reactos/sdk/lib/fslib/btrfslib/btrfslib.c
2020-04-23 07:07:36 +03:00

1680 lines
46 KiB
C

/* Copyright (c) Mark Harmstone 2016-17
*
* This file is part of WinBtrfs.
*
* WinBtrfs is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public Licence as published by
* the Free Software Foundation, either version 3 of the Licence, or
* (at your option) any later version.
*
* WinBtrfs is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public Licence for more details.
*
* You should have received a copy of the GNU Lesser General Public Licence
* along with WinBtrfs. If not, see <http://www.gnu.org/licenses/>. */
#include <stdlib.h>
#include <stddef.h>
#include <time.h>
#include <ntstatus.h>
#define WIN32_NO_STATUS
#include <windef.h>
#include <winbase.h>
#ifndef __REACTOS__
#include <winternl.h>
#include <devioctl.h>
#include <ntdddisk.h>
#else
#include <ndk/iofuncs.h>
#include <ndk/obfuncs.h>
#include <ndk/rtlfuncs.h>
#endif
#include <ntddscsi.h>
#include <ntddstor.h>
#include <ata.h>
#include <mountmgr.h>
#ifdef __REACTOS__
#include <winnls.h>
#include <stdbool.h>
#include "btrfs.h"
#include "btrfsioctl.h"
#include "crc32c.h"
#include "xxhash.h"
#else
#include <stringapiset.h>
#include <stdbool.h>
#include "../btrfs.h"
#include "../btrfsioctl.h"
#include "../crc32c.h"
#include "../xxhash.h"
#if defined(_X86_) || defined(_AMD64_)
#ifndef _MSC_VER
#include <cpuid.h>
#else
#include <intrin.h>
#endif
#endif
#endif // __REACTOS__
#define SHA256_HASH_SIZE 32
void calc_sha256(uint8_t* hash, const void* input, size_t len);
#define BLAKE2_HASH_SIZE 32
void blake2b(void *out, size_t outlen, const void* in, size_t inlen);
#ifndef __REACTOS__
#define FSCTL_LOCK_VOLUME CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 6, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define FSCTL_UNLOCK_VOLUME CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 7, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define FSCTL_DISMOUNT_VOLUME CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 8, METHOD_BUFFERED, FILE_ANY_ACCESS)
#ifndef _MSC_VER // not in mingw yet
#define DEVICE_DSM_FLAG_TRIM_NOT_FS_ALLOCATED 0x80000000
#endif
#ifdef __cplusplus
extern "C" {
#endif
NTSYSCALLAPI NTSTATUS NTAPI NtFsControlFile(HANDLE FileHandle, HANDLE Event, PIO_APC_ROUTINE ApcRoutine, PVOID ApcContext, PIO_STATUS_BLOCK IoStatusBlock, ULONG FsControlCode, PVOID InputBuffer, ULONG InputBufferLength, PVOID OutputBuffer, ULONG OutputBufferLength);
NTSTATUS NTAPI NtWriteFile(HANDLE FileHandle, HANDLE Event, PIO_APC_ROUTINE ApcRoutine, PVOID ApcContext, PIO_STATUS_BLOCK IoStatusBlock, PVOID Buffer,
ULONG Length, PLARGE_INTEGER ByteOffset, PULONG Key);
NTSTATUS NTAPI NtReadFile(HANDLE FileHandle, HANDLE Event, PIO_APC_ROUTINE ApcRoutine, PVOID ApcContext, PIO_STATUS_BLOCK IoStatusBlock, PVOID Buffer,
ULONG Length, PLARGE_INTEGER ByteOffset, PULONG Key);
#ifdef __cplusplus
}
#endif
#endif // __REACTOS__
// These are undocumented, and what comes from format.exe
typedef struct {
void* table;
void* unk1;
WCHAR* string;
} DSTRING;
typedef struct {
void* table;
} STREAM_MESSAGE;
#define FORMAT_FLAG_QUICK_FORMAT 0x00000001
#define FORMAT_FLAG_UNKNOWN1 0x00000002
#define FORMAT_FLAG_DISMOUNT_FIRST 0x00000004
#define FORMAT_FLAG_UNKNOWN2 0x00000040
#define FORMAT_FLAG_LARGE_RECORDS 0x00000100
#define FORMAT_FLAG_INTEGRITY_DISABLE 0x00000100
typedef struct {
uint16_t unk1;
uint16_t unk2;
uint32_t flags;
DSTRING* label;
} options;
#ifndef __REACTOS__
FORCEINLINE VOID InitializeListHead(PLIST_ENTRY ListHead) {
ListHead->Flink = ListHead->Blink = ListHead;
}
FORCEINLINE VOID InsertTailList(PLIST_ENTRY ListHead, PLIST_ENTRY Entry) {
PLIST_ENTRY Blink;
Blink = ListHead->Blink;
Entry->Flink = ListHead;
Entry->Blink = Blink;
Blink->Flink = Entry;
ListHead->Blink = Entry;
}
#endif
#ifdef __REACTOS__
ULONG NTAPI NtGetTickCount(VOID);
#endif
typedef struct {
KEY key;
uint16_t size;
void* data;
LIST_ENTRY list_entry;
} btrfs_item;
typedef struct {
uint64_t offset;
CHUNK_ITEM* chunk_item;
uint64_t lastoff;
uint64_t used;
LIST_ENTRY list_entry;
} btrfs_chunk;
typedef struct {
uint64_t id;
tree_header header;
btrfs_chunk* c;
LIST_ENTRY items;
LIST_ENTRY list_entry;
} btrfs_root;
typedef struct {
DEV_ITEM dev_item;
uint64_t last_alloc;
} btrfs_dev;
#define keycmp(key1, key2)\
((key1.obj_id < key2.obj_id) ? -1 :\
((key1.obj_id > key2.obj_id) ? 1 :\
((key1.obj_type < key2.obj_type) ? -1 :\
((key1.obj_type > key2.obj_type) ? 1 :\
((key1.offset < key2.offset) ? -1 :\
((key1.offset > key2.offset) ? 1 :\
0))))))
HMODULE module;
ULONG def_sector_size = 0, def_node_size = 0;
uint64_t def_incompat_flags = BTRFS_INCOMPAT_FLAGS_EXTENDED_IREF | BTRFS_INCOMPAT_FLAGS_SKINNY_METADATA;
uint16_t def_csum_type = CSUM_TYPE_CRC32C;
// the following definitions come from fmifs.h in ReactOS
typedef struct {
ULONG Lines;
PCHAR Output;
} TEXTOUTPUT, *PTEXTOUTPUT;
typedef enum {
FMIFS_UNKNOWN0,
FMIFS_UNKNOWN1,
FMIFS_UNKNOWN2,
FMIFS_UNKNOWN3,
FMIFS_UNKNOWN4,
FMIFS_UNKNOWN5,
FMIFS_UNKNOWN6,
FMIFS_UNKNOWN7,
FMIFS_FLOPPY,
FMIFS_UNKNOWN9,
FMIFS_UNKNOWN10,
FMIFS_REMOVABLE,
FMIFS_HARDDISK,
FMIFS_UNKNOWN13,
FMIFS_UNKNOWN14,
FMIFS_UNKNOWN15,
FMIFS_UNKNOWN16,
FMIFS_UNKNOWN17,
FMIFS_UNKNOWN18,
FMIFS_UNKNOWN19,
FMIFS_UNKNOWN20,
FMIFS_UNKNOWN21,
FMIFS_UNKNOWN22,
FMIFS_UNKNOWN23,
} FMIFS_MEDIA_FLAG;
typedef enum {
PROGRESS,
DONEWITHSTRUCTURE,
UNKNOWN2,
UNKNOWN3,
UNKNOWN4,
UNKNOWN5,
INSUFFICIENTRIGHTS,
FSNOTSUPPORTED,
VOLUMEINUSE,
UNKNOWN9,
UNKNOWNA,
DONE,
UNKNOWNC,
UNKNOWND,
OUTPUT,
STRUCTUREPROGRESS,
CLUSTERSIZETOOSMALL,
} CALLBACKCOMMAND;
typedef BOOLEAN (NTAPI* PFMIFSCALLBACK)(CALLBACKCOMMAND Command, ULONG SubAction, PVOID ActionInfo);
#ifndef __REACTOS__
NTSTATUS WINAPI ChkdskEx(PUNICODE_STRING DriveRoot, BOOLEAN FixErrors, BOOLEAN Verbose, BOOLEAN CheckOnlyIfDirty,
#else
NTSTATUS NTAPI BtrfsChkdskEx(PUNICODE_STRING DriveRoot, BOOLEAN FixErrors, BOOLEAN Verbose, BOOLEAN CheckOnlyIfDirty,
#endif
BOOLEAN ScanDrive, PFMIFSCALLBACK Callback) {
// STUB
if (Callback) {
TEXTOUTPUT TextOut;
TextOut.Lines = 1;
TextOut.Output = "stub, not implemented";
Callback(OUTPUT, 0, &TextOut);
}
return STATUS_SUCCESS;
}
static btrfs_root* add_root(LIST_ENTRY* roots, uint64_t id) {
btrfs_root* root;
#ifdef __REACTOS__
root = RtlAllocateHeap(RtlGetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(btrfs_root));
#else
root = malloc(sizeof(btrfs_root));
#endif
root->id = id;
#ifndef __REACTOS__
RtlZeroMemory(&root->header, sizeof(tree_header));
#endif
InitializeListHead(&root->items);
InsertTailList(roots, &root->list_entry);
return root;
}
static void free_roots(LIST_ENTRY* roots) {
LIST_ENTRY* le;
le = roots->Flink;
while (le != roots) {
LIST_ENTRY *le2 = le->Flink, *le3;
btrfs_root* r = CONTAINING_RECORD(le, btrfs_root, list_entry);
le3 = r->items.Flink;
while (le3 != &r->items) {
LIST_ENTRY* le4 = le3->Flink;
btrfs_item* item = CONTAINING_RECORD(le3, btrfs_item, list_entry);
if (item->data)
#ifdef __REACTOS__
RtlFreeHeap(RtlGetProcessHeap(), 0, item->data);
RtlFreeHeap(RtlGetProcessHeap(), 0, item);
#else
free(item->data);
free(item);
#endif
le3 = le4;
}
#ifdef __REACTOS__
RtlFreeHeap(RtlGetProcessHeap(), 0, r);
#else
free(r);
#endif
le = le2;
}
}
static void free_chunks(LIST_ENTRY* chunks) {
LIST_ENTRY* le;
le = chunks->Flink;
while (le != chunks) {
LIST_ENTRY *le2 = le->Flink;
btrfs_chunk* c = CONTAINING_RECORD(le, btrfs_chunk, list_entry);
#ifndef __REACTOS__
free(c->chunk_item);
free(c);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, c->chunk_item);
RtlFreeHeap(RtlGetProcessHeap(), 0, c);
#endif
le = le2;
}
}
static void add_item(btrfs_root* r, uint64_t obj_id, uint8_t obj_type, uint64_t offset, void* data, uint16_t size) {
LIST_ENTRY* le;
btrfs_item* item;
#ifndef __REACTOS__
item = malloc(sizeof(btrfs_item));
#else
item = RtlAllocateHeap(RtlGetProcessHeap(), 0, sizeof(btrfs_item));
#endif
item->key.obj_id = obj_id;
item->key.obj_type = obj_type;
item->key.offset = offset;
item->size = size;
if (size == 0)
item->data = NULL;
else {
#ifndef __REACTOS__
item->data = malloc(size);
#else
item->data = RtlAllocateHeap(RtlGetProcessHeap(), 0, size);
#endif
memcpy(item->data, data, size);
}
le = r->items.Flink;
while (le != &r->items) {
btrfs_item* i2 = CONTAINING_RECORD(le, btrfs_item, list_entry);
if (keycmp(item->key, i2->key) != 1) {
InsertTailList(le, &item->list_entry);
return;
}
le = le->Flink;
}
InsertTailList(&r->items, &item->list_entry);
}
static uint64_t find_chunk_offset(uint64_t size, uint64_t offset, btrfs_dev* dev, btrfs_root* dev_root, BTRFS_UUID* chunkuuid) {
uint64_t off;
DEV_EXTENT de;
off = dev->last_alloc;
dev->last_alloc += size;
dev->dev_item.bytes_used += size;
de.chunktree = BTRFS_ROOT_CHUNK;
de.objid = 0x100;
de.address = offset;
de.length = size;
de.chunktree_uuid = *chunkuuid;
add_item(dev_root, dev->dev_item.dev_id, TYPE_DEV_EXTENT, off, &de, sizeof(DEV_EXTENT));
return off;
}
static btrfs_chunk* add_chunk(LIST_ENTRY* chunks, uint64_t flags, btrfs_root* chunk_root, btrfs_dev* dev, btrfs_root* dev_root, BTRFS_UUID* chunkuuid, uint32_t sector_size) {
uint64_t off, size;
uint16_t stripes, i;
btrfs_chunk* c;
LIST_ENTRY* le;
CHUNK_ITEM_STRIPE* cis;
off = 0xc00000;
le = chunks->Flink;
while (le != chunks) {
c = CONTAINING_RECORD(le, btrfs_chunk, list_entry);
if (c->offset + c->chunk_item->size > off)
off = c->offset + c->chunk_item->size;
le = le->Flink;
}
if (flags & BLOCK_FLAG_METADATA) {
if (dev->dev_item.num_bytes > 0xC80000000) // 50 GB
size = 0x40000000; // 1 GB
else
size = 0x10000000; // 256 MB
} else if (flags & BLOCK_FLAG_SYSTEM)
size = 0x800000;
size = min(size, dev->dev_item.num_bytes / 10); // cap at 10%
size &= ~(sector_size - 1);
stripes = flags & BLOCK_FLAG_DUPLICATE ? 2 : 1;
if (dev->dev_item.num_bytes - dev->dev_item.bytes_used < stripes * size) // not enough space
return NULL;
#ifndef __REACTOS__
c = malloc(sizeof(btrfs_chunk));
#else
c = RtlAllocateHeap(RtlGetProcessHeap(), 0, sizeof(btrfs_chunk));
#endif
c->offset = off;
c->lastoff = off;
c->used = 0;
#ifndef __REACTOS__
c->chunk_item = malloc(sizeof(CHUNK_ITEM) + (stripes * sizeof(CHUNK_ITEM_STRIPE)));
#else
c->chunk_item = RtlAllocateHeap(RtlGetProcessHeap(), 0, sizeof(CHUNK_ITEM) + (stripes * sizeof(CHUNK_ITEM_STRIPE)));
#endif
c->chunk_item->size = size;
c->chunk_item->root_id = BTRFS_ROOT_EXTENT;
c->chunk_item->stripe_length = max(sector_size, 0x10000);
c->chunk_item->type = flags;
c->chunk_item->opt_io_alignment = max(sector_size, 0x10000);
c->chunk_item->opt_io_width = max(sector_size, 0x10000);
c->chunk_item->sector_size = sector_size;
c->chunk_item->num_stripes = stripes;
c->chunk_item->sub_stripes = 0;
cis = (CHUNK_ITEM_STRIPE*)&c->chunk_item[1];
for (i = 0; i < stripes; i++) {
cis[i].dev_id = dev->dev_item.dev_id;
cis[i].offset = find_chunk_offset(size, c->offset, dev, dev_root, chunkuuid);
cis[i].dev_uuid = dev->dev_item.device_uuid;
}
add_item(chunk_root, 0x100, TYPE_CHUNK_ITEM, c->offset, c->chunk_item, sizeof(CHUNK_ITEM) + (stripes * sizeof(CHUNK_ITEM_STRIPE)));
InsertTailList(chunks, &c->list_entry);
return c;
}
static bool superblock_collision(btrfs_chunk* c, uint64_t address) {
CHUNK_ITEM_STRIPE* cis = (CHUNK_ITEM_STRIPE*)&c->chunk_item[1];
uint64_t stripe = (address - c->offset) / c->chunk_item->stripe_length;
uint16_t i, j;
for (i = 0; i < c->chunk_item->num_stripes; i++) {
j = 0;
while (superblock_addrs[j] != 0) {
if (superblock_addrs[j] >= cis[i].offset) {
uint64_t stripe2 = (superblock_addrs[j] - cis[i].offset) / c->chunk_item->stripe_length;
if (stripe2 == stripe)
return true;
}
j++;
}
}
return false;
}
static uint64_t get_next_address(btrfs_chunk* c) {
uint64_t addr;
addr = c->lastoff;
while (superblock_collision(c, addr)) {
addr = addr - ((addr - c->offset) % c->chunk_item->stripe_length) + c->chunk_item->stripe_length;
if (addr >= c->offset + c->chunk_item->size) // chunk has been exhausted
return 0;
}
return addr;
}
typedef struct {
EXTENT_ITEM ei;
uint8_t type;
TREE_BLOCK_REF tbr;
} EXTENT_ITEM_METADATA;
typedef struct {
EXTENT_ITEM ei;
EXTENT_ITEM2 ei2;
uint8_t type;
TREE_BLOCK_REF tbr;
} EXTENT_ITEM_METADATA2;
static void assign_addresses(LIST_ENTRY* roots, btrfs_chunk* sys_chunk, btrfs_chunk* metadata_chunk, uint32_t node_size,
btrfs_root* root_root, btrfs_root* extent_root, bool skinny) {
LIST_ENTRY* le;
le = roots->Flink;
while (le != roots) {
btrfs_root* r = CONTAINING_RECORD(le, btrfs_root, list_entry);
btrfs_chunk* c = r->id == BTRFS_ROOT_CHUNK ? sys_chunk : metadata_chunk;
r->header.address = get_next_address(c);
r->c = c;
c->lastoff = r->header.address + node_size;
c->used += node_size;
if (skinny) {
EXTENT_ITEM_METADATA eim;
eim.ei.refcount = 1;
eim.ei.generation = 1;
eim.ei.flags = EXTENT_ITEM_TREE_BLOCK;
eim.type = TYPE_TREE_BLOCK_REF;
eim.tbr.offset = r->id;
add_item(extent_root, r->header.address, TYPE_METADATA_ITEM, 0, &eim, sizeof(EXTENT_ITEM_METADATA));
} else {
EXTENT_ITEM_METADATA2 eim2;
KEY firstitem;
if (r->items.Flink == &r->items) {
firstitem.obj_id = 0;
firstitem.obj_type = 0;
firstitem.offset = 0;
} else {
btrfs_item* bi = CONTAINING_RECORD(r->items.Flink, btrfs_item, list_entry);
firstitem = bi->key;
}
eim2.ei.refcount = 1;
eim2.ei.generation = 1;
eim2.ei.flags = EXTENT_ITEM_TREE_BLOCK;
eim2.ei2.firstitem = firstitem;
eim2.ei2.level = 0;
eim2.type = TYPE_TREE_BLOCK_REF;
eim2.tbr.offset = r->id;
add_item(extent_root, r->header.address, TYPE_EXTENT_ITEM, node_size, &eim2, sizeof(EXTENT_ITEM_METADATA2));
}
if (r->id != BTRFS_ROOT_ROOT && r->id != BTRFS_ROOT_CHUNK) {
ROOT_ITEM ri;
memset(&ri, 0, sizeof(ROOT_ITEM));
ri.inode.generation = 1;
ri.inode.st_size = 3;
ri.inode.st_blocks = node_size;
ri.inode.st_nlink = 1;
ri.inode.st_mode = 040755;
ri.generation = 1;
ri.objid = r->id == 5 || r->id >= 0x100 ? SUBVOL_ROOT_INODE : 0;
ri.block_number = r->header.address;
ri.bytes_used = node_size;
ri.num_references = 1;
ri.generation2 = ri.generation;
add_item(root_root, r->id, TYPE_ROOT_ITEM, 0, &ri, sizeof(ROOT_ITEM));
}
le = le->Flink;
}
}
static NTSTATUS write_data(HANDLE h, uint64_t address, btrfs_chunk* c, void* data, ULONG size) {
NTSTATUS Status;
uint16_t i;
IO_STATUS_BLOCK iosb;
LARGE_INTEGER off;
CHUNK_ITEM_STRIPE* cis;
cis = (CHUNK_ITEM_STRIPE*)&c->chunk_item[1];
for (i = 0; i < c->chunk_item->num_stripes; i++) {
off.QuadPart = cis[i].offset + address - c->offset;
Status = NtWriteFile(h, NULL, NULL, NULL, &iosb, data, size, &off, NULL);
if (!NT_SUCCESS(Status))
return Status;
}
return STATUS_SUCCESS;
}
static void calc_tree_checksum(tree_header* th, uint32_t node_size) {
switch (def_csum_type) {
case CSUM_TYPE_CRC32C:
*(uint32_t*)th = ~calc_crc32c(0xffffffff, (uint8_t*)&th->fs_uuid, node_size - sizeof(th->csum));
break;
case CSUM_TYPE_XXHASH:
*(uint64_t*)th = XXH64((uint8_t*)&th->fs_uuid, node_size - sizeof(th->csum), 0);
break;
case CSUM_TYPE_SHA256:
calc_sha256((uint8_t*)th, &th->fs_uuid, node_size - sizeof(th->csum));
break;
case CSUM_TYPE_BLAKE2:
blake2b((uint8_t*)th, BLAKE2_HASH_SIZE, &th->fs_uuid, node_size - sizeof(th->csum));
break;
}
}
static NTSTATUS write_roots(HANDLE h, LIST_ENTRY* roots, uint32_t node_size, BTRFS_UUID* fsuuid, BTRFS_UUID* chunkuuid) {
LIST_ENTRY *le, *le2;
NTSTATUS Status;
uint8_t* tree;
#ifndef __REACTOS__
tree = malloc(node_size);
#else
tree = RtlAllocateHeap(RtlGetProcessHeap(), 0, node_size);
#endif
le = roots->Flink;
while (le != roots) {
btrfs_root* r = CONTAINING_RECORD(le, btrfs_root, list_entry);
uint8_t* dp;
leaf_node* ln;
memset(tree, 0, node_size);
r->header.num_items = 0;
r->header.fs_uuid = *fsuuid;
r->header.flags = HEADER_FLAG_MIXED_BACKREF | HEADER_FLAG_WRITTEN;
r->header.chunk_tree_uuid = *chunkuuid;
r->header.generation = 1;
r->header.tree_id = r->id;
ln = (leaf_node*)(tree + sizeof(tree_header));
dp = tree + node_size;
le2 = r->items.Flink;
while (le2 != &r->items) {
btrfs_item* item = CONTAINING_RECORD(le2, btrfs_item, list_entry);
ln->key = item->key;
ln->size = item->size;
if (item->size > 0) {
dp -= item->size;
memcpy(dp, item->data, item->size);
ln->offset = (uint32_t)(dp - tree - sizeof(tree_header));
} else
ln->offset = 0;
ln = &ln[1];
r->header.num_items++;
le2 = le2->Flink;
}
memcpy(tree, &r->header, sizeof(tree_header));
calc_tree_checksum((tree_header*)tree, node_size);
Status = write_data(h, r->header.address, r->c, tree, node_size);
if (!NT_SUCCESS(Status)) {
#ifndef __REACTOS__
free(tree);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, tree);
#endif
return Status;
}
le = le->Flink;
}
#ifndef __REACTOS__
free(tree);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, tree);
#endif
return STATUS_SUCCESS;
}
#ifndef __REACTOS__
static void get_uuid(BTRFS_UUID* uuid) {
#else
static void get_uuid(BTRFS_UUID* uuid, ULONG* seed) {
#endif
uint8_t i;
for (i = 0; i < 16; i+=2) {
#ifndef __REACTOS__
ULONG r = rand();
#else
ULONG r = RtlRandom(seed);
#endif
uuid->uuid[i] = (r & 0xff00) >> 8;
uuid->uuid[i+1] = r & 0xff;
}
}
#ifndef __REACTOS__
static void init_device(btrfs_dev* dev, uint64_t id, uint64_t size, BTRFS_UUID* fsuuid, uint32_t sector_size) {
#else
static void init_device(btrfs_dev* dev, uint64_t id, uint64_t size, BTRFS_UUID* fsuuid, uint32_t sector_size, ULONG* seed) {
#endif
dev->dev_item.dev_id = id;
dev->dev_item.num_bytes = size;
dev->dev_item.bytes_used = 0;
dev->dev_item.optimal_io_align = sector_size;
dev->dev_item.optimal_io_width = sector_size;
dev->dev_item.minimal_io_size = sector_size;
dev->dev_item.type = 0;
dev->dev_item.generation = 0;
dev->dev_item.start_offset = 0;
dev->dev_item.dev_group = 0;
dev->dev_item.seek_speed = 0;
dev->dev_item.bandwidth = 0;
#ifndef __REACTOS__
get_uuid(&dev->dev_item.device_uuid);
#else
get_uuid(&dev->dev_item.device_uuid, seed);
#endif
dev->dev_item.fs_uuid = *fsuuid;
dev->last_alloc = 0x100000; // skip first megabyte
}
static void calc_superblock_checksum(superblock* sb) {
switch (def_csum_type) {
case CSUM_TYPE_CRC32C:
*(uint32_t*)sb = ~calc_crc32c(0xffffffff, (uint8_t*)&sb->uuid, (ULONG)sizeof(superblock) - sizeof(sb->checksum));
break;
case CSUM_TYPE_XXHASH:
*(uint64_t*)sb = XXH64(&sb->uuid, sizeof(superblock) - sizeof(sb->checksum), 0);
break;
case CSUM_TYPE_SHA256:
calc_sha256((uint8_t*)sb, &sb->uuid, sizeof(superblock) - sizeof(sb->checksum));
break;
case CSUM_TYPE_BLAKE2:
blake2b((uint8_t*)sb, BLAKE2_HASH_SIZE, &sb->uuid, sizeof(superblock) - sizeof(sb->checksum));
break;
}
}
static NTSTATUS write_superblocks(HANDLE h, btrfs_dev* dev, btrfs_root* chunk_root, btrfs_root* root_root, btrfs_root* extent_root,
btrfs_chunk* sys_chunk, uint32_t node_size, BTRFS_UUID* fsuuid, uint32_t sector_size, PUNICODE_STRING label, uint64_t incompat_flags) {
NTSTATUS Status;
IO_STATUS_BLOCK iosb;
ULONG sblen;
int i;
superblock* sb;
KEY* key;
uint64_t bytes_used;
LIST_ENTRY* le;
sblen = sizeof(*sb);
if (sblen & (sector_size - 1))
sblen = (sblen & sector_size) + sector_size;
bytes_used = 0;
le = extent_root->items.Flink;
while (le != &extent_root->items) {
btrfs_item* item = CONTAINING_RECORD(le, btrfs_item, list_entry);
if (item->key.obj_type == TYPE_EXTENT_ITEM)
bytes_used += item->key.offset;
else if (item->key.obj_type == TYPE_METADATA_ITEM)
bytes_used += node_size;
le = le->Flink;
}
#ifndef __REACTOS__
sb = malloc(sblen);
memset(sb, 0, sblen);
#else
sb = RtlAllocateHeap(RtlGetProcessHeap(), HEAP_ZERO_MEMORY, sblen);
#endif
sb->uuid = *fsuuid;
sb->flags = 1;
sb->magic = BTRFS_MAGIC;
sb->generation = 1;
sb->root_tree_addr = root_root->header.address;
sb->chunk_tree_addr = chunk_root->header.address;
sb->total_bytes = dev->dev_item.num_bytes;
sb->bytes_used = bytes_used;
sb->root_dir_objectid = BTRFS_ROOT_TREEDIR;
sb->num_devices = 1;
sb->sector_size = sector_size;
sb->node_size = node_size;
sb->leaf_size = node_size;
sb->stripe_size = sector_size;
sb->n = sizeof(KEY) + sizeof(CHUNK_ITEM) + (sys_chunk->chunk_item->num_stripes * sizeof(CHUNK_ITEM_STRIPE));
sb->chunk_root_generation = 1;
sb->incompat_flags = incompat_flags;
sb->csum_type = def_csum_type;
memcpy(&sb->dev_item, &dev->dev_item, sizeof(DEV_ITEM));
if (label->Length > 0) {
#ifdef __REACTOS__
ANSI_STRING as;
unsigned int i;
for (i = 0; i < label->Length / sizeof(WCHAR); i++) {
#else
ULONG utf8len;
for (unsigned int i = 0; i < label->Length / sizeof(WCHAR); i++) {
#endif
if (label->Buffer[i] == '/' || label->Buffer[i] == '\\') {
#ifndef __REACTOS__
free(sb);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, sb);
#endif
return STATUS_INVALID_VOLUME_LABEL;
}
}
#ifndef __REACTOS__
utf8len = WideCharToMultiByte(CP_UTF8, 0, label->Buffer, label->Length / sizeof(WCHAR), NULL, 0, NULL, NULL);
if (utf8len == 0 || utf8len > MAX_LABEL_SIZE) {
free(sb);
return STATUS_INVALID_VOLUME_LABEL;
}
if (WideCharToMultiByte(CP_UTF8, 0, label->Buffer, label->Length / sizeof(WCHAR), sb->label, utf8len, NULL, NULL) == 0) {
free(sb);
return STATUS_INVALID_VOLUME_LABEL;
}
#else
as.Buffer = sb->label;
as.Length = 0;
as.MaximumLength = MAX_LABEL_SIZE;
if (!NT_SUCCESS(RtlUnicodeStringToAnsiString(&as, label, FALSE)))
{
RtlFreeHeap(RtlGetProcessHeap(), 0, sb);
return STATUS_INVALID_VOLUME_LABEL;
}
#endif
}
sb->cache_generation = 0xffffffffffffffff;
key = (KEY*)sb->sys_chunk_array;
key->obj_id = 0x100;
key->obj_type = TYPE_CHUNK_ITEM;
key->offset = sys_chunk->offset;
memcpy(&key[1], sys_chunk->chunk_item, sizeof(CHUNK_ITEM) + (sys_chunk->chunk_item->num_stripes * sizeof(CHUNK_ITEM_STRIPE)));
i = 0;
while (superblock_addrs[i] != 0) {
LARGE_INTEGER off;
if (superblock_addrs[i] > dev->dev_item.num_bytes)
break;
sb->sb_phys_addr = superblock_addrs[i];
calc_superblock_checksum(sb);
off.QuadPart = superblock_addrs[i];
Status = NtWriteFile(h, NULL, NULL, NULL, &iosb, sb, sblen, &off, NULL);
if (!NT_SUCCESS(Status)) {
#ifndef __REACTOS__
free(sb);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, sb);
#endif
return Status;
}
i++;
}
#ifndef __REACTOS__
free(sb);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, sb);
#endif
return STATUS_SUCCESS;
}
static __inline void win_time_to_unix(LARGE_INTEGER t, BTRFS_TIME* out) {
ULONGLONG l = t.QuadPart - 116444736000000000;
out->seconds = l / 10000000;
out->nanoseconds = (l % 10000000) * 100;
}
#ifdef __REACTOS__
VOID
WINAPI
GetSystemTimeAsFileTime(OUT PFILETIME lpFileTime)
{
LARGE_INTEGER SystemTime;
do
{
SystemTime.HighPart = SharedUserData->SystemTime.High1Time;
SystemTime.LowPart = SharedUserData->SystemTime.LowPart;
}
while (SystemTime.HighPart != SharedUserData->SystemTime.High2Time);
lpFileTime->dwLowDateTime = SystemTime.LowPart;
lpFileTime->dwHighDateTime = SystemTime.HighPart;
}
#endif
static void add_inode_ref(btrfs_root* r, uint64_t inode, uint64_t parent, uint64_t index, const char* name) {
uint16_t name_len = (uint16_t)strlen(name);
#ifndef __REACTOS__
INODE_REF* ir = malloc(offsetof(INODE_REF, name[0]) + name_len);
#else
INODE_REF* ir = RtlAllocateHeap(RtlGetProcessHeap(), 0, offsetof(INODE_REF, name[0]) + name_len);
#endif
ir->index = 0;
ir->n = name_len;
memcpy(ir->name, name, name_len);
add_item(r, inode, TYPE_INODE_REF, parent, ir, (uint16_t)offsetof(INODE_REF, name[0]) + ir->n);
#ifndef __REACTOS__
free(ir);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, ir);
#endif
}
static void init_fs_tree(btrfs_root* r, uint32_t node_size) {
INODE_ITEM ii;
FILETIME filetime;
LARGE_INTEGER time;
memset(&ii, 0, sizeof(INODE_ITEM));
ii.generation = 1;
ii.st_blocks = node_size;
ii.st_nlink = 1;
ii.st_mode = 040755;
GetSystemTimeAsFileTime(&filetime);
time.LowPart = filetime.dwLowDateTime;
time.HighPart = filetime.dwHighDateTime;
win_time_to_unix(time, &ii.st_atime);
ii.st_ctime = ii.st_mtime = ii.st_atime;
add_item(r, SUBVOL_ROOT_INODE, TYPE_INODE_ITEM, 0, &ii, sizeof(INODE_ITEM));
add_inode_ref(r, SUBVOL_ROOT_INODE, SUBVOL_ROOT_INODE, 0, "..");
}
static void add_block_group_items(LIST_ENTRY* chunks, btrfs_root* extent_root) {
LIST_ENTRY* le;
le = chunks->Flink;
while (le != chunks) {
btrfs_chunk* c = CONTAINING_RECORD(le, btrfs_chunk, list_entry);
BLOCK_GROUP_ITEM bgi;
bgi.used = c->used;
bgi.chunk_tree = 0x100;
bgi.flags = c->chunk_item->type;
add_item(extent_root, c->offset, TYPE_BLOCK_GROUP_ITEM, c->chunk_item->size, &bgi, sizeof(BLOCK_GROUP_ITEM));
le = le->Flink;
}
}
static NTSTATUS clear_first_megabyte(HANDLE h) {
NTSTATUS Status;
IO_STATUS_BLOCK iosb;
LARGE_INTEGER zero;
uint8_t* mb;
#ifndef __REACTOS__
mb = malloc(0x100000);
memset(mb, 0, 0x100000);
#else
mb = RtlAllocateHeap(RtlGetProcessHeap(), HEAP_ZERO_MEMORY, 0x100000);
#endif
zero.QuadPart = 0;
Status = NtWriteFile(h, NULL, NULL, NULL, &iosb, mb, 0x100000, &zero, NULL);
#ifndef __REACTOS__
free(mb);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, mb);
#endif
return Status;
}
static bool is_ssd(HANDLE h) {
ULONG aptelen;
ATA_PASS_THROUGH_EX* apte;
IO_STATUS_BLOCK iosb;
NTSTATUS Status;
IDENTIFY_DEVICE_DATA* idd;
aptelen = sizeof(ATA_PASS_THROUGH_EX) + 512;
#ifndef __REACTOS__
apte = malloc(aptelen);
RtlZeroMemory(apte, aptelen);
#else
apte = RtlAllocateHeap(RtlGetProcessHeap(), HEAP_ZERO_MEMORY, aptelen);
#endif
apte->Length = sizeof(ATA_PASS_THROUGH_EX);
apte->AtaFlags = ATA_FLAGS_DATA_IN;
apte->DataTransferLength = aptelen - sizeof(ATA_PASS_THROUGH_EX);
apte->TimeOutValue = 3;
apte->DataBufferOffset = apte->Length;
apte->CurrentTaskFile[6] = IDE_COMMAND_IDENTIFY;
Status = NtDeviceIoControlFile(h, NULL, NULL, NULL, &iosb, IOCTL_ATA_PASS_THROUGH, apte, aptelen, apte, aptelen);
if (NT_SUCCESS(Status)) {
idd = (IDENTIFY_DEVICE_DATA*)((uint8_t*)apte + sizeof(ATA_PASS_THROUGH_EX));
if (idd->NominalMediaRotationRate == 1) {
#ifndef __REACTOS__
free(apte);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, apte);
#endif
return true;
}
}
#ifndef __REACTOS__
free(apte);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, apte);
#endif
return false;
}
static void add_dir_item(btrfs_root* root, uint64_t inode, uint32_t hash, uint64_t key_objid, uint8_t key_type,
uint64_t key_offset, uint64_t transid, uint8_t type, const char* name) {
uint16_t name_len = (uint16_t)strlen(name);
#ifndef __REACTOS__
DIR_ITEM* di = malloc(offsetof(DIR_ITEM, name[0]) + name_len);
#else
DIR_ITEM* di = RtlAllocateHeap(RtlGetProcessHeap(), 0, offsetof(DIR_ITEM, name[0]) + name_len);
#endif
di->key.obj_id = key_objid;
di->key.obj_type = key_type;
di->key.offset = key_offset;
di->transid = transid;
di->m = 0;
di->n = name_len;
di->type = type;
memcpy(di->name, name, name_len);
add_item(root, inode, TYPE_DIR_ITEM, hash, di, (uint16_t)(offsetof(DIR_ITEM, name[0]) + di->m + di->n));
#ifndef __REACTOS__
free(di);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, di);
#endif
}
static void set_default_subvol(btrfs_root* root_root, uint32_t node_size) {
INODE_ITEM ii;
FILETIME filetime;
LARGE_INTEGER time;
static const char default_subvol[] = "default";
static const uint32_t default_hash = 0x8dbfc2d2;
add_inode_ref(root_root, BTRFS_ROOT_FSTREE, BTRFS_ROOT_TREEDIR, 0, default_subvol);
memset(&ii, 0, sizeof(INODE_ITEM));
ii.generation = 1;
ii.st_blocks = node_size;
ii.st_nlink = 1;
ii.st_mode = 040755;
GetSystemTimeAsFileTime(&filetime);
time.LowPart = filetime.dwLowDateTime;
time.HighPart = filetime.dwHighDateTime;
win_time_to_unix(time, &ii.st_atime);
ii.st_ctime = ii.st_mtime = ii.otime = ii.st_atime;
add_item(root_root, BTRFS_ROOT_TREEDIR, TYPE_INODE_ITEM, 0, &ii, sizeof(INODE_ITEM));
add_inode_ref(root_root, BTRFS_ROOT_TREEDIR, BTRFS_ROOT_TREEDIR, 0, "..");
add_dir_item(root_root, BTRFS_ROOT_TREEDIR, default_hash, BTRFS_ROOT_FSTREE, TYPE_ROOT_ITEM,
0xffffffffffffffff, 0, BTRFS_TYPE_DIRECTORY, default_subvol);
}
static NTSTATUS write_btrfs(HANDLE h, uint64_t size, PUNICODE_STRING label, uint32_t sector_size, uint32_t node_size, uint64_t incompat_flags) {
NTSTATUS Status;
LIST_ENTRY roots, chunks;
btrfs_root *root_root, *chunk_root, *extent_root, *dev_root, *fs_root, *reloc_root;
btrfs_chunk *sys_chunk, *metadata_chunk;
btrfs_dev dev;
BTRFS_UUID fsuuid, chunkuuid;
bool ssd;
uint64_t metadata_flags;
#ifdef __REACTOS__
ULONG seed;
#endif
#ifndef __REACTOS__
srand((unsigned int)time(0));
get_uuid(&fsuuid);
get_uuid(&chunkuuid);
#else
seed = NtGetTickCount();
get_uuid(&fsuuid, &seed);
get_uuid(&chunkuuid, &seed);
#endif
InitializeListHead(&roots);
InitializeListHead(&chunks);
root_root = add_root(&roots, BTRFS_ROOT_ROOT);
chunk_root = add_root(&roots, BTRFS_ROOT_CHUNK);
extent_root = add_root(&roots, BTRFS_ROOT_EXTENT);
dev_root = add_root(&roots, BTRFS_ROOT_DEVTREE);
add_root(&roots, BTRFS_ROOT_CHECKSUM);
fs_root = add_root(&roots, BTRFS_ROOT_FSTREE);
reloc_root = add_root(&roots, BTRFS_ROOT_DATA_RELOC);
#ifndef __REACTOS__
init_device(&dev, 1, size, &fsuuid, sector_size);
#else
init_device(&dev, 1, size, &fsuuid, sector_size, &seed);
#endif
ssd = is_ssd(h);
sys_chunk = add_chunk(&chunks, BLOCK_FLAG_SYSTEM | (ssd ? 0 : BLOCK_FLAG_DUPLICATE), chunk_root, &dev, dev_root, &chunkuuid, sector_size);
if (!sys_chunk)
return STATUS_INTERNAL_ERROR;
metadata_flags = BLOCK_FLAG_METADATA;
if (!ssd && !(incompat_flags & BTRFS_INCOMPAT_FLAGS_MIXED_GROUPS))
metadata_flags |= BLOCK_FLAG_DUPLICATE;
if (incompat_flags & BTRFS_INCOMPAT_FLAGS_MIXED_GROUPS)
metadata_flags |= BLOCK_FLAG_DATA;
metadata_chunk = add_chunk(&chunks, metadata_flags, chunk_root, &dev, dev_root, &chunkuuid, sector_size);
if (!metadata_chunk)
return STATUS_INTERNAL_ERROR;
add_item(chunk_root, 1, TYPE_DEV_ITEM, dev.dev_item.dev_id, &dev.dev_item, sizeof(DEV_ITEM));
set_default_subvol(root_root, node_size);
init_fs_tree(fs_root, node_size);
init_fs_tree(reloc_root, node_size);
assign_addresses(&roots, sys_chunk, metadata_chunk, node_size, root_root, extent_root, incompat_flags & BTRFS_INCOMPAT_FLAGS_SKINNY_METADATA);
add_block_group_items(&chunks, extent_root);
Status = write_roots(h, &roots, node_size, &fsuuid, &chunkuuid);
if (!NT_SUCCESS(Status))
return Status;
Status = clear_first_megabyte(h);
if (!NT_SUCCESS(Status))
return Status;
Status = write_superblocks(h, &dev, chunk_root, root_root, extent_root, sys_chunk, node_size, &fsuuid, sector_size, label, incompat_flags);
if (!NT_SUCCESS(Status))
return Status;
free_roots(&roots);
free_chunks(&chunks);
return STATUS_SUCCESS;
}
static bool look_for_device(btrfs_filesystem* bfs, BTRFS_UUID* devuuid) {
uint32_t i;
btrfs_filesystem_device* dev;
for (i = 0; i < bfs->num_devices; i++) {
if (i == 0)
dev = &bfs->device;
else
dev = (btrfs_filesystem_device*)((uint8_t*)dev + offsetof(btrfs_filesystem_device, name[0]) + dev->name_length);
if (RtlCompareMemory(&dev->uuid, devuuid, sizeof(BTRFS_UUID)) == sizeof(BTRFS_UUID))
return true;
}
return false;
}
static bool check_superblock_checksum(superblock* sb) {
switch (sb->csum_type) {
case CSUM_TYPE_CRC32C: {
uint32_t crc32 = ~calc_crc32c(0xffffffff, (uint8_t*)&sb->uuid, (ULONG)sizeof(superblock) - sizeof(sb->checksum));
return crc32 == *(uint32_t*)sb;
}
case CSUM_TYPE_XXHASH: {
uint64_t hash = XXH64(&sb->uuid, sizeof(superblock) - sizeof(sb->checksum), 0);
return hash == *(uint64_t*)sb;
}
case CSUM_TYPE_SHA256: {
uint8_t hash[SHA256_HASH_SIZE];
calc_sha256(hash, &sb->uuid, sizeof(superblock) - sizeof(sb->checksum));
return !memcmp(hash, sb, SHA256_HASH_SIZE);
}
case CSUM_TYPE_BLAKE2: {
uint8_t hash[BLAKE2_HASH_SIZE];
blake2b(hash, sizeof(hash), &sb->uuid, sizeof(superblock) - sizeof(sb->checksum));
return !memcmp(hash, sb, BLAKE2_HASH_SIZE);
}
default:
return false;
}
}
static bool is_mounted_multi_device(HANDLE h, uint32_t sector_size) {
NTSTATUS Status;
superblock* sb;
ULONG sblen;
IO_STATUS_BLOCK iosb;
LARGE_INTEGER off;
BTRFS_UUID fsuuid, devuuid;
UNICODE_STRING us;
OBJECT_ATTRIBUTES atts;
HANDLE h2;
btrfs_filesystem *bfs = NULL, *bfs2;
ULONG bfssize;
bool ret = false;
static WCHAR btrfs[] = L"\\Btrfs";
sblen = sizeof(*sb);
if (sblen & (sector_size - 1))
sblen = (sblen & sector_size) + sector_size;
#ifndef __REACTOS__
sb = malloc(sblen);
#else
sb = RtlAllocateHeap(RtlGetProcessHeap(), 0, sblen);
#endif
off.QuadPart = superblock_addrs[0];
Status = NtReadFile(h, NULL, NULL, NULL, &iosb, sb, sblen, &off, NULL);
if (!NT_SUCCESS(Status)) {
#ifndef __REACTOS__
free(sb);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, sb);
#endif
return false;
}
if (sb->magic != BTRFS_MAGIC) {
#ifndef __REACTOS__
free(sb);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, sb);
#endif
return false;
}
if (!check_superblock_checksum(sb)) {
#ifndef __REACTOS__
free(sb);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, sb);
#endif
return false;
}
fsuuid = sb->uuid;
devuuid = sb->dev_item.device_uuid;
#ifndef __REACTOS__
free(sb);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, sb);
#endif
us.Length = us.MaximumLength = (USHORT)(wcslen(btrfs) * sizeof(WCHAR));
us.Buffer = btrfs;
InitializeObjectAttributes(&atts, &us, 0, NULL, NULL);
Status = NtOpenFile(&h2, SYNCHRONIZE | FILE_READ_ATTRIBUTES, &atts, &iosb,
FILE_SHARE_READ | FILE_SHARE_WRITE, FILE_SYNCHRONOUS_IO_ALERT);
if (!NT_SUCCESS(Status)) // not a problem, it usually just means the driver isn't loaded
return false;
bfssize = 0;
do {
bfssize += 1024;
#ifndef __REACTOS__
if (bfs) free(bfs);
bfs = malloc(bfssize);
#else
if (bfs) RtlFreeHeap(RtlGetProcessHeap(), 0, bfs);
bfs = RtlAllocateHeap(RtlGetProcessHeap(), 0, bfssize);
#endif
Status = NtDeviceIoControlFile(h2, NULL, NULL, NULL, &iosb, IOCTL_BTRFS_QUERY_FILESYSTEMS, NULL, 0, bfs, bfssize);
if (!NT_SUCCESS(Status) && Status != STATUS_BUFFER_OVERFLOW) {
NtClose(h2);
return false;
}
} while (Status == STATUS_BUFFER_OVERFLOW);
if (!NT_SUCCESS(Status))
goto end;
if (bfs->num_devices != 0) {
bfs2 = bfs;
while (true) {
if (RtlCompareMemory(&bfs2->uuid, &fsuuid, sizeof(BTRFS_UUID)) == sizeof(BTRFS_UUID)) {
if (bfs2->num_devices == 1)
ret = false;
else
ret = look_for_device(bfs2, &devuuid);
goto end;
}
if (bfs2->next_entry == 0)
break;
else
bfs2 = (btrfs_filesystem*)((uint8_t*)bfs2 + bfs2->next_entry);
}
}
end:
NtClose(h2);
if (bfs)
#ifndef __REACTOS__
free(bfs);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, bfs);
#endif
return ret;
}
static void do_full_trim(HANDLE h) {
IO_STATUS_BLOCK iosb;
DEVICE_MANAGE_DATA_SET_ATTRIBUTES dmdsa;
RtlZeroMemory(&dmdsa, sizeof(DEVICE_MANAGE_DATA_SET_ATTRIBUTES));
dmdsa.Size = sizeof(DEVICE_MANAGE_DATA_SET_ATTRIBUTES);
dmdsa.Action = DeviceDsmAction_Trim;
dmdsa.Flags = DEVICE_DSM_FLAG_ENTIRE_DATA_SET_RANGE | DEVICE_DSM_FLAG_TRIM_NOT_FS_ALLOCATED;
dmdsa.ParameterBlockOffset = 0;
dmdsa.ParameterBlockLength = 0;
dmdsa.DataSetRangesOffset = 0;
dmdsa.DataSetRangesLength = 0;
NtDeviceIoControlFile(h, NULL, NULL, NULL, &iosb, IOCTL_STORAGE_MANAGE_DATA_SET_ATTRIBUTES, &dmdsa, sizeof(DEVICE_MANAGE_DATA_SET_ATTRIBUTES), NULL, 0);
}
static bool is_power_of_two(ULONG i) {
return ((i != 0) && !(i & (i - 1)));
}
#if !defined(__REACTOS__) && (defined(_X86_) || defined(_AMD64_))
static void check_cpu() {
unsigned int cpuInfo[4];
bool have_sse42;
#ifndef _MSC_VER
__get_cpuid(1, &cpuInfo[0], &cpuInfo[1], &cpuInfo[2], &cpuInfo[3]);
have_sse42 = cpuInfo[2] & bit_SSE4_2;
#else
__cpuid(cpuInfo, 1);
have_sse42 = cpuInfo[2] & (1 << 20);
#endif
if (have_sse42)
calc_crc32c = calc_crc32c_hw;
}
#endif
#ifndef __REACTOS__
static NTSTATUS NTAPI FormatEx2(PUNICODE_STRING DriveRoot, FMIFS_MEDIA_FLAG MediaFlag, PUNICODE_STRING Label,
#else
NTSTATUS NTAPI BtrfsFormatEx(PUNICODE_STRING DriveRoot, FMIFS_MEDIA_FLAG MediaFlag, PUNICODE_STRING Label,
#endif // __REACTOS__
BOOLEAN QuickFormat, ULONG ClusterSize, PFMIFSCALLBACK Callback)
{
NTSTATUS Status;
HANDLE h, btrfsh;
OBJECT_ATTRIBUTES attr;
IO_STATUS_BLOCK iosb;
GET_LENGTH_INFORMATION gli;
DISK_GEOMETRY dg;
uint32_t sector_size, node_size;
UNICODE_STRING btrfsus;
#ifndef __REACTOS__
HANDLE token;
TOKEN_PRIVILEGES tp;
LUID luid;
#endif
uint64_t incompat_flags;
UNICODE_STRING empty_label;
static WCHAR btrfs[] = L"\\Btrfs";
#ifndef __REACTOS__
if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token))
return STATUS_PRIVILEGE_NOT_HELD;
if (!LookupPrivilegeValueW(NULL, L"SeManageVolumePrivilege", &luid)) {
CloseHandle(token);
return STATUS_PRIVILEGE_NOT_HELD;
}
tp.PrivilegeCount = 1;
tp.Privileges[0].Luid = luid;
tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
if (!AdjustTokenPrivileges(token, false, &tp, sizeof(TOKEN_PRIVILEGES), NULL, NULL)) {
CloseHandle(token);
return STATUS_PRIVILEGE_NOT_HELD;
}
CloseHandle(token);
#if defined(_X86_) || defined(_AMD64_)
check_cpu();
#endif
#endif
if (def_csum_type != CSUM_TYPE_CRC32C && def_csum_type != CSUM_TYPE_XXHASH && def_csum_type != CSUM_TYPE_SHA256 &&
def_csum_type != CSUM_TYPE_BLAKE2)
return STATUS_INVALID_PARAMETER;
InitializeObjectAttributes(&attr, DriveRoot, OBJ_CASE_INSENSITIVE, NULL, NULL);
Status = NtOpenFile(&h, FILE_GENERIC_READ | FILE_GENERIC_WRITE, &attr, &iosb,
FILE_SHARE_READ, FILE_SYNCHRONOUS_IO_ALERT);
if (!NT_SUCCESS(Status))
return Status;
Status = NtDeviceIoControlFile(h, NULL, NULL, NULL, &iosb, IOCTL_DISK_GET_LENGTH_INFO, NULL, 0, &gli, sizeof(gli));
if (!NT_SUCCESS(Status)) {
NtClose(h);
return Status;
}
// MSDN tells us to use IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, but there are
// some instances where it fails and IOCTL_DISK_GET_DRIVE_GEOMETRY succeeds -
// such as with spanned volumes.
Status = NtDeviceIoControlFile(h, NULL, NULL, NULL, &iosb, IOCTL_DISK_GET_DRIVE_GEOMETRY, NULL, 0, &dg, sizeof(dg));
if (!NT_SUCCESS(Status)) {
NtClose(h);
return Status;
}
if (def_sector_size == 0) {
sector_size = dg.BytesPerSector;
if (sector_size == 0x200 || sector_size == 0)
sector_size = 0x1000;
} else {
if (dg.BytesPerSector != 0 && (def_sector_size < dg.BytesPerSector || def_sector_size % dg.BytesPerSector != 0 || !is_power_of_two(def_sector_size / dg.BytesPerSector))) {
NtClose(h);
return STATUS_INVALID_PARAMETER;
}
sector_size = def_sector_size;
}
if (def_node_size == 0)
node_size = 0x4000;
else {
if (def_node_size < sector_size || def_node_size % sector_size != 0 || !is_power_of_two(def_node_size / sector_size)) {
NtClose(h);
return STATUS_INVALID_PARAMETER;
}
node_size = def_node_size;
}
if (Callback) {
ULONG pc = 0;
Callback(PROGRESS, 0, (PVOID)&pc);
}
NtFsControlFile(h, NULL, NULL, NULL, &iosb, FSCTL_LOCK_VOLUME, NULL, 0, NULL, 0);
if (is_mounted_multi_device(h, sector_size)) {
Status = STATUS_ACCESS_DENIED;
goto end;
}
do_full_trim(h);
incompat_flags = def_incompat_flags;
incompat_flags |= BTRFS_INCOMPAT_FLAGS_MIXED_BACKREF | BTRFS_INCOMPAT_FLAGS_BIG_METADATA;
if (!Label) {
empty_label.Buffer = NULL;
empty_label.Length = empty_label.MaximumLength = 0;
Label = &empty_label;
}
Status = write_btrfs(h, gli.Length.QuadPart, Label, sector_size, node_size, incompat_flags);
NtFsControlFile(h, NULL, NULL, NULL, &iosb, FSCTL_DISMOUNT_VOLUME, NULL, 0, NULL, 0);
end:
NtFsControlFile(h, NULL, NULL, NULL, &iosb, FSCTL_UNLOCK_VOLUME, NULL, 0, NULL, 0);
NtClose(h);
if (NT_SUCCESS(Status)) {
btrfsus.Buffer = btrfs;
btrfsus.Length = btrfsus.MaximumLength = (USHORT)(wcslen(btrfs) * sizeof(WCHAR));
InitializeObjectAttributes(&attr, &btrfsus, 0, NULL, NULL);
Status = NtOpenFile(&btrfsh, FILE_GENERIC_READ | FILE_GENERIC_WRITE, &attr, &iosb,
FILE_SHARE_READ, FILE_SYNCHRONOUS_IO_ALERT);
if (NT_SUCCESS(Status)) {
MOUNTDEV_NAME* mdn;
ULONG mdnsize;
mdnsize = (ULONG)(offsetof(MOUNTDEV_NAME, Name[0]) + DriveRoot->Length);
#ifndef __REACTOS__
mdn = malloc(mdnsize);
#else
mdn = RtlAllocateHeap(RtlGetProcessHeap(), 0, mdnsize);
#endif
mdn->NameLength = DriveRoot->Length;
memcpy(mdn->Name, DriveRoot->Buffer, DriveRoot->Length);
NtDeviceIoControlFile(btrfsh, NULL, NULL, NULL, &iosb, IOCTL_BTRFS_PROBE_VOLUME, mdn, mdnsize, NULL, 0);
#ifndef __REACTOS__
free(mdn);
#else
RtlFreeHeap(RtlGetProcessHeap(), 0, mdn);
#endif
NtClose(btrfsh);
}
Status = STATUS_SUCCESS;
}
if (Callback) {
bool success = NT_SUCCESS(Status);
Callback(DONE, 0, (PVOID)&success);
}
return Status;
}
BOOL __stdcall FormatEx(DSTRING* root, STREAM_MESSAGE* message, options* opts, uint32_t unk1) {
UNICODE_STRING DriveRoot, Label;
NTSTATUS Status;
if (!root || !root->string)
return false;
DriveRoot.Length = DriveRoot.MaximumLength = (USHORT)(wcslen(root->string) * sizeof(WCHAR));
DriveRoot.Buffer = root->string;
if (opts && opts->label && opts->label->string) {
Label.Length = Label.MaximumLength = (USHORT)(wcslen(opts->label->string) * sizeof(WCHAR));
Label.Buffer = opts->label->string;
} else {
Label.Length = Label.MaximumLength = 0;
Label.Buffer = NULL;
}
#ifndef __REACTOS__
Status = FormatEx2(&DriveRoot, FMIFS_HARDDISK, &Label, opts && opts->flags & FORMAT_FLAG_QUICK_FORMAT, 0, NULL);
#else
Status = BtrfsFormatEx(&DriveRoot, FMIFS_HARDDISK, &Label, opts && opts->flags & FORMAT_FLAG_QUICK_FORMAT, 0, NULL);
#endif
return NT_SUCCESS(Status);
}
void __stdcall SetSizes(ULONG sector, ULONG node) {
if (sector != 0)
def_sector_size = sector;
if (node != 0)
def_node_size = node;
}
void __stdcall SetIncompatFlags(uint64_t incompat_flags) {
def_incompat_flags = incompat_flags;
}
void __stdcall SetCsumType(uint16_t csum_type) {
def_csum_type = csum_type;
}
BOOL __stdcall GetFilesystemInformation(uint32_t unk1, uint32_t unk2, void* unk3) {
// STUB - undocumented
return true;
}
#ifndef __REACTOS__
BOOL APIENTRY DllMain(HANDLE hModule, DWORD dwReason, void* lpReserved) {
if (dwReason == DLL_PROCESS_ATTACH)
module = (HMODULE)hModule;
return true;
}
#endif