mirror of
https://github.com/reactos/reactos.git
synced 2025-01-11 16:51:06 +00:00
c424146e2c
svn path=/branches/cmake-bringup/; revision=48236
589 lines
17 KiB
C
589 lines
17 KiB
C
/*
|
|
* PROJECT: ReactOS Kernel
|
|
* LICENSE: GPL - See COPYING in the top level directory
|
|
* FILE: ntoskrnl/ke/amd64/cpu.c
|
|
* PURPOSE: Routines for CPU-level support
|
|
* PROGRAMMERS: Alex Ionescu (alex.ionescu@reactos.org)
|
|
* Timo Kreuzer (timo.kreuzer@reactos.org)
|
|
*/
|
|
|
|
/* INCLUDES *****************************************************************/
|
|
|
|
#include <ntoskrnl.h>
|
|
#define NDEBUG
|
|
#include <debug.h>
|
|
|
|
/* FIXME: Local EFLAGS defines not used anywhere else */
|
|
#define EFLAGS_IOPL 0x3000
|
|
#define EFLAGS_NF 0x4000
|
|
#define EFLAGS_RF 0x10000
|
|
#define EFLAGS_ID 0x200000
|
|
|
|
/* GLOBALS *******************************************************************/
|
|
|
|
/* The Boot TSS */
|
|
KTSS64 KiBootTss;
|
|
|
|
/* CPU Features and Flags */
|
|
ULONG KeI386CpuType;
|
|
ULONG KeI386CpuStep;
|
|
ULONG KeProcessorArchitecture;
|
|
ULONG KeProcessorLevel;
|
|
ULONG KeProcessorRevision;
|
|
ULONG KeFeatureBits;
|
|
ULONG KeI386MachineType;
|
|
ULONG KeI386NpxPresent = 1;
|
|
ULONG KeLargestCacheLine = 0x40;
|
|
ULONG KiDmaIoCoherency = 0;
|
|
CHAR KeNumberProcessors = 0;
|
|
KAFFINITY KeActiveProcessors = 1;
|
|
BOOLEAN KiI386PentiumLockErrataPresent;
|
|
BOOLEAN KiSMTProcessorsPresent;
|
|
|
|
/* Freeze data */
|
|
KIRQL KiOldIrql;
|
|
ULONG KiFreezeFlag;
|
|
|
|
/* Flush data */
|
|
volatile LONG KiTbFlushTimeStamp;
|
|
|
|
/* CPU Signatures */
|
|
static const CHAR CmpIntelID[] = "GenuineIntel";
|
|
static const CHAR CmpAmdID[] = "AuthenticAMD";
|
|
static const CHAR CmpCyrixID[] = "CyrixInstead";
|
|
static const CHAR CmpTransmetaID[] = "GenuineTMx86";
|
|
static const CHAR CmpCentaurID[] = "CentaurHauls";
|
|
static const CHAR CmpRiseID[] = "RiseRiseRise";
|
|
|
|
/* SUPPORT ROUTINES FOR MSVC COMPATIBILITY ***********************************/
|
|
|
|
VOID
|
|
NTAPI
|
|
CPUID(IN ULONG InfoType,
|
|
OUT PULONG CpuInfoEax,
|
|
OUT PULONG CpuInfoEbx,
|
|
OUT PULONG CpuInfoEcx,
|
|
OUT PULONG CpuInfoEdx)
|
|
{
|
|
ULONG CpuInfo[4];
|
|
|
|
/* Perform the CPUID Operation */
|
|
__cpuid((int*)CpuInfo, InfoType);
|
|
|
|
/* Return the results */
|
|
*CpuInfoEax = CpuInfo[0];
|
|
*CpuInfoEbx = CpuInfo[1];
|
|
*CpuInfoEcx = CpuInfo[2];
|
|
*CpuInfoEdx = CpuInfo[3];
|
|
}
|
|
|
|
/* FUNCTIONS *****************************************************************/
|
|
|
|
VOID
|
|
NTAPI
|
|
KiSetProcessorType(VOID)
|
|
{
|
|
ULONG64 EFlags;
|
|
INT Reg[4];
|
|
ULONG Stepping, Type;
|
|
|
|
/* Start by assuming no CPUID data */
|
|
KeGetCurrentPrcb()->CpuID = 0;
|
|
|
|
/* Save EFlags */
|
|
EFlags = __readeflags();
|
|
|
|
/* Do CPUID 1 now */
|
|
__cpuid(Reg, 1);
|
|
|
|
/*
|
|
* Get the Stepping and Type. The stepping contains both the
|
|
* Model and the Step, while the Type contains the returned Type.
|
|
* We ignore the family.
|
|
*
|
|
* For the stepping, we convert this: zzzzzzxy into this: x0y
|
|
*/
|
|
Stepping = Reg[0] & 0xF0;
|
|
Stepping <<= 4;
|
|
Stepping += (Reg[0] & 0xFF);
|
|
Stepping &= 0xF0F;
|
|
Type = Reg[0] & 0xF00;
|
|
Type >>= 8;
|
|
|
|
/* Save them in the PRCB */
|
|
KeGetCurrentPrcb()->CpuID = TRUE;
|
|
KeGetCurrentPrcb()->CpuType = (UCHAR)Type;
|
|
KeGetCurrentPrcb()->CpuStep = (USHORT)Stepping;
|
|
|
|
/* Restore EFLAGS */
|
|
__writeeflags(EFlags);
|
|
}
|
|
|
|
ULONG
|
|
NTAPI
|
|
KiGetCpuVendor(VOID)
|
|
{
|
|
PKPRCB Prcb = KeGetCurrentPrcb();
|
|
INT Vendor[5];
|
|
|
|
/* Get the Vendor ID and null-terminate it */
|
|
__cpuid(Vendor, 0);
|
|
|
|
/* Copy it to the PRCB and null-terminate it */
|
|
*(ULONG*)&Prcb->VendorString[0] = Vendor[1]; // ebx
|
|
*(ULONG*)&Prcb->VendorString[4] = Vendor[3]; // edx
|
|
*(ULONG*)&Prcb->VendorString[8] = Vendor[2]; // ecx
|
|
*(ULONG*)&Prcb->VendorString[12] = 0;
|
|
|
|
/* Now check the CPU Type */
|
|
if (!strcmp((PCHAR)Prcb->VendorString, CmpIntelID))
|
|
{
|
|
return CPU_INTEL;
|
|
}
|
|
else if (!strcmp((PCHAR)Prcb->VendorString, CmpAmdID))
|
|
{
|
|
return CPU_AMD;
|
|
}
|
|
else if (!strcmp((PCHAR)Prcb->VendorString, CmpCyrixID))
|
|
{
|
|
DPRINT1("Cyrix CPUs not fully supported\n");
|
|
return 0;
|
|
}
|
|
else if (!strcmp((PCHAR)Prcb->VendorString, CmpTransmetaID))
|
|
{
|
|
DPRINT1("Transmeta CPUs not fully supported\n");
|
|
return 0;
|
|
}
|
|
else if (!strcmp((PCHAR)Prcb->VendorString, CmpCentaurID))
|
|
{
|
|
DPRINT1("VIA CPUs not fully supported\n");
|
|
return 0;
|
|
}
|
|
else if (!strcmp((PCHAR)Prcb->VendorString, CmpRiseID))
|
|
{
|
|
DPRINT1("Rise CPUs not fully supported\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Invalid CPU */
|
|
return 0;
|
|
}
|
|
|
|
ULONG
|
|
NTAPI
|
|
KiGetFeatureBits(VOID)
|
|
{
|
|
PKPRCB Prcb = KeGetCurrentPrcb();
|
|
ULONG Vendor;
|
|
ULONG FeatureBits = KF_WORKING_PTE;
|
|
INT Reg[4];
|
|
ULONG CpuFeatures = 0;
|
|
|
|
/* Get the Vendor ID */
|
|
Vendor = KiGetCpuVendor();
|
|
|
|
/* Make sure we got a valid vendor ID at least. */
|
|
if (!Vendor) return FeatureBits;
|
|
|
|
/* Get the CPUID Info. Features are in Reg[3]. */
|
|
__cpuid(Reg, 1);
|
|
|
|
/* Set the initial APIC ID */
|
|
Prcb->InitialApicId = (UCHAR)(Reg[1] >> 24);
|
|
|
|
/* Set the current features */
|
|
CpuFeatures = Reg[3];
|
|
|
|
/* Convert all CPUID Feature bits into our format */
|
|
if (CpuFeatures & 0x00000002) FeatureBits |= KF_V86_VIS | KF_CR4;
|
|
if (CpuFeatures & 0x00000008) FeatureBits |= KF_LARGE_PAGE | KF_CR4;
|
|
if (CpuFeatures & 0x00000010) FeatureBits |= KF_RDTSC;
|
|
if (CpuFeatures & 0x00000100) FeatureBits |= KF_CMPXCHG8B;
|
|
if (CpuFeatures & 0x00000800) FeatureBits |= KF_FAST_SYSCALL;
|
|
if (CpuFeatures & 0x00001000) FeatureBits |= KF_MTRR;
|
|
if (CpuFeatures & 0x00002000) FeatureBits |= KF_GLOBAL_PAGE | KF_CR4;
|
|
if (CpuFeatures & 0x00008000) FeatureBits |= KF_CMOV;
|
|
if (CpuFeatures & 0x00010000) FeatureBits |= KF_PAT;
|
|
if (CpuFeatures & 0x00200000) FeatureBits |= KF_DTS;
|
|
if (CpuFeatures & 0x00800000) FeatureBits |= KF_MMX;
|
|
if (CpuFeatures & 0x01000000) FeatureBits |= KF_FXSR;
|
|
if (CpuFeatures & 0x02000000) FeatureBits |= KF_XMMI;
|
|
if (CpuFeatures & 0x04000000) FeatureBits |= KF_XMMI64;
|
|
|
|
#if 0
|
|
if (Reg[2] & 0x00000001) FeatureBits |= KF_SSE3NEW;
|
|
if (Reg[2] & 0x00000008) FeatureBits |= KF_MONITOR;
|
|
if (Reg[2] & 0x00000200) FeatureBits |= KF_SSE3SUP;
|
|
if (Reg[2] & 0x00002000) FeatureBits |= KF_CMPXCHG16B;
|
|
if (Reg[2] & 0x00080000) FeatureBits |= KF_SSE41;
|
|
if (Reg[2] & 0x00800000) FeatureBits |= KF_POPCNT;
|
|
#endif
|
|
|
|
/* Check if the CPU has hyper-threading */
|
|
if (CpuFeatures & 0x10000000)
|
|
{
|
|
/* Set the number of logical CPUs */
|
|
Prcb->LogicalProcessorsPerPhysicalProcessor = (UCHAR)(Reg[1] >> 16);
|
|
if (Prcb->LogicalProcessorsPerPhysicalProcessor > 1)
|
|
{
|
|
/* We're on dual-core */
|
|
KiSMTProcessorsPresent = TRUE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We only have a single CPU */
|
|
Prcb->LogicalProcessorsPerPhysicalProcessor = 1;
|
|
}
|
|
|
|
/* Check extended cpuid features */
|
|
__cpuid(Reg, 0x80000000);
|
|
if ((Reg[0] & 0xffffff00) == 0x80000000)
|
|
{
|
|
/* Check if CPUID 0x80000001 is supported */
|
|
if (Reg[0] >= 0x80000001)
|
|
{
|
|
/* Check which extended features are available. */
|
|
__cpuid(Reg, 0x80000001);
|
|
|
|
/* Check if NX-bit is supported */
|
|
if (Reg[3] & 0x00100000) FeatureBits |= KF_NX_BIT;
|
|
|
|
/* Now handle each features for each CPU Vendor */
|
|
switch (Vendor)
|
|
{
|
|
case CPU_AMD:
|
|
if (Reg[3] & 0x80000000) FeatureBits |= KF_3DNOW;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return the Feature Bits */
|
|
return FeatureBits;
|
|
}
|
|
|
|
VOID
|
|
NTAPI
|
|
KiGetCacheInformation(VOID)
|
|
{
|
|
PKIPCR Pcr = (PKIPCR)KeGetPcr();
|
|
ULONG Vendor;
|
|
INT Data[4];
|
|
ULONG CacheRequests = 0, i;
|
|
ULONG CurrentRegister;
|
|
UCHAR RegisterByte;
|
|
BOOLEAN FirstPass = TRUE;
|
|
|
|
/* Set default L2 size */
|
|
Pcr->SecondLevelCacheSize = 0;
|
|
|
|
/* Get the Vendor ID and make sure we support CPUID */
|
|
Vendor = KiGetCpuVendor();
|
|
if (!Vendor) return;
|
|
|
|
/* Check the Vendor ID */
|
|
switch (Vendor)
|
|
{
|
|
/* Handle Intel case */
|
|
case CPU_INTEL:
|
|
|
|
/*Check if we support CPUID 2 */
|
|
__cpuid(Data, 0);
|
|
if (Data[0] >= 2)
|
|
{
|
|
/* We need to loop for the number of times CPUID will tell us to */
|
|
do
|
|
{
|
|
/* Do the CPUID call */
|
|
__cpuid(Data, 2);
|
|
|
|
/* Check if it was the first call */
|
|
if (FirstPass)
|
|
{
|
|
/*
|
|
* The number of times to loop is the first byte. Read
|
|
* it and then destroy it so we don't get confused.
|
|
*/
|
|
CacheRequests = Data[0] & 0xFF;
|
|
Data[0] &= 0xFFFFFF00;
|
|
|
|
/* Don't go over this again */
|
|
FirstPass = FALSE;
|
|
}
|
|
|
|
/* Loop all 4 registers */
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
/* Get the current register */
|
|
CurrentRegister = Data[i];
|
|
|
|
/*
|
|
* If the upper bit is set, then this register should
|
|
* be skipped.
|
|
*/
|
|
if (CurrentRegister & 0x80000000) continue;
|
|
|
|
/* Keep looping for every byte inside this register */
|
|
while (CurrentRegister)
|
|
{
|
|
/* Read a byte, skip a byte. */
|
|
RegisterByte = (UCHAR)(CurrentRegister & 0xFF);
|
|
CurrentRegister >>= 8;
|
|
if (!RegisterByte) continue;
|
|
|
|
/*
|
|
* Valid values are from 0x40 (0 bytes) to 0x49
|
|
* (32MB), or from 0x80 to 0x89 (same size but
|
|
* 8-way associative.
|
|
*/
|
|
if (((RegisterByte > 0x40) &&
|
|
(RegisterByte <= 0x49)) ||
|
|
((RegisterByte > 0x80) &&
|
|
(RegisterByte <= 0x89)))
|
|
{
|
|
/* Mask out only the first nibble */
|
|
RegisterByte &= 0x0F;
|
|
|
|
/* Set the L2 Cache Size */
|
|
Pcr->SecondLevelCacheSize = 0x10000 <<
|
|
RegisterByte;
|
|
}
|
|
}
|
|
}
|
|
} while (--CacheRequests);
|
|
}
|
|
break;
|
|
|
|
case CPU_AMD:
|
|
|
|
/* Check if we support CPUID 0x80000006 */
|
|
__cpuid(Data, 0x80000000);
|
|
if (Data[0] >= 6)
|
|
{
|
|
/* Get 2nd level cache and tlb size */
|
|
__cpuid(Data, 0x80000006);
|
|
|
|
/* Set the L2 Cache Size */
|
|
Pcr->SecondLevelCacheSize = (Data[2] & 0xFFFF0000) >> 6;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
VOID
|
|
FASTCALL
|
|
KiInitializeTss(IN PKTSS64 Tss,
|
|
IN UINT64 Stack)
|
|
{
|
|
PKGDTENTRY64 TssEntry;
|
|
|
|
/* Get pointer to the GDT entry */
|
|
TssEntry = KiGetGdtEntry(KeGetPcr()->GdtBase, KGDT64_SYS_TSS);
|
|
|
|
/* Initialize the GDT entry */
|
|
KiInitGdtEntry(TssEntry, (ULONG64)Tss, sizeof(KTSS64), AMD64_TSS, 0);
|
|
|
|
/* Zero out the TSS */
|
|
RtlZeroMemory(Tss, sizeof(KTSS64));
|
|
|
|
/* FIXME: I/O Map? */
|
|
Tss->IoMapBase = 0x68;
|
|
|
|
/* Setup ring 0 stack pointer */
|
|
Tss->Rsp0 = Stack;
|
|
|
|
/* Setup a stack for Double Fault Traps */
|
|
Tss->Ist[1] = (ULONG64)KiDoubleFaultStack;
|
|
|
|
/* Setup a stack for CheckAbort Traps */
|
|
Tss->Ist[2] = (ULONG64)KiDoubleFaultStack;
|
|
|
|
/* Setup a stack for NMI Traps */
|
|
Tss->Ist[3] = (ULONG64)KiDoubleFaultStack;
|
|
|
|
/* Load the task register */
|
|
__ltr(KGDT64_SYS_TSS);
|
|
}
|
|
|
|
VOID
|
|
NTAPI
|
|
KeFlushCurrentTb(VOID)
|
|
{
|
|
/* Flush the TLB by resetting CR3 */
|
|
__writecr3(__readcr3());
|
|
}
|
|
|
|
VOID
|
|
NTAPI
|
|
KiRestoreProcessorControlState(PKPROCESSOR_STATE ProcessorState)
|
|
{
|
|
/* Restore the CR registers */
|
|
__writecr0(ProcessorState->SpecialRegisters.Cr0);
|
|
// __writecr2(ProcessorState->SpecialRegisters.Cr2);
|
|
__writecr3(ProcessorState->SpecialRegisters.Cr3);
|
|
__writecr4(ProcessorState->SpecialRegisters.Cr4);
|
|
__writecr8(ProcessorState->SpecialRegisters.Cr8);
|
|
|
|
/* Restore the DR registers */
|
|
__writedr(0, ProcessorState->SpecialRegisters.KernelDr0);
|
|
__writedr(1, ProcessorState->SpecialRegisters.KernelDr1);
|
|
__writedr(2, ProcessorState->SpecialRegisters.KernelDr2);
|
|
__writedr(3, ProcessorState->SpecialRegisters.KernelDr3);
|
|
__writedr(6, ProcessorState->SpecialRegisters.KernelDr6);
|
|
__writedr(7, ProcessorState->SpecialRegisters.KernelDr7);
|
|
|
|
/* Restore GDT, IDT, LDT and TSS */
|
|
__lgdt(&ProcessorState->SpecialRegisters.Gdtr.Limit);
|
|
// __lldt(&ProcessorState->SpecialRegisters.Ldtr);
|
|
// __ltr(&ProcessorState->SpecialRegisters.Tr);
|
|
__lidt(&ProcessorState->SpecialRegisters.Idtr.Limit);
|
|
|
|
// __ldmxcsr(&ProcessorState->SpecialRegisters.MxCsr); // FIXME
|
|
// ProcessorState->SpecialRegisters.DebugControl
|
|
// ProcessorState->SpecialRegisters.LastBranchToRip
|
|
// ProcessorState->SpecialRegisters.LastBranchFromRip
|
|
// ProcessorState->SpecialRegisters.LastExceptionToRip
|
|
// ProcessorState->SpecialRegisters.LastExceptionFromRip
|
|
|
|
/* Restore MSRs */
|
|
__writemsr(X86_MSR_GSBASE, ProcessorState->SpecialRegisters.MsrGsBase);
|
|
__writemsr(X86_MSR_KERNEL_GSBASE, ProcessorState->SpecialRegisters.MsrGsSwap);
|
|
__writemsr(X86_MSR_STAR, ProcessorState->SpecialRegisters.MsrStar);
|
|
__writemsr(X86_MSR_LSTAR, ProcessorState->SpecialRegisters.MsrLStar);
|
|
__writemsr(X86_MSR_CSTAR, ProcessorState->SpecialRegisters.MsrCStar);
|
|
__writemsr(X86_MSR_SFMASK, ProcessorState->SpecialRegisters.MsrSyscallMask);
|
|
|
|
}
|
|
|
|
VOID
|
|
NTAPI
|
|
KiSaveProcessorControlState(OUT PKPROCESSOR_STATE ProcessorState)
|
|
{
|
|
/* Save the CR registers */
|
|
ProcessorState->SpecialRegisters.Cr0 = __readcr0();
|
|
ProcessorState->SpecialRegisters.Cr2 = __readcr2();
|
|
ProcessorState->SpecialRegisters.Cr3 = __readcr3();
|
|
ProcessorState->SpecialRegisters.Cr4 = __readcr4();
|
|
ProcessorState->SpecialRegisters.Cr8 = __readcr8();
|
|
|
|
/* Save the DR registers */
|
|
ProcessorState->SpecialRegisters.KernelDr0 = __readdr(0);
|
|
ProcessorState->SpecialRegisters.KernelDr1 = __readdr(1);
|
|
ProcessorState->SpecialRegisters.KernelDr2 = __readdr(2);
|
|
ProcessorState->SpecialRegisters.KernelDr3 = __readdr(3);
|
|
ProcessorState->SpecialRegisters.KernelDr6 = __readdr(6);
|
|
ProcessorState->SpecialRegisters.KernelDr7 = __readdr(7);
|
|
|
|
/* Save GDT, IDT, LDT and TSS */
|
|
__sgdt(&ProcessorState->SpecialRegisters.Gdtr.Limit);
|
|
__sldt(&ProcessorState->SpecialRegisters.Ldtr);
|
|
__str(&ProcessorState->SpecialRegisters.Tr);
|
|
__sidt(&ProcessorState->SpecialRegisters.Idtr.Limit);
|
|
|
|
// __stmxcsr(&ProcessorState->SpecialRegisters.MxCsr);
|
|
// ProcessorState->SpecialRegisters.DebugControl =
|
|
// ProcessorState->SpecialRegisters.LastBranchToRip =
|
|
// ProcessorState->SpecialRegisters.LastBranchFromRip =
|
|
// ProcessorState->SpecialRegisters.LastExceptionToRip =
|
|
// ProcessorState->SpecialRegisters.LastExceptionFromRip =
|
|
|
|
/* Save MSRs */
|
|
ProcessorState->SpecialRegisters.MsrGsBase = __readmsr(X86_MSR_GSBASE);
|
|
ProcessorState->SpecialRegisters.MsrGsSwap = __readmsr(X86_MSR_KERNEL_GSBASE);
|
|
ProcessorState->SpecialRegisters.MsrStar = __readmsr(X86_MSR_STAR);
|
|
ProcessorState->SpecialRegisters.MsrLStar = __readmsr(X86_MSR_LSTAR);
|
|
ProcessorState->SpecialRegisters.MsrCStar = __readmsr(X86_MSR_CSTAR);
|
|
ProcessorState->SpecialRegisters.MsrSyscallMask = __readmsr(X86_MSR_SFMASK);
|
|
}
|
|
|
|
VOID
|
|
NTAPI
|
|
KeFlushEntireTb(IN BOOLEAN Invalid,
|
|
IN BOOLEAN AllProcessors)
|
|
{
|
|
KIRQL OldIrql;
|
|
|
|
// FIXME: halfplemented
|
|
/* Raise the IRQL for the TB Flush */
|
|
OldIrql = KeRaiseIrqlToSynchLevel();
|
|
|
|
/* Flush the TB for the Current CPU, and update the flush stamp */
|
|
KeFlushCurrentTb();
|
|
|
|
/* Update the flush stamp and return to original IRQL */
|
|
InterlockedExchangeAdd(&KiTbFlushTimeStamp, 1);
|
|
KeLowerIrql(OldIrql);
|
|
|
|
}
|
|
|
|
KAFFINITY
|
|
NTAPI
|
|
KeQueryActiveProcessors(VOID)
|
|
{
|
|
PAGED_CODE();
|
|
|
|
/* Simply return the number of active processors */
|
|
return KeActiveProcessors;
|
|
}
|
|
|
|
NTSTATUS
|
|
NTAPI
|
|
KeSaveFloatingPointState(OUT PKFLOATING_SAVE Save)
|
|
{
|
|
UNIMPLEMENTED;
|
|
return STATUS_UNSUCCESSFUL;
|
|
}
|
|
|
|
NTSTATUS
|
|
NTAPI
|
|
KeRestoreFloatingPointState(IN PKFLOATING_SAVE Save)
|
|
{
|
|
UNIMPLEMENTED;
|
|
return STATUS_UNSUCCESSFUL;
|
|
}
|
|
|
|
BOOLEAN
|
|
NTAPI
|
|
KeInvalidateAllCaches(VOID)
|
|
{
|
|
/* Invalidate all caches */
|
|
__wbinvd();
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* @implemented
|
|
*/
|
|
ULONG
|
|
NTAPI
|
|
KeGetRecommendedSharedDataAlignment(VOID)
|
|
{
|
|
/* Return the global variable */
|
|
return KeLargestCacheLine;
|
|
}
|
|
|
|
/*
|
|
* @implemented
|
|
*/
|
|
VOID
|
|
__cdecl
|
|
KeSaveStateForHibernate(IN PKPROCESSOR_STATE State)
|
|
{
|
|
/* Capture the context */
|
|
RtlCaptureContext(&State->ContextFrame);
|
|
|
|
/* Capture the control state */
|
|
KiSaveProcessorControlState(State);
|
|
}
|
|
|
|
/*
|
|
* @implemented
|
|
*/
|
|
VOID
|
|
NTAPI
|
|
KeSetDmaIoCoherency(IN ULONG Coherency)
|
|
{
|
|
/* Save the coherency globally */
|
|
KiDmaIoCoherency = Coherency;
|
|
}
|