reactos/sdk/lib/crt/math/libm_sse2/sinhf.c
2022-12-01 15:21:59 +02:00

257 lines
9.9 KiB
C

/*******************************************************************************
MIT License
-----------
Copyright (c) 2002-2019 Advanced Micro Devices, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this Software and associated documentaon files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*******************************************************************************/
#include "libm.h"
#include "libm_util.h"
#define USE_SPLITEXP
#define USE_SCALEDOUBLE_1
#define USE_INFINITY_WITH_FLAGS
#define USE_VALF_WITH_FLAGS
#define USE_HANDLE_ERRORF
#include "libm_inlines.h"
#undef USE_SPLITEXP
#undef USE_SCALEDOUBLE_1
#undef USE_INFINITY_WITH_FLAGS
#undef USE_VALF_WITH_FLAGS
#undef USE_HANDLE_ERRORF
#include "libm_errno.h"
// Disable "C4163: not available as intrinsic function" warning that older
// compilers may issue here.
#pragma warning(disable:4163)
#pragma function(sinhf)
float sinhf(float fx)
{
/*
After dealing with special cases the computation is split into
regions as follows:
abs(x) >= max_sinh_arg:
sinh(x) = sign(x)*Inf
abs(x) >= small_threshold:
sinh(x) = sign(x)*exp(abs(x))/2 computed using the
splitexp and scaleDouble functions as for exp_amd().
abs(x) < small_threshold:
compute p = exp(y) - 1 and then z = 0.5*(p+(p/(p+1.0)))
sinh(x) is then sign(x)*z. */
static const double
/* The max argument of sinhf, but stored as a double */
max_sinh_arg = 8.94159862922329438106e+01, /* 0x40565a9f84f82e63 */
thirtytwo_by_log2 = 4.61662413084468283841e+01, /* 0x40471547652b82fe */
log2_by_32_lead = 2.16608493356034159660e-02, /* 0x3f962e42fe000000 */
log2_by_32_tail = 5.68948749532545630390e-11, /* 0x3dcf473de6af278e */
small_threshold = 8*BASEDIGITS_DP64*0.30102999566398119521373889;
/* (8*BASEDIGITS_DP64*log10of2) ' exp(-x) insignificant c.f. exp(x) */
/* Tabulated values of sinh(i) and cosh(i) for i = 0,...,36. */
static const double sinh_lead[37] = {
0.00000000000000000000e+00, /* 0x0000000000000000 */
1.17520119364380137839e+00, /* 0x3ff2cd9fc44eb982 */
3.62686040784701857476e+00, /* 0x400d03cf63b6e19f */
1.00178749274099008204e+01, /* 0x40240926e70949ad */
2.72899171971277496596e+01, /* 0x403b4a3803703630 */
7.42032105777887522891e+01, /* 0x40528d0166f07374 */
2.01713157370279219549e+02, /* 0x406936d22f67c805 */
5.48316123273246489589e+02, /* 0x408122876ba380c9 */
1.49047882578955000099e+03, /* 0x409749ea514eca65 */
4.05154190208278987484e+03, /* 0x40afa7157430966f */
1.10132328747033916443e+04, /* 0x40c5829dced69991 */
2.99370708492480553105e+04, /* 0x40dd3c4488cb48d6 */
8.13773957064298447222e+04, /* 0x40f3de1654d043f0 */
2.21206696003330085659e+05, /* 0x410b00b5916a31a5 */
6.01302142081972560845e+05, /* 0x412259ac48bef7e3 */
1.63450868623590236530e+06, /* 0x4138f0ccafad27f6 */
4.44305526025387924165e+06, /* 0x4150f2ebd0a7ffe3 */
1.20774763767876271158e+07, /* 0x416709348c0ea4ed */
3.28299845686652474105e+07, /* 0x417f4f22091940bb */
8.92411504815936237574e+07, /* 0x419546d8f9ed26e1 */
2.42582597704895108938e+08, /* 0x41aceb088b68e803 */
6.59407867241607308388e+08, /* 0x41c3a6e1fd9eecfd */
1.79245642306579566002e+09, /* 0x41dab5adb9c435ff */
4.87240172312445068359e+09, /* 0x41f226af33b1fdc0 */
1.32445610649217357635e+10, /* 0x4208ab7fb5475fb7 */
3.60024496686929321289e+10, /* 0x4220c3d3920962c8 */
9.78648047144193725586e+10, /* 0x4236c932696a6b5c */
2.66024120300899291992e+11, /* 0x424ef822f7f6731c */
7.23128532145737548828e+11, /* 0x42650bba3796379a */
1.96566714857202099609e+12, /* 0x427c9aae4631c056 */
5.34323729076223046875e+12, /* 0x429370470aec28ec */
1.45244248326237109375e+13, /* 0x42aa6b765d8cdf6c */
3.94814800913403437500e+13, /* 0x42c1f43fcc4b662c */
1.07321789892958031250e+14, /* 0x42d866f34a725782 */
2.91730871263727437500e+14, /* 0x42f0953e2f3a1ef7 */
7.93006726156715250000e+14, /* 0x430689e221bc8d5a */
2.15561577355759750000e+15}; /* 0x431ea215a1d20d76 */
static const double cosh_lead[37] = {
1.00000000000000000000e+00, /* 0x3ff0000000000000 */
1.54308063481524371241e+00, /* 0x3ff8b07551d9f550 */
3.76219569108363138810e+00, /* 0x400e18fa0df2d9bc */
1.00676619957777653269e+01, /* 0x402422a497d6185e */
2.73082328360164865444e+01, /* 0x403b4ee858de3e80 */
7.42099485247878334349e+01, /* 0x40528d6fcbeff3a9 */
2.01715636122455890700e+02, /* 0x406936e67db9b919 */
5.48317035155212010977e+02, /* 0x4081228949ba3a8b */
1.49047916125217807348e+03, /* 0x409749eaa93f4e76 */
4.05154202549259389343e+03, /* 0x40afa715845d8894 */
1.10132329201033226127e+04, /* 0x40c5829dd053712d */
2.99370708659497577173e+04, /* 0x40dd3c4489115627 */
8.13773957125740562333e+04, /* 0x40f3de1654d6b543 */
2.21206696005590405548e+05, /* 0x410b00b5916b6105 */
6.01302142082804115489e+05, /* 0x412259ac48bf13ca */
1.63450868623620807193e+06, /* 0x4138f0ccafad2d17 */
4.44305526025399193168e+06, /* 0x4150f2ebd0a8005c */
1.20774763767876680940e+07, /* 0x416709348c0ea503 */
3.28299845686652623117e+07, /* 0x417f4f22091940bf */
8.92411504815936237574e+07, /* 0x419546d8f9ed26e1 */
2.42582597704895138741e+08, /* 0x41aceb088b68e804 */
6.59407867241607308388e+08, /* 0x41c3a6e1fd9eecfd */
1.79245642306579566002e+09, /* 0x41dab5adb9c435ff */
4.87240172312445068359e+09, /* 0x41f226af33b1fdc0 */
1.32445610649217357635e+10, /* 0x4208ab7fb5475fb7 */
3.60024496686929321289e+10, /* 0x4220c3d3920962c8 */
9.78648047144193725586e+10, /* 0x4236c932696a6b5c */
2.66024120300899291992e+11, /* 0x424ef822f7f6731c */
7.23128532145737548828e+11, /* 0x42650bba3796379a */
1.96566714857202099609e+12, /* 0x427c9aae4631c056 */
5.34323729076223046875e+12, /* 0x429370470aec28ec */
1.45244248326237109375e+13, /* 0x42aa6b765d8cdf6c */
3.94814800913403437500e+13, /* 0x42c1f43fcc4b662c */
1.07321789892958031250e+14, /* 0x42d866f34a725782 */
2.91730871263727437500e+14, /* 0x42f0953e2f3a1ef7 */
7.93006726156715250000e+14, /* 0x430689e221bc8d5a */
2.15561577355759750000e+15}; /* 0x431ea215a1d20d76 */
unsigned long ux, aux, xneg;
double x = fx, y, z, z1, z2;
int m;
/* Special cases */
GET_BITS_DP64(x, ux);
aux = ux & ~SIGNBIT_DP64;
if (aux < 0x3f10000000000000) /* |x| small enough that sinh(x) = x */
{
if (aux == 0)
/* with no inexact */
return fx;
else
return valf_with_flags(fx, AMD_F_INEXACT);
}
else if (aux >= 0x7ff0000000000000) /* |x| is NaN or Inf */
{
if (aux > 0x7ff0000000000000)
{
/* x is NaN */
unsigned int uhx;
GET_BITS_SP32(fx, uhx);
return _handle_errorf("sinhf", OP_SINH, uhx|0x00400000, _DOMAIN,
0, EDOM, fx, 0.0F, 1);
}
else
return fx + fx;
}
xneg = (aux != ux);
y = x;
if (xneg) y = -x;
if (y >= max_sinh_arg)
{
/* Return infinity with overflow flag. */
if (xneg)
return _handle_errorf("sinhf", OP_SINH, NINFBITPATT_SP32, _OVERFLOW,
AMD_F_OVERFLOW, ERANGE, fx, 0.0F, 1);
else
return _handle_errorf("sinhf", OP_SINH, PINFBITPATT_SP32, _OVERFLOW,
AMD_F_OVERFLOW, ERANGE, fx, 0.0F, 1);
}
else if (y >= small_threshold)
{
/* In this range y is large enough so that
the negative exponential is negligible,
so sinh(y) is approximated by sign(x)*exp(y)/2. The
code below is an inlined version of that from
exp() with two changes (it operates on
y instead of x, and the division by 2 is
done by reducing m by 1). */
splitexp(y, 1.0, thirtytwo_by_log2, log2_by_32_lead,
log2_by_32_tail, &m, &z1, &z2);
m -= 1;
/* scaleDouble_1 is always safe because the argument x was
float, rather than double */
z = scaleDouble_1((z1+z2),m);
}
else
{
/* In this range we find the integer part y0 of y
and the increment dy = y - y0. We then compute
z = sinh(y) = sinh(y0)cosh(dy) + cosh(y0)sinh(dy)
where sinh(y0) and cosh(y0) are tabulated above. */
int ind;
double dy, dy2, sdy, cdy;
ind = (int)y;
dy = y - ind;
dy2 = dy*dy;
sdy = dy + dy*dy2*(0.166666666666666667013899e0 +
(0.833333333333329931873097e-2 +
(0.198412698413242405162014e-3 +
(0.275573191913636406057211e-5 +
(0.250521176994133472333666e-7 +
(0.160576793121939886190847e-9 +
0.7746188980094184251527126e-12*dy2)*dy2)*dy2)*dy2)*dy2)*dy2);
cdy = 1 + dy2*(0.500000000000000005911074e0 +
(0.416666666666660876512776e-1 +
(0.138888888889814854814536e-2 +
(0.248015872460622433115785e-4 +
(0.275573350756016588011357e-6 +
(0.208744349831471353536305e-8 +
0.1163921388172173692062032e-10*dy2)*dy2)*dy2)*dy2)*dy2)*dy2);
z = sinh_lead[ind]*cdy + cosh_lead[ind]*sdy;
}
if (xneg) z = - z;
return (float)z;
}