].String = p;
ASSERT(p + cid_list->Ids[i].Length <= (char *)device->pnp.cid_list + cid_list->ListSize);
memcpy(device->pnp.cid_list->Ids[i].String,
cid_list->Ids[i].String, cid_list->Ids[i].Length);
p += cid_list->Ids[i].Length;
}
}
else
DPRINT("Memory allocation error\n");
}
if (info->Valid & ACPI_VALID_ADR) {
device->pnp.bus_address = info->Address;
device->flags.bus_address = 1;
}
break;
case ACPI_BUS_TYPE_POWER:
hid = ACPI_POWER_HID;
uid = static_uid_buffer;
snprintf(uid, sizeof(static_uid_buffer), "%d", (PowerDeviceCount++));
break;
case ACPI_BUS_TYPE_PROCESSOR:
hid = ACPI_PROCESSOR_HID;
uid = static_uid_buffer;
snprintf(uid, sizeof(static_uid_buffer), "_%d", (ProcessorCount++));
break;
case ACPI_BUS_TYPE_SYSTEM:
hid = ACPI_SYSTEM_HID;
break;
case ACPI_BUS_TYPE_THERMAL:
hid = ACPI_THERMAL_HID;
uid = static_uid_buffer;
snprintf(uid, sizeof(static_uid_buffer), "%d", (ThermalZoneCount++));
break;
case ACPI_BUS_TYPE_POWER_BUTTON:
hid = ACPI_BUTTON_HID_POWER;
uid = static_uid_buffer;
snprintf(uid, sizeof(static_uid_buffer), "%d", (PowerButtonCount++));
break;
case ACPI_BUS_TYPE_POWER_BUTTONF:
hid = ACPI_BUTTON_HID_POWERF;
uid = static_uid_buffer;
snprintf(uid, sizeof(static_uid_buffer), "%d", (FixedPowerButtonCount++));
break;
case ACPI_BUS_TYPE_SLEEP_BUTTON:
hid = ACPI_BUTTON_HID_SLEEP;
uid = static_uid_buffer;
snprintf(uid, sizeof(static_uid_buffer), "%d", (SleepButtonCount++));
break;
case ACPI_BUS_TYPE_SLEEP_BUTTONF:
hid = ACPI_BUTTON_HID_SLEEPF;
uid = static_uid_buffer;
snprintf(uid, sizeof(static_uid_buffer), "%d", (FixedSleepButtonCount++));
break;
}
/*
* \_SB
* ----
* Fix for the system root bus device -- the only root-level device.
*/
if (((ACPI_HANDLE)parent == ACPI_ROOT_OBJECT) && (type == ACPI_BUS_TYPE_DEVICE)) {
hid = ACPI_BUS_HID;
snprintf(device->pnp.device_name, sizeof(device->pnp.device_name), "%s", ACPI_BUS_DEVICE_NAME);
snprintf(device->pnp.device_class, sizeof(device->pnp.device_class), "%s", ACPI_BUS_CLASS);
}
if (hid) {
device->pnp.hardware_id = ExAllocatePoolWithTag(NonPagedPool, strlen(hid) + 1, 'DpcA');
if (device->pnp.hardware_id) {
snprintf(device->pnp.hardware_id, strlen(hid) + 1, "%s", hid);
device->flags.hardware_id = 1;
}
}
if (uid) {
snprintf(device->pnp.unique_id, sizeof(device->pnp.unique_id), "%s", uid);
device->flags.unique_id = 1;
}
/*
* If we called get_object_info, we now are finished with the buffer,
* so we can free it.
*/
//if (buffer.Pointer)
//AcpiOsFree(buffer.Pointer);
/*
* Power Management
* ----------------
*/
if (device->flags.power_manageable) {
result = acpi_bus_get_power_flags(device);
if (result)
goto end;
}
/*
* Performance Management
* ----------------------
*/
if (device->flags.performance_manageable) {
result = acpi_bus_get_perf_flags(device);
if (result)
goto end;
}
/*
* Context
* -------
* Attach this 'struct acpi_device' to the ACPI object. This makes
* resolutions from handle->device very efficient. Note that we need
* to be careful with fixed-feature devices as they all attach to the
* root object.
*/
switch (type) {
case ACPI_BUS_TYPE_POWER_BUTTON:
case ACPI_BUS_TYPE_POWER_BUTTONF:
case ACPI_BUS_TYPE_SLEEP_BUTTON:
case ACPI_BUS_TYPE_SLEEP_BUTTONF:
break;
default:
status = AcpiAttachData(device->handle,
acpi_bus_data_handler, device);
break;
}
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Error attaching device data\n"));
result = AE_NOT_FOUND;
goto end;
}
/*
* Linkage
* -------
* Link this device to its parent and siblings.
*/
INIT_LIST_HEAD(&device->children);
if (!device->parent)
INIT_LIST_HEAD(&device->node);
else
list_add_tail(&device->node, &device->parent->children);
/*
* Global Device Hierarchy:
* ------------------------
* Register this device with the global device hierarchy.
*/
acpi_device_register(device, parent);
/*
* Bind _ADR-Based Devices
* -----------------------
* If there's a a bus address (_ADR) then we utilize the parent's
* 'bind' function (if exists) to bind the ACPI- and natively-
* enumerated device representations.
*/
if (device->flags.bus_address) {
if (device->parent && device->parent->ops.bind)
device->parent->ops.bind(device);
}
/*
* Locate & Attach Driver
* ----------------------
* If there's a hardware id (_HID) or compatible ids (_CID) we check
* to see if there's a driver installed for this kind of device. Note
* that drivers can install before or after a device is enumerated.
*
* TBD: Assumes LDM provides driver hot-plug capability.
*/
if (device->flags.hardware_id || device->flags.compatible_ids)
acpi_bus_find_driver(device);
end:
if (info != NULL)
ACPI_FREE(info);
if (result) {
if (device->pnp.cid_list) {
ExFreePoolWithTag(device->pnp.cid_list, 'DpcA');
}
if (device->pnp.hardware_id) {
ExFreePoolWithTag(device->pnp.hardware_id, 'DpcA');
}
ExFreePoolWithTag(device, 'DpcA');
return_VALUE(result);
}
*child = device;
return_VALUE(0);
}
static int
acpi_bus_remove (
struct acpi_device *device,
int type)
{
if (!device)
return_VALUE(AE_NOT_FOUND);
acpi_device_unregister(device);
if (device->pnp.cid_list)
ExFreePoolWithTag(device->pnp.cid_list, 'DpcA');
if (device->pnp.hardware_id)
ExFreePoolWithTag(device->pnp.hardware_id, 'DpcA');
if (device)
ExFreePoolWithTag(device, 'DpcA');
return_VALUE(0);
}
int
acpi_bus_scan (
struct acpi_device *start)
{
ACPI_STATUS status = AE_OK;
struct acpi_device *parent = NULL;
struct acpi_device *child = NULL;
ACPI_HANDLE phandle = 0;
ACPI_HANDLE chandle = 0;
ACPI_OBJECT_TYPE type = 0;
UINT32 level = 1;
if (!start)
return_VALUE(AE_BAD_PARAMETER);
parent = start;
phandle = start->handle;
/*
* Parse through the ACPI namespace, identify all 'devices', and
* create a new 'struct acpi_device' for each.
*/
while ((level > 0) && parent) {
status = AcpiGetNextObject(ACPI_TYPE_ANY, phandle,
chandle, &chandle);
/*
* If this scope is exhausted then move our way back up.
*/
if (ACPI_FAILURE(status)) {
level--;
chandle = phandle;
AcpiGetParent(phandle, &phandle);
if (parent->parent)
parent = parent->parent;
continue;
}
status = AcpiGetType(chandle, &type);
if (ACPI_FAILURE(status))
continue;
/*
* If this is a scope object then parse it (depth-first).
*/
if (type == ACPI_TYPE_LOCAL_SCOPE) {
level++;
phandle = chandle;
chandle = 0;
continue;
}
/*
* We're only interested in objects that we consider 'devices'.
*/
switch (type) {
case ACPI_TYPE_DEVICE:
type = ACPI_BUS_TYPE_DEVICE;
break;
case ACPI_TYPE_PROCESSOR:
type = ACPI_BUS_TYPE_PROCESSOR;
break;
case ACPI_TYPE_THERMAL:
type = ACPI_BUS_TYPE_THERMAL;
break;
case ACPI_TYPE_POWER:
type = ACPI_BUS_TYPE_POWER;
break;
default:
continue;
}
status = acpi_bus_add(&child, parent, chandle, type);
if (ACPI_FAILURE(status))
continue;
/*
* If the device is present, enabled, and functioning then
* parse its scope (depth-first). Note that we need to
* represent absent devices to facilitate PnP notifications
* -- but only the subtree head (not all of its children,
* which will be enumerated when the parent is inserted).
*
* TBD: Need notifications and other detection mechanisms
* in place before we can fully implement this.
*/
if (child->status.present) {
status = AcpiGetNextObject(ACPI_TYPE_ANY, chandle,
0, NULL);
if (ACPI_SUCCESS(status)) {
level++;
phandle = chandle;
chandle = 0;
parent = child;
}
}
}
return_VALUE(0);
}
static int
acpi_bus_scan_fixed (
struct acpi_device *root)
{
int result = 0;
struct acpi_device *device = NULL;
if (!root)
return_VALUE(AE_NOT_FOUND);
/* If ACPI_FADT_POWER_BUTTON is set, then a control
* method power button is present. Otherwise, a fixed
* power button is present.
*/
if (AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON)
result = acpi_bus_add(&device, acpi_root,
NULL, ACPI_BUS_TYPE_POWER_BUTTON);
else
{
/* Enable the fixed power button so we get notified if it is pressed */
AcpiWriteBitRegister(ACPI_BITREG_POWER_BUTTON_ENABLE, 1);
result = acpi_bus_add(&device, acpi_root,
NULL, ACPI_BUS_TYPE_POWER_BUTTONF);
}
/* This one is a bit more complicated and we do it wrong
* right now. If ACPI_FADT_SLEEP_BUTTON is set but no
* device object is present then no sleep button is present, but
* if the flags is clear and there is no device object then it is
* a fixed sleep button. If the flag is set and there is a device object
* the we have a control method button just like above.
*/
if (AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON)
result = acpi_bus_add(&device, acpi_root,
NULL, ACPI_BUS_TYPE_SLEEP_BUTTON);
else
{
/* Enable the fixed sleep button so we get notified if it is pressed */
AcpiWriteBitRegister(ACPI_BITREG_SLEEP_BUTTON_ENABLE, 1);
result = acpi_bus_add(&device, acpi_root,
NULL, ACPI_BUS_TYPE_SLEEP_BUTTONF);
}
return_VALUE(result);
}
/* --------------------------------------------------------------------------
Initialization/Cleanup
-------------------------------------------------------------------------- */
int
acpi_bus_init (void)
{
int result = 0;
ACPI_STATUS status = AE_OK;
DPRINT("acpi_bus_init\n");
KeInitializeDpc(&event_dpc, acpi_bus_generate_event_dpc, NULL);
status = AcpiEnableSubsystem(ACPI_FULL_INITIALIZATION);
if (ACPI_FAILURE(status)) {
DPRINT1("Unable to start the ACPI Interpreter\n");
goto error1;
}
/*
* ACPI 2.0 requires the EC driver to be loaded and work before
* the EC device is found in the namespace. This is accomplished
* by looking for the ECDT table, and getting the EC parameters out
* of that.
*/
//result = acpi_ec_ecdt_probe();
/* Ignore result. Not having an ECDT is not fatal. */
status = AcpiInitializeObjects(ACPI_FULL_INITIALIZATION);
if (ACPI_FAILURE(status)) {
DPRINT1("Unable to initialize ACPI objects\n");
goto error1;
}
/*
* Maybe EC region is required at bus_scan/acpi_get_devices. So it
* is necessary to enable it as early as possible.
*/
//acpi_boot_ec_enable();
/* Initialize sleep structures */
//acpi_sleep_init();
/*
* Register the for all standard device notifications.
*/
status = AcpiInstallNotifyHandler(ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY, acpi_bus_notify, NULL);
if (ACPI_FAILURE(status)) {
DPRINT1("Unable to register for device notifications\n");
result = AE_NOT_FOUND;
goto error1;
}
/*
* Create the root device in the bus's device tree
*/
result = acpi_bus_add(&acpi_root, NULL, ACPI_ROOT_OBJECT,
ACPI_BUS_TYPE_SYSTEM);
if (result)
goto error2;
/*
* Enumerate devices in the ACPI namespace.
*/
result = acpi_bus_scan_fixed(acpi_root);
if (result)
DPRINT1("acpi_bus_scan_fixed failed\n");
result = acpi_bus_scan(acpi_root);
if (result)
DPRINT1("acpi_bus_scan failed\n");
return_VALUE(0);
/* Mimic structured exception handling */
error2:
AcpiRemoveNotifyHandler(ACPI_ROOT_OBJECT,
ACPI_SYSTEM_NOTIFY, acpi_bus_notify);
error1:
AcpiTerminate();
return_VALUE(AE_NOT_FOUND);
}
static void
acpi_bus_exit (void)
{
ACPI_STATUS status = AE_OK;
DPRINT1("acpi_bus_exit\n");
status = AcpiRemoveNotifyHandler(ACPI_ROOT_OBJECT,
ACPI_SYSTEM_NOTIFY, acpi_bus_notify);
if (ACPI_FAILURE(status))
DPRINT1("Error removing notify handler\n");
#ifdef CONFIG_ACPI_PCI
acpi_pci_root_exit();
acpi_pci_link_exit();
#endif
#ifdef CONFIG_ACPI_EC
acpi_ec_exit();
#endif
//acpi_power_exit();
acpi_system_exit();
acpi_bus_remove(acpi_root, ACPI_BUS_REMOVAL_NORMAL);
status = AcpiTerminate();
if (ACPI_FAILURE(status))
DPRINT1("Unable to terminate the ACPI Interpreter\n");
else
DPRINT1("Interpreter disabled\n");
return_VOID;
}
int
acpi_init (void)
{
int result = 0;
DPRINT("acpi_init\n");
DPRINT("Subsystem revision %08x\n",ACPI_CA_VERSION);
KeInitializeSpinLock(&acpi_bus_event_lock);
KeInitializeEvent(&AcpiEventQueue, NotificationEvent, FALSE);
ExInitializeFastMutex(&acpi_bus_drivers_lock);
result = acpi_bus_init();
//if (!result) {
//pci_mmcfg_late_init();
//if (!(pm_flags & PM_APM))
// pm_flags |= PM_ACPI;
//else {
//DPRINT1("APM is already active, exiting\n");
//disable_acpi();
//result = -ENODEV;
//}
//} else
// disable_acpi();
/*
* If the laptop falls into the DMI check table, the power state check
* will be disabled in the course of device power transistion.
*/
//dmi_check_system(power_nocheck_dmi_table);
/*
* Install drivers required for proper enumeration of the
* ACPI namespace.
*/
acpi_system_init(); /* ACPI System */
acpi_power_init(); /* ACPI Bus Power Management */
acpi_button_init();
//acpi_ec_init(); /* ACPI Embedded Controller */
#ifdef CONFIG_ACPI_PCI
if (!acpi_pci_disabled) {
acpi_pci_link_init(); /* ACPI PCI Interrupt Link */
acpi_pci_root_init(); /* ACPI PCI Root Bridge */
}
#endif
//acpi_scan_init();
//acpi_ec_init();
//acpi_power_init();
//acpi_system_init();
//acpi_debug_init();
//acpi_sleep_proc_init();
//acpi_wakeup_device_init();
return result;
}
void
acpi_exit (void)
{
DPRINT("acpi_exit\n");
#ifdef CONFIG_PM
pm_active = 0;
#endif
acpi_bus_exit();
return_VOID;
}