mirror of
https://github.com/reactos/reactos.git
synced 2024-11-20 06:15:26 +00:00
3046 lines
78 KiB
C
3046 lines
78 KiB
C
/*
|
|
* Copyright (c) 1991-1997 Sam Leffler
|
|
* Copyright (c) 1991-1997 Silicon Graphics, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute, and sell this software and
|
|
* its documentation for any purpose is hereby granted without fee, provided
|
|
* that (i) the above copyright notices and this permission notice appear in
|
|
* all copies of the software and related documentation, and (ii) the names of
|
|
* Sam Leffler and Silicon Graphics may not be used in any advertising or
|
|
* publicity relating to the software without the specific, prior written
|
|
* permission of Sam Leffler and Silicon Graphics.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
|
|
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
|
|
*
|
|
* IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
|
|
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
|
|
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
|
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
|
|
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
|
* OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* TIFF Library
|
|
*
|
|
* Read and return a packed RGBA image.
|
|
*/
|
|
#include <precomp.h>
|
|
//#include <stdio.h>
|
|
|
|
static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
|
|
static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
|
|
static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
|
|
static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
|
|
static int PickContigCase(TIFFRGBAImage*);
|
|
static int PickSeparateCase(TIFFRGBAImage*);
|
|
|
|
static int BuildMapUaToAa(TIFFRGBAImage* img);
|
|
static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
|
|
|
|
static const char photoTag[] = "PhotometricInterpretation";
|
|
|
|
/*
|
|
* Helper constants used in Orientation tag handling
|
|
*/
|
|
#define FLIP_VERTICALLY 0x01
|
|
#define FLIP_HORIZONTALLY 0x02
|
|
|
|
/*
|
|
* Color conversion constants. We will define display types here.
|
|
*/
|
|
|
|
static const TIFFDisplay display_sRGB = {
|
|
{ /* XYZ -> luminance matrix */
|
|
{ 3.2410F, -1.5374F, -0.4986F },
|
|
{ -0.9692F, 1.8760F, 0.0416F },
|
|
{ 0.0556F, -0.2040F, 1.0570F }
|
|
},
|
|
100.0F, 100.0F, 100.0F, /* Light o/p for reference white */
|
|
255, 255, 255, /* Pixel values for ref. white */
|
|
1.0F, 1.0F, 1.0F, /* Residual light o/p for black pixel */
|
|
2.4F, 2.4F, 2.4F, /* Gamma values for the three guns */
|
|
};
|
|
|
|
/*
|
|
* Check the image to see if TIFFReadRGBAImage can deal with it.
|
|
* 1/0 is returned according to whether or not the image can
|
|
* be handled. If 0 is returned, emsg contains the reason
|
|
* why it is being rejected.
|
|
*/
|
|
int
|
|
TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
|
|
{
|
|
TIFFDirectory* td = &tif->tif_dir;
|
|
uint16 photometric;
|
|
int colorchannels;
|
|
|
|
if (!tif->tif_decodestatus) {
|
|
sprintf(emsg, "Sorry, requested compression method is not configured");
|
|
return (0);
|
|
}
|
|
switch (td->td_bitspersample) {
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
case 16:
|
|
break;
|
|
default:
|
|
sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
|
|
td->td_bitspersample);
|
|
return (0);
|
|
}
|
|
if (td->td_sampleformat == SAMPLEFORMAT_IEEEFP) {
|
|
sprintf(emsg, "Sorry, can not handle images with IEEE floating-point samples");
|
|
return (0);
|
|
}
|
|
colorchannels = td->td_samplesperpixel - td->td_extrasamples;
|
|
if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
|
|
switch (colorchannels) {
|
|
case 1:
|
|
photometric = PHOTOMETRIC_MINISBLACK;
|
|
break;
|
|
case 3:
|
|
photometric = PHOTOMETRIC_RGB;
|
|
break;
|
|
default:
|
|
sprintf(emsg, "Missing needed %s tag", photoTag);
|
|
return (0);
|
|
}
|
|
}
|
|
switch (photometric) {
|
|
case PHOTOMETRIC_MINISWHITE:
|
|
case PHOTOMETRIC_MINISBLACK:
|
|
case PHOTOMETRIC_PALETTE:
|
|
if (td->td_planarconfig == PLANARCONFIG_CONTIG
|
|
&& td->td_samplesperpixel != 1
|
|
&& td->td_bitspersample < 8 ) {
|
|
sprintf(emsg,
|
|
"Sorry, can not handle contiguous data with %s=%d, "
|
|
"and %s=%d and Bits/Sample=%d",
|
|
photoTag, photometric,
|
|
"Samples/pixel", td->td_samplesperpixel,
|
|
td->td_bitspersample);
|
|
return (0);
|
|
}
|
|
/*
|
|
* We should likely validate that any extra samples are either
|
|
* to be ignored, or are alpha, and if alpha we should try to use
|
|
* them. But for now we won't bother with this.
|
|
*/
|
|
break;
|
|
case PHOTOMETRIC_YCBCR:
|
|
/*
|
|
* TODO: if at all meaningful and useful, make more complete
|
|
* support check here, or better still, refactor to let supporting
|
|
* code decide whether there is support and what meaningful
|
|
* error to return
|
|
*/
|
|
break;
|
|
case PHOTOMETRIC_RGB:
|
|
if (colorchannels < 3) {
|
|
sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
|
|
"Color channels", colorchannels);
|
|
return (0);
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_SEPARATED:
|
|
{
|
|
uint16 inkset;
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
|
|
if (inkset != INKSET_CMYK) {
|
|
sprintf(emsg,
|
|
"Sorry, can not handle separated image with %s=%d",
|
|
"InkSet", inkset);
|
|
return 0;
|
|
}
|
|
if (td->td_samplesperpixel < 4) {
|
|
sprintf(emsg,
|
|
"Sorry, can not handle separated image with %s=%d",
|
|
"Samples/pixel", td->td_samplesperpixel);
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
case PHOTOMETRIC_LOGL:
|
|
if (td->td_compression != COMPRESSION_SGILOG) {
|
|
sprintf(emsg, "Sorry, LogL data must have %s=%d",
|
|
"Compression", COMPRESSION_SGILOG);
|
|
return (0);
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_LOGLUV:
|
|
if (td->td_compression != COMPRESSION_SGILOG &&
|
|
td->td_compression != COMPRESSION_SGILOG24) {
|
|
sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
|
|
"Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
|
|
return (0);
|
|
}
|
|
if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
|
|
sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
|
|
"Planarconfiguration", td->td_planarconfig);
|
|
return (0);
|
|
}
|
|
if ( td->td_samplesperpixel != 3 || colorchannels != 3 ) {
|
|
sprintf(emsg,
|
|
"Sorry, can not handle image with %s=%d, %s=%d",
|
|
"Samples/pixel", td->td_samplesperpixel,
|
|
"colorchannels", colorchannels);
|
|
return 0;
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_CIELAB:
|
|
if ( td->td_samplesperpixel != 3 || colorchannels != 3 || td->td_bitspersample != 8 ) {
|
|
sprintf(emsg,
|
|
"Sorry, can not handle image with %s=%d, %s=%d and %s=%d",
|
|
"Samples/pixel", td->td_samplesperpixel,
|
|
"colorchannels", colorchannels,
|
|
"Bits/sample", td->td_bitspersample);
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
sprintf(emsg, "Sorry, can not handle image with %s=%d",
|
|
photoTag, photometric);
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
TIFFRGBAImageEnd(TIFFRGBAImage* img)
|
|
{
|
|
if (img->Map) {
|
|
_TIFFfree(img->Map);
|
|
img->Map = NULL;
|
|
}
|
|
if (img->BWmap) {
|
|
_TIFFfree(img->BWmap);
|
|
img->BWmap = NULL;
|
|
}
|
|
if (img->PALmap) {
|
|
_TIFFfree(img->PALmap);
|
|
img->PALmap = NULL;
|
|
}
|
|
if (img->ycbcr) {
|
|
_TIFFfree(img->ycbcr);
|
|
img->ycbcr = NULL;
|
|
}
|
|
if (img->cielab) {
|
|
_TIFFfree(img->cielab);
|
|
img->cielab = NULL;
|
|
}
|
|
if (img->UaToAa) {
|
|
_TIFFfree(img->UaToAa);
|
|
img->UaToAa = NULL;
|
|
}
|
|
if (img->Bitdepth16To8) {
|
|
_TIFFfree(img->Bitdepth16To8);
|
|
img->Bitdepth16To8 = NULL;
|
|
}
|
|
|
|
if( img->redcmap ) {
|
|
_TIFFfree( img->redcmap );
|
|
_TIFFfree( img->greencmap );
|
|
_TIFFfree( img->bluecmap );
|
|
img->redcmap = img->greencmap = img->bluecmap = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
isCCITTCompression(TIFF* tif)
|
|
{
|
|
uint16 compress;
|
|
TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
|
|
return (compress == COMPRESSION_CCITTFAX3 ||
|
|
compress == COMPRESSION_CCITTFAX4 ||
|
|
compress == COMPRESSION_CCITTRLE ||
|
|
compress == COMPRESSION_CCITTRLEW);
|
|
}
|
|
|
|
int
|
|
TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
|
|
{
|
|
uint16* sampleinfo;
|
|
uint16 extrasamples;
|
|
uint16 planarconfig;
|
|
uint16 compress;
|
|
int colorchannels;
|
|
uint16 *red_orig, *green_orig, *blue_orig;
|
|
int n_color;
|
|
|
|
if( !TIFFRGBAImageOK(tif, emsg) )
|
|
return 0;
|
|
|
|
/* Initialize to normal values */
|
|
img->row_offset = 0;
|
|
img->col_offset = 0;
|
|
img->redcmap = NULL;
|
|
img->greencmap = NULL;
|
|
img->bluecmap = NULL;
|
|
img->Map = NULL;
|
|
img->BWmap = NULL;
|
|
img->PALmap = NULL;
|
|
img->ycbcr = NULL;
|
|
img->cielab = NULL;
|
|
img->UaToAa = NULL;
|
|
img->Bitdepth16To8 = NULL;
|
|
img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */
|
|
|
|
img->tif = tif;
|
|
img->stoponerr = stop;
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
|
|
switch (img->bitspersample) {
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
case 16:
|
|
break;
|
|
default:
|
|
sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
|
|
img->bitspersample);
|
|
goto fail_return;
|
|
}
|
|
img->alpha = 0;
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
|
|
&extrasamples, &sampleinfo);
|
|
if (extrasamples >= 1)
|
|
{
|
|
switch (sampleinfo[0]) {
|
|
case EXTRASAMPLE_UNSPECIFIED: /* Workaround for some images without */
|
|
if (img->samplesperpixel > 3) /* correct info about alpha channel */
|
|
img->alpha = EXTRASAMPLE_ASSOCALPHA;
|
|
break;
|
|
case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */
|
|
case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */
|
|
img->alpha = sampleinfo[0];
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
|
|
if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
|
|
img->photometric = PHOTOMETRIC_MINISWHITE;
|
|
|
|
if( extrasamples == 0
|
|
&& img->samplesperpixel == 4
|
|
&& img->photometric == PHOTOMETRIC_RGB )
|
|
{
|
|
img->alpha = EXTRASAMPLE_ASSOCALPHA;
|
|
extrasamples = 1;
|
|
}
|
|
#endif
|
|
|
|
colorchannels = img->samplesperpixel - extrasamples;
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
|
|
if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
|
|
switch (colorchannels) {
|
|
case 1:
|
|
if (isCCITTCompression(tif))
|
|
img->photometric = PHOTOMETRIC_MINISWHITE;
|
|
else
|
|
img->photometric = PHOTOMETRIC_MINISBLACK;
|
|
break;
|
|
case 3:
|
|
img->photometric = PHOTOMETRIC_RGB;
|
|
break;
|
|
default:
|
|
sprintf(emsg, "Missing needed %s tag", photoTag);
|
|
goto fail_return;
|
|
}
|
|
}
|
|
switch (img->photometric) {
|
|
case PHOTOMETRIC_PALETTE:
|
|
if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
|
|
&red_orig, &green_orig, &blue_orig)) {
|
|
sprintf(emsg, "Missing required \"Colormap\" tag");
|
|
goto fail_return;
|
|
}
|
|
|
|
/* copy the colormaps so we can modify them */
|
|
n_color = (1U << img->bitspersample);
|
|
img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
|
|
img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
|
|
img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
|
|
if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
|
|
sprintf(emsg, "Out of memory for colormap copy");
|
|
goto fail_return;
|
|
}
|
|
|
|
_TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
|
|
_TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
|
|
_TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
|
|
|
|
/* fall through... */
|
|
case PHOTOMETRIC_MINISWHITE:
|
|
case PHOTOMETRIC_MINISBLACK:
|
|
if (planarconfig == PLANARCONFIG_CONTIG
|
|
&& img->samplesperpixel != 1
|
|
&& img->bitspersample < 8 ) {
|
|
sprintf(emsg,
|
|
"Sorry, can not handle contiguous data with %s=%d, "
|
|
"and %s=%d and Bits/Sample=%d",
|
|
photoTag, img->photometric,
|
|
"Samples/pixel", img->samplesperpixel,
|
|
img->bitspersample);
|
|
goto fail_return;
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_YCBCR:
|
|
/* It would probably be nice to have a reality check here. */
|
|
if (planarconfig == PLANARCONFIG_CONTIG)
|
|
/* can rely on libjpeg to convert to RGB */
|
|
/* XXX should restore current state on exit */
|
|
switch (compress) {
|
|
case COMPRESSION_JPEG:
|
|
/*
|
|
* TODO: when complete tests verify complete desubsampling
|
|
* and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
|
|
* favor of tif_getimage.c native handling
|
|
*/
|
|
TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
|
|
img->photometric = PHOTOMETRIC_RGB;
|
|
break;
|
|
default:
|
|
/* do nothing */;
|
|
break;
|
|
}
|
|
/*
|
|
* TODO: if at all meaningful and useful, make more complete
|
|
* support check here, or better still, refactor to let supporting
|
|
* code decide whether there is support and what meaningful
|
|
* error to return
|
|
*/
|
|
break;
|
|
case PHOTOMETRIC_RGB:
|
|
if (colorchannels < 3) {
|
|
sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
|
|
"Color channels", colorchannels);
|
|
goto fail_return;
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_SEPARATED:
|
|
{
|
|
uint16 inkset;
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
|
|
if (inkset != INKSET_CMYK) {
|
|
sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
|
|
"InkSet", inkset);
|
|
goto fail_return;
|
|
}
|
|
if (img->samplesperpixel < 4) {
|
|
sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
|
|
"Samples/pixel", img->samplesperpixel);
|
|
goto fail_return;
|
|
}
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_LOGL:
|
|
if (compress != COMPRESSION_SGILOG) {
|
|
sprintf(emsg, "Sorry, LogL data must have %s=%d",
|
|
"Compression", COMPRESSION_SGILOG);
|
|
goto fail_return;
|
|
}
|
|
TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
|
|
img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */
|
|
img->bitspersample = 8;
|
|
break;
|
|
case PHOTOMETRIC_LOGLUV:
|
|
if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
|
|
sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
|
|
"Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
|
|
goto fail_return;
|
|
}
|
|
if (planarconfig != PLANARCONFIG_CONTIG) {
|
|
sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
|
|
"Planarconfiguration", planarconfig);
|
|
return (0);
|
|
}
|
|
TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
|
|
img->photometric = PHOTOMETRIC_RGB; /* little white lie */
|
|
img->bitspersample = 8;
|
|
break;
|
|
case PHOTOMETRIC_CIELAB:
|
|
break;
|
|
default:
|
|
sprintf(emsg, "Sorry, can not handle image with %s=%d",
|
|
photoTag, img->photometric);
|
|
goto fail_return;
|
|
}
|
|
TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
|
|
TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
|
|
img->isContig =
|
|
!(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
|
|
if (img->isContig) {
|
|
if (!PickContigCase(img)) {
|
|
sprintf(emsg, "Sorry, can not handle image");
|
|
goto fail_return;
|
|
}
|
|
} else {
|
|
if (!PickSeparateCase(img)) {
|
|
sprintf(emsg, "Sorry, can not handle image");
|
|
goto fail_return;
|
|
}
|
|
}
|
|
return 1;
|
|
|
|
fail_return:
|
|
TIFFRGBAImageEnd( img );
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
|
|
{
|
|
if (img->get == NULL) {
|
|
TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
|
|
return (0);
|
|
}
|
|
if (img->put.any == NULL) {
|
|
TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
|
|
"No \"put\" routine setupl; probably can not handle image format");
|
|
return (0);
|
|
}
|
|
return (*img->get)(img, raster, w, h);
|
|
}
|
|
|
|
/*
|
|
* Read the specified image into an ABGR-format rastertaking in account
|
|
* specified orientation.
|
|
*/
|
|
int
|
|
TIFFReadRGBAImageOriented(TIFF* tif,
|
|
uint32 rwidth, uint32 rheight, uint32* raster,
|
|
int orientation, int stop)
|
|
{
|
|
char emsg[1024] = "";
|
|
TIFFRGBAImage img;
|
|
int ok;
|
|
|
|
if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
|
|
img.req_orientation = (uint16)orientation;
|
|
/* XXX verify rwidth and rheight against width and height */
|
|
ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
|
|
rwidth, img.height);
|
|
TIFFRGBAImageEnd(&img);
|
|
} else {
|
|
TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
|
|
ok = 0;
|
|
}
|
|
return (ok);
|
|
}
|
|
|
|
/*
|
|
* Read the specified image into an ABGR-format raster. Use bottom left
|
|
* origin for raster by default.
|
|
*/
|
|
int
|
|
TIFFReadRGBAImage(TIFF* tif,
|
|
uint32 rwidth, uint32 rheight, uint32* raster, int stop)
|
|
{
|
|
return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
|
|
ORIENTATION_BOTLEFT, stop);
|
|
}
|
|
|
|
static int
|
|
setorientation(TIFFRGBAImage* img)
|
|
{
|
|
switch (img->orientation) {
|
|
case ORIENTATION_TOPLEFT:
|
|
case ORIENTATION_LEFTTOP:
|
|
if (img->req_orientation == ORIENTATION_TOPRIGHT ||
|
|
img->req_orientation == ORIENTATION_RIGHTTOP)
|
|
return FLIP_HORIZONTALLY;
|
|
else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
|
|
img->req_orientation == ORIENTATION_RIGHTBOT)
|
|
return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
|
|
else if (img->req_orientation == ORIENTATION_BOTLEFT ||
|
|
img->req_orientation == ORIENTATION_LEFTBOT)
|
|
return FLIP_VERTICALLY;
|
|
else
|
|
return 0;
|
|
case ORIENTATION_TOPRIGHT:
|
|
case ORIENTATION_RIGHTTOP:
|
|
if (img->req_orientation == ORIENTATION_TOPLEFT ||
|
|
img->req_orientation == ORIENTATION_LEFTTOP)
|
|
return FLIP_HORIZONTALLY;
|
|
else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
|
|
img->req_orientation == ORIENTATION_RIGHTBOT)
|
|
return FLIP_VERTICALLY;
|
|
else if (img->req_orientation == ORIENTATION_BOTLEFT ||
|
|
img->req_orientation == ORIENTATION_LEFTBOT)
|
|
return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
|
|
else
|
|
return 0;
|
|
case ORIENTATION_BOTRIGHT:
|
|
case ORIENTATION_RIGHTBOT:
|
|
if (img->req_orientation == ORIENTATION_TOPLEFT ||
|
|
img->req_orientation == ORIENTATION_LEFTTOP)
|
|
return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
|
|
else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
|
|
img->req_orientation == ORIENTATION_RIGHTTOP)
|
|
return FLIP_VERTICALLY;
|
|
else if (img->req_orientation == ORIENTATION_BOTLEFT ||
|
|
img->req_orientation == ORIENTATION_LEFTBOT)
|
|
return FLIP_HORIZONTALLY;
|
|
else
|
|
return 0;
|
|
case ORIENTATION_BOTLEFT:
|
|
case ORIENTATION_LEFTBOT:
|
|
if (img->req_orientation == ORIENTATION_TOPLEFT ||
|
|
img->req_orientation == ORIENTATION_LEFTTOP)
|
|
return FLIP_VERTICALLY;
|
|
else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
|
|
img->req_orientation == ORIENTATION_RIGHTTOP)
|
|
return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
|
|
else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
|
|
img->req_orientation == ORIENTATION_RIGHTBOT)
|
|
return FLIP_HORIZONTALLY;
|
|
else
|
|
return 0;
|
|
default: /* NOTREACHED */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get an tile-organized image that has
|
|
* PlanarConfiguration contiguous if SamplesPerPixel > 1
|
|
* or
|
|
* SamplesPerPixel == 1
|
|
*/
|
|
static int
|
|
gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
|
|
{
|
|
TIFF* tif = img->tif;
|
|
tileContigRoutine put = img->put.contig;
|
|
uint32 col, row, y, rowstoread;
|
|
tmsize_t pos;
|
|
uint32 tw, th;
|
|
unsigned char* buf = NULL;
|
|
int32 fromskew, toskew;
|
|
uint32 nrow;
|
|
int ret = 1, flip;
|
|
uint32 this_tw, tocol;
|
|
int32 this_toskew, leftmost_toskew;
|
|
int32 leftmost_fromskew;
|
|
uint32 leftmost_tw;
|
|
tmsize_t bufsize;
|
|
|
|
bufsize = TIFFTileSize(tif);
|
|
if (bufsize == 0) {
|
|
TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
|
|
return (0);
|
|
}
|
|
|
|
TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
|
|
TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
|
|
|
|
flip = setorientation(img);
|
|
if (flip & FLIP_VERTICALLY) {
|
|
y = h - 1;
|
|
toskew = -(int32)(tw + w);
|
|
}
|
|
else {
|
|
y = 0;
|
|
toskew = -(int32)(tw - w);
|
|
}
|
|
|
|
/*
|
|
* Leftmost tile is clipped on left side if col_offset > 0.
|
|
*/
|
|
leftmost_fromskew = img->col_offset % tw;
|
|
leftmost_tw = tw - leftmost_fromskew;
|
|
leftmost_toskew = toskew + leftmost_fromskew;
|
|
for (row = 0; ret != 0 && row < h; row += nrow)
|
|
{
|
|
rowstoread = th - (row + img->row_offset) % th;
|
|
nrow = (row + rowstoread > h ? h - row : rowstoread);
|
|
fromskew = leftmost_fromskew;
|
|
this_tw = leftmost_tw;
|
|
this_toskew = leftmost_toskew;
|
|
tocol = 0;
|
|
col = img->col_offset;
|
|
while (tocol < w)
|
|
{
|
|
if (_TIFFReadTileAndAllocBuffer(tif, (void**) &buf, bufsize, col,
|
|
row+img->row_offset, 0, 0)==(tmsize_t)(-1) &&
|
|
(buf == NULL || img->stoponerr))
|
|
{
|
|
ret = 0;
|
|
break;
|
|
}
|
|
pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
|
|
((tmsize_t) fromskew * img->samplesperpixel);
|
|
if (tocol + this_tw > w)
|
|
{
|
|
/*
|
|
* Rightmost tile is clipped on right side.
|
|
*/
|
|
fromskew = tw - (w - tocol);
|
|
this_tw = tw - fromskew;
|
|
this_toskew = toskew + fromskew;
|
|
}
|
|
(*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos);
|
|
tocol += this_tw;
|
|
col += this_tw;
|
|
/*
|
|
* After the leftmost tile, tiles are no longer clipped on left side.
|
|
*/
|
|
fromskew = 0;
|
|
this_tw = tw;
|
|
this_toskew = toskew;
|
|
}
|
|
|
|
y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
|
|
}
|
|
_TIFFfree(buf);
|
|
|
|
if (flip & FLIP_HORIZONTALLY) {
|
|
uint32 line;
|
|
|
|
for (line = 0; line < h; line++) {
|
|
uint32 *left = raster + (line * w);
|
|
uint32 *right = left + w - 1;
|
|
|
|
while ( left < right ) {
|
|
uint32 temp = *left;
|
|
*left = *right;
|
|
*right = temp;
|
|
left++;
|
|
right--;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Get an tile-organized image that has
|
|
* SamplesPerPixel > 1
|
|
* PlanarConfiguration separated
|
|
* We assume that all such images are RGB.
|
|
*/
|
|
static int
|
|
gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
|
|
{
|
|
TIFF* tif = img->tif;
|
|
tileSeparateRoutine put = img->put.separate;
|
|
uint32 col, row, y, rowstoread;
|
|
tmsize_t pos;
|
|
uint32 tw, th;
|
|
unsigned char* buf = NULL;
|
|
unsigned char* p0 = NULL;
|
|
unsigned char* p1 = NULL;
|
|
unsigned char* p2 = NULL;
|
|
unsigned char* pa = NULL;
|
|
tmsize_t tilesize;
|
|
tmsize_t bufsize;
|
|
int32 fromskew, toskew;
|
|
int alpha = img->alpha;
|
|
uint32 nrow;
|
|
int ret = 1, flip;
|
|
uint16 colorchannels;
|
|
uint32 this_tw, tocol;
|
|
int32 this_toskew, leftmost_toskew;
|
|
int32 leftmost_fromskew;
|
|
uint32 leftmost_tw;
|
|
|
|
tilesize = TIFFTileSize(tif);
|
|
bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize);
|
|
if (bufsize == 0) {
|
|
TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate");
|
|
return (0);
|
|
}
|
|
|
|
TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
|
|
TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
|
|
|
|
flip = setorientation(img);
|
|
if (flip & FLIP_VERTICALLY) {
|
|
y = h - 1;
|
|
toskew = -(int32)(tw + w);
|
|
}
|
|
else {
|
|
y = 0;
|
|
toskew = -(int32)(tw - w);
|
|
}
|
|
|
|
switch( img->photometric )
|
|
{
|
|
case PHOTOMETRIC_MINISWHITE:
|
|
case PHOTOMETRIC_MINISBLACK:
|
|
case PHOTOMETRIC_PALETTE:
|
|
colorchannels = 1;
|
|
break;
|
|
|
|
default:
|
|
colorchannels = 3;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Leftmost tile is clipped on left side if col_offset > 0.
|
|
*/
|
|
leftmost_fromskew = img->col_offset % tw;
|
|
leftmost_tw = tw - leftmost_fromskew;
|
|
leftmost_toskew = toskew + leftmost_fromskew;
|
|
for (row = 0; ret != 0 && row < h; row += nrow)
|
|
{
|
|
rowstoread = th - (row + img->row_offset) % th;
|
|
nrow = (row + rowstoread > h ? h - row : rowstoread);
|
|
fromskew = leftmost_fromskew;
|
|
this_tw = leftmost_tw;
|
|
this_toskew = leftmost_toskew;
|
|
tocol = 0;
|
|
col = img->col_offset;
|
|
while (tocol < w)
|
|
{
|
|
if( buf == NULL )
|
|
{
|
|
if (_TIFFReadTileAndAllocBuffer(
|
|
tif, (void**) &buf, bufsize, col,
|
|
row+img->row_offset,0,0)==(tmsize_t)(-1)
|
|
&& (buf == NULL || img->stoponerr))
|
|
{
|
|
ret = 0;
|
|
break;
|
|
}
|
|
p0 = buf;
|
|
if( colorchannels == 1 )
|
|
{
|
|
p2 = p1 = p0;
|
|
pa = (alpha?(p0+3*tilesize):NULL);
|
|
}
|
|
else
|
|
{
|
|
p1 = p0 + tilesize;
|
|
p2 = p1 + tilesize;
|
|
pa = (alpha?(p2+tilesize):NULL);
|
|
}
|
|
}
|
|
else if (TIFFReadTile(tif, p0, col,
|
|
row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
|
|
{
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (colorchannels > 1
|
|
&& TIFFReadTile(tif, p1, col,
|
|
row+img->row_offset,0,1) == (tmsize_t)(-1)
|
|
&& img->stoponerr)
|
|
{
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (colorchannels > 1
|
|
&& TIFFReadTile(tif, p2, col,
|
|
row+img->row_offset,0,2) == (tmsize_t)(-1)
|
|
&& img->stoponerr)
|
|
{
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (alpha
|
|
&& TIFFReadTile(tif,pa,col,
|
|
row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)
|
|
&& img->stoponerr)
|
|
{
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
|
|
((tmsize_t) fromskew * img->samplesperpixel);
|
|
if (tocol + this_tw > w)
|
|
{
|
|
/*
|
|
* Rightmost tile is clipped on right side.
|
|
*/
|
|
fromskew = tw - (w - tocol);
|
|
this_tw = tw - fromskew;
|
|
this_toskew = toskew + fromskew;
|
|
}
|
|
(*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \
|
|
p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
|
|
tocol += this_tw;
|
|
col += this_tw;
|
|
/*
|
|
* After the leftmost tile, tiles are no longer clipped on left side.
|
|
*/
|
|
fromskew = 0;
|
|
this_tw = tw;
|
|
this_toskew = toskew;
|
|
}
|
|
|
|
y += ((flip & FLIP_VERTICALLY) ?-(int32) nrow : (int32) nrow);
|
|
}
|
|
|
|
if (flip & FLIP_HORIZONTALLY) {
|
|
uint32 line;
|
|
|
|
for (line = 0; line < h; line++) {
|
|
uint32 *left = raster + (line * w);
|
|
uint32 *right = left + w - 1;
|
|
|
|
while ( left < right ) {
|
|
uint32 temp = *left;
|
|
*left = *right;
|
|
*right = temp;
|
|
left++;
|
|
right--;
|
|
}
|
|
}
|
|
}
|
|
|
|
_TIFFfree(buf);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Get a strip-organized image that has
|
|
* PlanarConfiguration contiguous if SamplesPerPixel > 1
|
|
* or
|
|
* SamplesPerPixel == 1
|
|
*/
|
|
static int
|
|
gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
|
|
{
|
|
TIFF* tif = img->tif;
|
|
tileContigRoutine put = img->put.contig;
|
|
uint32 row, y, nrow, nrowsub, rowstoread;
|
|
tmsize_t pos;
|
|
unsigned char* buf = NULL;
|
|
uint32 rowsperstrip;
|
|
uint16 subsamplinghor,subsamplingver;
|
|
uint32 imagewidth = img->width;
|
|
tmsize_t scanline;
|
|
int32 fromskew, toskew;
|
|
int ret = 1, flip;
|
|
tmsize_t maxstripsize;
|
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
|
|
if( subsamplingver == 0 ) {
|
|
TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling");
|
|
return (0);
|
|
}
|
|
|
|
maxstripsize = TIFFStripSize(tif);
|
|
|
|
flip = setorientation(img);
|
|
if (flip & FLIP_VERTICALLY) {
|
|
y = h - 1;
|
|
toskew = -(int32)(w + w);
|
|
} else {
|
|
y = 0;
|
|
toskew = -(int32)(w - w);
|
|
}
|
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
|
|
|
|
scanline = TIFFScanlineSize(tif);
|
|
fromskew = (w < imagewidth ? imagewidth - w : 0);
|
|
for (row = 0; row < h; row += nrow)
|
|
{
|
|
rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
|
|
nrow = (row + rowstoread > h ? h - row : rowstoread);
|
|
nrowsub = nrow;
|
|
if ((nrowsub%subsamplingver)!=0)
|
|
nrowsub+=subsamplingver-nrowsub%subsamplingver;
|
|
if (_TIFFReadEncodedStripAndAllocBuffer(tif,
|
|
TIFFComputeStrip(tif,row+img->row_offset, 0),
|
|
(void**)(&buf),
|
|
maxstripsize,
|
|
((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1)
|
|
&& (buf == NULL || img->stoponerr))
|
|
{
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
|
|
((tmsize_t) img->col_offset * img->samplesperpixel);
|
|
(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
|
|
y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
|
|
}
|
|
|
|
if (flip & FLIP_HORIZONTALLY) {
|
|
uint32 line;
|
|
|
|
for (line = 0; line < h; line++) {
|
|
uint32 *left = raster + (line * w);
|
|
uint32 *right = left + w - 1;
|
|
|
|
while ( left < right ) {
|
|
uint32 temp = *left;
|
|
*left = *right;
|
|
*right = temp;
|
|
left++;
|
|
right--;
|
|
}
|
|
}
|
|
}
|
|
|
|
_TIFFfree(buf);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Get a strip-organized image with
|
|
* SamplesPerPixel > 1
|
|
* PlanarConfiguration separated
|
|
* We assume that all such images are RGB.
|
|
*/
|
|
static int
|
|
gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
|
|
{
|
|
TIFF* tif = img->tif;
|
|
tileSeparateRoutine put = img->put.separate;
|
|
unsigned char *buf = NULL;
|
|
unsigned char *p0 = NULL, *p1 = NULL, *p2 = NULL, *pa = NULL;
|
|
uint32 row, y, nrow, rowstoread;
|
|
tmsize_t pos;
|
|
tmsize_t scanline;
|
|
uint32 rowsperstrip, offset_row;
|
|
uint32 imagewidth = img->width;
|
|
tmsize_t stripsize;
|
|
tmsize_t bufsize;
|
|
int32 fromskew, toskew;
|
|
int alpha = img->alpha;
|
|
int ret = 1, flip;
|
|
uint16 colorchannels;
|
|
|
|
stripsize = TIFFStripSize(tif);
|
|
bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize);
|
|
if (bufsize == 0) {
|
|
TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate");
|
|
return (0);
|
|
}
|
|
|
|
flip = setorientation(img);
|
|
if (flip & FLIP_VERTICALLY) {
|
|
y = h - 1;
|
|
toskew = -(int32)(w + w);
|
|
}
|
|
else {
|
|
y = 0;
|
|
toskew = -(int32)(w - w);
|
|
}
|
|
|
|
switch( img->photometric )
|
|
{
|
|
case PHOTOMETRIC_MINISWHITE:
|
|
case PHOTOMETRIC_MINISBLACK:
|
|
case PHOTOMETRIC_PALETTE:
|
|
colorchannels = 1;
|
|
break;
|
|
|
|
default:
|
|
colorchannels = 3;
|
|
break;
|
|
}
|
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
|
|
scanline = TIFFScanlineSize(tif);
|
|
fromskew = (w < imagewidth ? imagewidth - w : 0);
|
|
for (row = 0; row < h; row += nrow)
|
|
{
|
|
rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
|
|
nrow = (row + rowstoread > h ? h - row : rowstoread);
|
|
offset_row = row + img->row_offset;
|
|
if( buf == NULL )
|
|
{
|
|
if (_TIFFReadEncodedStripAndAllocBuffer(
|
|
tif, TIFFComputeStrip(tif, offset_row, 0),
|
|
(void**) &buf, bufsize,
|
|
((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
|
|
&& (buf == NULL || img->stoponerr))
|
|
{
|
|
ret = 0;
|
|
break;
|
|
}
|
|
p0 = buf;
|
|
if( colorchannels == 1 )
|
|
{
|
|
p2 = p1 = p0;
|
|
pa = (alpha?(p0+3*stripsize):NULL);
|
|
}
|
|
else
|
|
{
|
|
p1 = p0 + stripsize;
|
|
p2 = p1 + stripsize;
|
|
pa = (alpha?(p2+stripsize):NULL);
|
|
}
|
|
}
|
|
else if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
|
|
p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
|
|
&& img->stoponerr)
|
|
{
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (colorchannels > 1
|
|
&& TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
|
|
p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
|
|
&& img->stoponerr)
|
|
{
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (colorchannels > 1
|
|
&& TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
|
|
p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
|
|
&& img->stoponerr)
|
|
{
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (alpha)
|
|
{
|
|
if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
|
|
pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
|
|
&& img->stoponerr)
|
|
{
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
|
|
((tmsize_t) img->col_offset * img->samplesperpixel);
|
|
(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
|
|
p2 + pos, (alpha?(pa+pos):NULL));
|
|
y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
|
|
}
|
|
|
|
if (flip & FLIP_HORIZONTALLY) {
|
|
uint32 line;
|
|
|
|
for (line = 0; line < h; line++) {
|
|
uint32 *left = raster + (line * w);
|
|
uint32 *right = left + w - 1;
|
|
|
|
while ( left < right ) {
|
|
uint32 temp = *left;
|
|
*left = *right;
|
|
*right = temp;
|
|
left++;
|
|
right--;
|
|
}
|
|
}
|
|
}
|
|
|
|
_TIFFfree(buf);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* The following routines move decoded data returned
|
|
* from the TIFF library into rasters filled with packed
|
|
* ABGR pixels (i.e. suitable for passing to lrecwrite.)
|
|
*
|
|
* The routines have been created according to the most
|
|
* important cases and optimized. PickContigCase and
|
|
* PickSeparateCase analyze the parameters and select
|
|
* the appropriate "get" and "put" routine to use.
|
|
*/
|
|
#define REPEAT8(op) REPEAT4(op); REPEAT4(op)
|
|
#define REPEAT4(op) REPEAT2(op); REPEAT2(op)
|
|
#define REPEAT2(op) op; op
|
|
#define CASE8(x,op) \
|
|
switch (x) { \
|
|
case 7: op; /*-fallthrough*/ \
|
|
case 6: op; /*-fallthrough*/ \
|
|
case 5: op; /*-fallthrough*/ \
|
|
case 4: op; /*-fallthrough*/ \
|
|
case 3: op; /*-fallthrough*/ \
|
|
case 2: op; /*-fallthrough*/ \
|
|
case 1: op; \
|
|
}
|
|
#define CASE4(x,op) switch (x) { case 3: op; /*-fallthrough*/ case 2: op; /*-fallthrough*/ case 1: op; }
|
|
#define NOP
|
|
|
|
#define UNROLL8(w, op1, op2) { \
|
|
uint32 _x; \
|
|
for (_x = w; _x >= 8; _x -= 8) { \
|
|
op1; \
|
|
REPEAT8(op2); \
|
|
} \
|
|
if (_x > 0) { \
|
|
op1; \
|
|
CASE8(_x,op2); \
|
|
} \
|
|
}
|
|
#define UNROLL4(w, op1, op2) { \
|
|
uint32 _x; \
|
|
for (_x = w; _x >= 4; _x -= 4) { \
|
|
op1; \
|
|
REPEAT4(op2); \
|
|
} \
|
|
if (_x > 0) { \
|
|
op1; \
|
|
CASE4(_x,op2); \
|
|
} \
|
|
}
|
|
#define UNROLL2(w, op1, op2) { \
|
|
uint32 _x; \
|
|
for (_x = w; _x >= 2; _x -= 2) { \
|
|
op1; \
|
|
REPEAT2(op2); \
|
|
} \
|
|
if (_x) { \
|
|
op1; \
|
|
op2; \
|
|
} \
|
|
}
|
|
|
|
#define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; }
|
|
#define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; }
|
|
|
|
#define A1 (((uint32)0xffL)<<24)
|
|
#define PACK(r,g,b) \
|
|
((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
|
|
#define PACK4(r,g,b,a) \
|
|
((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
|
|
#define W2B(v) (((v)>>8)&0xff)
|
|
/* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
|
|
#define PACKW(r,g,b) \
|
|
((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
|
|
#define PACKW4(r,g,b,a) \
|
|
((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
|
|
|
|
#define DECLAREContigPutFunc(name) \
|
|
static void name(\
|
|
TIFFRGBAImage* img, \
|
|
uint32* cp, \
|
|
uint32 x, uint32 y, \
|
|
uint32 w, uint32 h, \
|
|
int32 fromskew, int32 toskew, \
|
|
unsigned char* pp \
|
|
)
|
|
|
|
/*
|
|
* 8-bit palette => colormap/RGB
|
|
*/
|
|
DECLAREContigPutFunc(put8bitcmaptile)
|
|
{
|
|
uint32** PALmap = img->PALmap;
|
|
int samplesperpixel = img->samplesperpixel;
|
|
|
|
(void) y;
|
|
for( ; h > 0; --h) {
|
|
for (x = w; x > 0; --x)
|
|
{
|
|
*cp++ = PALmap[*pp][0];
|
|
pp += samplesperpixel;
|
|
}
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 4-bit palette => colormap/RGB
|
|
*/
|
|
DECLAREContigPutFunc(put4bitcmaptile)
|
|
{
|
|
uint32** PALmap = img->PALmap;
|
|
|
|
(void) x; (void) y;
|
|
fromskew /= 2;
|
|
for( ; h > 0; --h) {
|
|
uint32* bw;
|
|
UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 2-bit palette => colormap/RGB
|
|
*/
|
|
DECLAREContigPutFunc(put2bitcmaptile)
|
|
{
|
|
uint32** PALmap = img->PALmap;
|
|
|
|
(void) x; (void) y;
|
|
fromskew /= 4;
|
|
for( ; h > 0; --h) {
|
|
uint32* bw;
|
|
UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 1-bit palette => colormap/RGB
|
|
*/
|
|
DECLAREContigPutFunc(put1bitcmaptile)
|
|
{
|
|
uint32** PALmap = img->PALmap;
|
|
|
|
(void) x; (void) y;
|
|
fromskew /= 8;
|
|
for( ; h > 0; --h) {
|
|
uint32* bw;
|
|
UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit greyscale => colormap/RGB
|
|
*/
|
|
DECLAREContigPutFunc(putgreytile)
|
|
{
|
|
int samplesperpixel = img->samplesperpixel;
|
|
uint32** BWmap = img->BWmap;
|
|
|
|
(void) y;
|
|
for( ; h > 0; --h) {
|
|
for (x = w; x > 0; --x)
|
|
{
|
|
*cp++ = BWmap[*pp][0];
|
|
pp += samplesperpixel;
|
|
}
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit greyscale with associated alpha => colormap/RGBA
|
|
*/
|
|
DECLAREContigPutFunc(putagreytile)
|
|
{
|
|
int samplesperpixel = img->samplesperpixel;
|
|
uint32** BWmap = img->BWmap;
|
|
|
|
(void) y;
|
|
for( ; h > 0; --h) {
|
|
for (x = w; x > 0; --x)
|
|
{
|
|
*cp++ = BWmap[*pp][0] & ((uint32)*(pp+1) << 24 | ~A1);
|
|
pp += samplesperpixel;
|
|
}
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 16-bit greyscale => colormap/RGB
|
|
*/
|
|
DECLAREContigPutFunc(put16bitbwtile)
|
|
{
|
|
int samplesperpixel = img->samplesperpixel;
|
|
uint32** BWmap = img->BWmap;
|
|
|
|
(void) y;
|
|
for( ; h > 0; --h) {
|
|
uint16 *wp = (uint16 *) pp;
|
|
|
|
for (x = w; x > 0; --x)
|
|
{
|
|
/* use high order byte of 16bit value */
|
|
|
|
*cp++ = BWmap[*wp >> 8][0];
|
|
pp += 2 * samplesperpixel;
|
|
wp += samplesperpixel;
|
|
}
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 1-bit bilevel => colormap/RGB
|
|
*/
|
|
DECLAREContigPutFunc(put1bitbwtile)
|
|
{
|
|
uint32** BWmap = img->BWmap;
|
|
|
|
(void) x; (void) y;
|
|
fromskew /= 8;
|
|
for( ; h > 0; --h) {
|
|
uint32* bw;
|
|
UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 2-bit greyscale => colormap/RGB
|
|
*/
|
|
DECLAREContigPutFunc(put2bitbwtile)
|
|
{
|
|
uint32** BWmap = img->BWmap;
|
|
|
|
(void) x; (void) y;
|
|
fromskew /= 4;
|
|
for( ; h > 0; --h) {
|
|
uint32* bw;
|
|
UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 4-bit greyscale => colormap/RGB
|
|
*/
|
|
DECLAREContigPutFunc(put4bitbwtile)
|
|
{
|
|
uint32** BWmap = img->BWmap;
|
|
|
|
(void) x; (void) y;
|
|
fromskew /= 2;
|
|
for( ; h > 0; --h) {
|
|
uint32* bw;
|
|
UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed samples, no Map => RGB
|
|
*/
|
|
DECLAREContigPutFunc(putRGBcontig8bittile)
|
|
{
|
|
int samplesperpixel = img->samplesperpixel;
|
|
|
|
(void) x; (void) y;
|
|
fromskew *= samplesperpixel;
|
|
for( ; h > 0; --h) {
|
|
UNROLL8(w, NOP,
|
|
*cp++ = PACK(pp[0], pp[1], pp[2]);
|
|
pp += samplesperpixel);
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed samples => RGBA w/ associated alpha
|
|
* (known to have Map == NULL)
|
|
*/
|
|
DECLAREContigPutFunc(putRGBAAcontig8bittile)
|
|
{
|
|
int samplesperpixel = img->samplesperpixel;
|
|
|
|
(void) x; (void) y;
|
|
fromskew *= samplesperpixel;
|
|
for( ; h > 0; --h) {
|
|
UNROLL8(w, NOP,
|
|
*cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
|
|
pp += samplesperpixel);
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed samples => RGBA w/ unassociated alpha
|
|
* (known to have Map == NULL)
|
|
*/
|
|
DECLAREContigPutFunc(putRGBUAcontig8bittile)
|
|
{
|
|
int samplesperpixel = img->samplesperpixel;
|
|
(void) y;
|
|
fromskew *= samplesperpixel;
|
|
for( ; h > 0; --h) {
|
|
uint32 r, g, b, a;
|
|
uint8* m;
|
|
for (x = w; x > 0; --x) {
|
|
a = pp[3];
|
|
m = img->UaToAa+((size_t) a<<8);
|
|
r = m[pp[0]];
|
|
g = m[pp[1]];
|
|
b = m[pp[2]];
|
|
*cp++ = PACK4(r,g,b,a);
|
|
pp += samplesperpixel;
|
|
}
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 16-bit packed samples => RGB
|
|
*/
|
|
DECLAREContigPutFunc(putRGBcontig16bittile)
|
|
{
|
|
int samplesperpixel = img->samplesperpixel;
|
|
uint16 *wp = (uint16 *)pp;
|
|
(void) y;
|
|
fromskew *= samplesperpixel;
|
|
for( ; h > 0; --h) {
|
|
for (x = w; x > 0; --x) {
|
|
*cp++ = PACK(img->Bitdepth16To8[wp[0]],
|
|
img->Bitdepth16To8[wp[1]],
|
|
img->Bitdepth16To8[wp[2]]);
|
|
wp += samplesperpixel;
|
|
}
|
|
cp += toskew;
|
|
wp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 16-bit packed samples => RGBA w/ associated alpha
|
|
* (known to have Map == NULL)
|
|
*/
|
|
DECLAREContigPutFunc(putRGBAAcontig16bittile)
|
|
{
|
|
int samplesperpixel = img->samplesperpixel;
|
|
uint16 *wp = (uint16 *)pp;
|
|
(void) y;
|
|
fromskew *= samplesperpixel;
|
|
for( ; h > 0; --h) {
|
|
for (x = w; x > 0; --x) {
|
|
*cp++ = PACK4(img->Bitdepth16To8[wp[0]],
|
|
img->Bitdepth16To8[wp[1]],
|
|
img->Bitdepth16To8[wp[2]],
|
|
img->Bitdepth16To8[wp[3]]);
|
|
wp += samplesperpixel;
|
|
}
|
|
cp += toskew;
|
|
wp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 16-bit packed samples => RGBA w/ unassociated alpha
|
|
* (known to have Map == NULL)
|
|
*/
|
|
DECLAREContigPutFunc(putRGBUAcontig16bittile)
|
|
{
|
|
int samplesperpixel = img->samplesperpixel;
|
|
uint16 *wp = (uint16 *)pp;
|
|
(void) y;
|
|
fromskew *= samplesperpixel;
|
|
for( ; h > 0; --h) {
|
|
uint32 r,g,b,a;
|
|
uint8* m;
|
|
for (x = w; x > 0; --x) {
|
|
a = img->Bitdepth16To8[wp[3]];
|
|
m = img->UaToAa+((size_t) a<<8);
|
|
r = m[img->Bitdepth16To8[wp[0]]];
|
|
g = m[img->Bitdepth16To8[wp[1]]];
|
|
b = m[img->Bitdepth16To8[wp[2]]];
|
|
*cp++ = PACK4(r,g,b,a);
|
|
wp += samplesperpixel;
|
|
}
|
|
cp += toskew;
|
|
wp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed CMYK samples w/o Map => RGB
|
|
*
|
|
* NB: The conversion of CMYK->RGB is *very* crude.
|
|
*/
|
|
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
|
|
{
|
|
int samplesperpixel = img->samplesperpixel;
|
|
uint16 r, g, b, k;
|
|
|
|
(void) x; (void) y;
|
|
fromskew *= samplesperpixel;
|
|
for( ; h > 0; --h) {
|
|
UNROLL8(w, NOP,
|
|
k = 255 - pp[3];
|
|
r = (k*(255-pp[0]))/255;
|
|
g = (k*(255-pp[1]))/255;
|
|
b = (k*(255-pp[2]))/255;
|
|
*cp++ = PACK(r, g, b);
|
|
pp += samplesperpixel);
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed CMYK samples w/Map => RGB
|
|
*
|
|
* NB: The conversion of CMYK->RGB is *very* crude.
|
|
*/
|
|
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
|
|
{
|
|
int samplesperpixel = img->samplesperpixel;
|
|
TIFFRGBValue* Map = img->Map;
|
|
uint16 r, g, b, k;
|
|
|
|
(void) y;
|
|
fromskew *= samplesperpixel;
|
|
for( ; h > 0; --h) {
|
|
for (x = w; x > 0; --x) {
|
|
k = 255 - pp[3];
|
|
r = (k*(255-pp[0]))/255;
|
|
g = (k*(255-pp[1]))/255;
|
|
b = (k*(255-pp[2]))/255;
|
|
*cp++ = PACK(Map[r], Map[g], Map[b]);
|
|
pp += samplesperpixel;
|
|
}
|
|
pp += fromskew;
|
|
cp += toskew;
|
|
}
|
|
}
|
|
|
|
#define DECLARESepPutFunc(name) \
|
|
static void name(\
|
|
TIFFRGBAImage* img,\
|
|
uint32* cp,\
|
|
uint32 x, uint32 y, \
|
|
uint32 w, uint32 h,\
|
|
int32 fromskew, int32 toskew,\
|
|
unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
|
|
)
|
|
|
|
/*
|
|
* 8-bit unpacked samples => RGB
|
|
*/
|
|
DECLARESepPutFunc(putRGBseparate8bittile)
|
|
{
|
|
(void) img; (void) x; (void) y; (void) a;
|
|
for( ; h > 0; --h) {
|
|
UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
|
|
SKEW(r, g, b, fromskew);
|
|
cp += toskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit unpacked samples => RGBA w/ associated alpha
|
|
*/
|
|
DECLARESepPutFunc(putRGBAAseparate8bittile)
|
|
{
|
|
(void) img; (void) x; (void) y;
|
|
for( ; h > 0; --h) {
|
|
UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
|
|
SKEW4(r, g, b, a, fromskew);
|
|
cp += toskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit unpacked CMYK samples => RGBA
|
|
*/
|
|
DECLARESepPutFunc(putCMYKseparate8bittile)
|
|
{
|
|
(void) img; (void) y;
|
|
for( ; h > 0; --h) {
|
|
uint32 rv, gv, bv, kv;
|
|
for (x = w; x > 0; --x) {
|
|
kv = 255 - *a++;
|
|
rv = (kv*(255-*r++))/255;
|
|
gv = (kv*(255-*g++))/255;
|
|
bv = (kv*(255-*b++))/255;
|
|
*cp++ = PACK4(rv,gv,bv,255);
|
|
}
|
|
SKEW4(r, g, b, a, fromskew);
|
|
cp += toskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit unpacked samples => RGBA w/ unassociated alpha
|
|
*/
|
|
DECLARESepPutFunc(putRGBUAseparate8bittile)
|
|
{
|
|
(void) img; (void) y;
|
|
for( ; h > 0; --h) {
|
|
uint32 rv, gv, bv, av;
|
|
uint8* m;
|
|
for (x = w; x > 0; --x) {
|
|
av = *a++;
|
|
m = img->UaToAa+((size_t) av<<8);
|
|
rv = m[*r++];
|
|
gv = m[*g++];
|
|
bv = m[*b++];
|
|
*cp++ = PACK4(rv,gv,bv,av);
|
|
}
|
|
SKEW4(r, g, b, a, fromskew);
|
|
cp += toskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 16-bit unpacked samples => RGB
|
|
*/
|
|
DECLARESepPutFunc(putRGBseparate16bittile)
|
|
{
|
|
uint16 *wr = (uint16*) r;
|
|
uint16 *wg = (uint16*) g;
|
|
uint16 *wb = (uint16*) b;
|
|
(void) img; (void) y; (void) a;
|
|
for( ; h > 0; --h) {
|
|
for (x = 0; x < w; x++)
|
|
*cp++ = PACK(img->Bitdepth16To8[*wr++],
|
|
img->Bitdepth16To8[*wg++],
|
|
img->Bitdepth16To8[*wb++]);
|
|
SKEW(wr, wg, wb, fromskew);
|
|
cp += toskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 16-bit unpacked samples => RGBA w/ associated alpha
|
|
*/
|
|
DECLARESepPutFunc(putRGBAAseparate16bittile)
|
|
{
|
|
uint16 *wr = (uint16*) r;
|
|
uint16 *wg = (uint16*) g;
|
|
uint16 *wb = (uint16*) b;
|
|
uint16 *wa = (uint16*) a;
|
|
(void) img; (void) y;
|
|
for( ; h > 0; --h) {
|
|
for (x = 0; x < w; x++)
|
|
*cp++ = PACK4(img->Bitdepth16To8[*wr++],
|
|
img->Bitdepth16To8[*wg++],
|
|
img->Bitdepth16To8[*wb++],
|
|
img->Bitdepth16To8[*wa++]);
|
|
SKEW4(wr, wg, wb, wa, fromskew);
|
|
cp += toskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 16-bit unpacked samples => RGBA w/ unassociated alpha
|
|
*/
|
|
DECLARESepPutFunc(putRGBUAseparate16bittile)
|
|
{
|
|
uint16 *wr = (uint16*) r;
|
|
uint16 *wg = (uint16*) g;
|
|
uint16 *wb = (uint16*) b;
|
|
uint16 *wa = (uint16*) a;
|
|
(void) img; (void) y;
|
|
for( ; h > 0; --h) {
|
|
uint32 r2,g2,b2,a2;
|
|
uint8* m;
|
|
for (x = w; x > 0; --x) {
|
|
a2 = img->Bitdepth16To8[*wa++];
|
|
m = img->UaToAa+((size_t) a2<<8);
|
|
r2 = m[img->Bitdepth16To8[*wr++]];
|
|
g2 = m[img->Bitdepth16To8[*wg++]];
|
|
b2 = m[img->Bitdepth16To8[*wb++]];
|
|
*cp++ = PACK4(r2,g2,b2,a2);
|
|
}
|
|
SKEW4(wr, wg, wb, wa, fromskew);
|
|
cp += toskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed CIE L*a*b 1976 samples => RGB
|
|
*/
|
|
DECLAREContigPutFunc(putcontig8bitCIELab)
|
|
{
|
|
float X, Y, Z;
|
|
uint32 r, g, b;
|
|
(void) y;
|
|
fromskew *= 3;
|
|
for( ; h > 0; --h) {
|
|
for (x = w; x > 0; --x) {
|
|
TIFFCIELabToXYZ(img->cielab,
|
|
(unsigned char)pp[0],
|
|
(signed char)pp[1],
|
|
(signed char)pp[2],
|
|
&X, &Y, &Z);
|
|
TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
|
|
*cp++ = PACK(r, g, b);
|
|
pp += 3;
|
|
}
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* YCbCr -> RGB conversion and packing routines.
|
|
*/
|
|
|
|
#define YCbCrtoRGB(dst, Y) { \
|
|
uint32 r, g, b; \
|
|
TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \
|
|
dst = PACK(r, g, b); \
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed YCbCr samples => RGB
|
|
* This function is generic for different sampling sizes,
|
|
* and can handle blocks sizes that aren't multiples of the
|
|
* sampling size. However, it is substantially less optimized
|
|
* than the specific sampling cases. It is used as a fallback
|
|
* for difficult blocks.
|
|
*/
|
|
#ifdef notdef
|
|
static void putcontig8bitYCbCrGenericTile(
|
|
TIFFRGBAImage* img,
|
|
uint32* cp,
|
|
uint32 x, uint32 y,
|
|
uint32 w, uint32 h,
|
|
int32 fromskew, int32 toskew,
|
|
unsigned char* pp,
|
|
int h_group,
|
|
int v_group )
|
|
|
|
{
|
|
uint32* cp1 = cp+w+toskew;
|
|
uint32* cp2 = cp1+w+toskew;
|
|
uint32* cp3 = cp2+w+toskew;
|
|
int32 incr = 3*w+4*toskew;
|
|
int32 Cb, Cr;
|
|
int group_size = v_group * h_group + 2;
|
|
|
|
(void) y;
|
|
fromskew = (fromskew * group_size) / h_group;
|
|
|
|
for( yy = 0; yy < h; yy++ )
|
|
{
|
|
unsigned char *pp_line;
|
|
int y_line_group = yy / v_group;
|
|
int y_remainder = yy - y_line_group * v_group;
|
|
|
|
pp_line = pp + v_line_group *
|
|
|
|
|
|
for( xx = 0; xx < w; xx++ )
|
|
{
|
|
Cb = pp
|
|
}
|
|
}
|
|
for (; h >= 4; h -= 4) {
|
|
x = w>>2;
|
|
do {
|
|
Cb = pp[16];
|
|
Cr = pp[17];
|
|
|
|
YCbCrtoRGB(cp [0], pp[ 0]);
|
|
YCbCrtoRGB(cp [1], pp[ 1]);
|
|
YCbCrtoRGB(cp [2], pp[ 2]);
|
|
YCbCrtoRGB(cp [3], pp[ 3]);
|
|
YCbCrtoRGB(cp1[0], pp[ 4]);
|
|
YCbCrtoRGB(cp1[1], pp[ 5]);
|
|
YCbCrtoRGB(cp1[2], pp[ 6]);
|
|
YCbCrtoRGB(cp1[3], pp[ 7]);
|
|
YCbCrtoRGB(cp2[0], pp[ 8]);
|
|
YCbCrtoRGB(cp2[1], pp[ 9]);
|
|
YCbCrtoRGB(cp2[2], pp[10]);
|
|
YCbCrtoRGB(cp2[3], pp[11]);
|
|
YCbCrtoRGB(cp3[0], pp[12]);
|
|
YCbCrtoRGB(cp3[1], pp[13]);
|
|
YCbCrtoRGB(cp3[2], pp[14]);
|
|
YCbCrtoRGB(cp3[3], pp[15]);
|
|
|
|
cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
|
|
pp += 18;
|
|
} while (--x);
|
|
cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
|
|
*/
|
|
DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
|
|
{
|
|
uint32* cp1 = cp+w+toskew;
|
|
uint32* cp2 = cp1+w+toskew;
|
|
uint32* cp3 = cp2+w+toskew;
|
|
int32 incr = 3*w+4*toskew;
|
|
|
|
(void) y;
|
|
/* adjust fromskew */
|
|
fromskew = (fromskew / 4) * (4*2+2);
|
|
if ((h & 3) == 0 && (w & 3) == 0) {
|
|
for (; h >= 4; h -= 4) {
|
|
x = w>>2;
|
|
do {
|
|
int32 Cb = pp[16];
|
|
int32 Cr = pp[17];
|
|
|
|
YCbCrtoRGB(cp [0], pp[ 0]);
|
|
YCbCrtoRGB(cp [1], pp[ 1]);
|
|
YCbCrtoRGB(cp [2], pp[ 2]);
|
|
YCbCrtoRGB(cp [3], pp[ 3]);
|
|
YCbCrtoRGB(cp1[0], pp[ 4]);
|
|
YCbCrtoRGB(cp1[1], pp[ 5]);
|
|
YCbCrtoRGB(cp1[2], pp[ 6]);
|
|
YCbCrtoRGB(cp1[3], pp[ 7]);
|
|
YCbCrtoRGB(cp2[0], pp[ 8]);
|
|
YCbCrtoRGB(cp2[1], pp[ 9]);
|
|
YCbCrtoRGB(cp2[2], pp[10]);
|
|
YCbCrtoRGB(cp2[3], pp[11]);
|
|
YCbCrtoRGB(cp3[0], pp[12]);
|
|
YCbCrtoRGB(cp3[1], pp[13]);
|
|
YCbCrtoRGB(cp3[2], pp[14]);
|
|
YCbCrtoRGB(cp3[3], pp[15]);
|
|
|
|
cp += 4;
|
|
cp1 += 4;
|
|
cp2 += 4;
|
|
cp3 += 4;
|
|
pp += 18;
|
|
} while (--x);
|
|
cp += incr;
|
|
cp1 += incr;
|
|
cp2 += incr;
|
|
cp3 += incr;
|
|
pp += fromskew;
|
|
}
|
|
} else {
|
|
while (h > 0) {
|
|
for (x = w; x > 0;) {
|
|
int32 Cb = pp[16];
|
|
int32 Cr = pp[17];
|
|
switch (x) {
|
|
default:
|
|
switch (h) {
|
|
default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
|
|
case 3: YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
|
|
case 2: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
|
|
case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
|
|
} /* FALLTHROUGH */
|
|
case 3:
|
|
switch (h) {
|
|
default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
|
|
case 3: YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
|
|
case 2: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
|
|
case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
|
|
} /* FALLTHROUGH */
|
|
case 2:
|
|
switch (h) {
|
|
default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
|
|
case 3: YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
|
|
case 2: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
|
|
case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
|
|
} /* FALLTHROUGH */
|
|
case 1:
|
|
switch (h) {
|
|
default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
|
|
case 3: YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
|
|
case 2: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
|
|
case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
|
|
} /* FALLTHROUGH */
|
|
}
|
|
if (x < 4) {
|
|
cp += x; cp1 += x; cp2 += x; cp3 += x;
|
|
x = 0;
|
|
}
|
|
else {
|
|
cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
|
|
x -= 4;
|
|
}
|
|
pp += 18;
|
|
}
|
|
if (h <= 4)
|
|
break;
|
|
h -= 4;
|
|
cp += incr;
|
|
cp1 += incr;
|
|
cp2 += incr;
|
|
cp3 += incr;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
|
|
*/
|
|
DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
|
|
{
|
|
uint32* cp1 = cp+w+toskew;
|
|
int32 incr = 2*toskew+w;
|
|
|
|
(void) y;
|
|
fromskew = (fromskew / 4) * (4*2+2);
|
|
if ((w & 3) == 0 && (h & 1) == 0) {
|
|
for (; h >= 2; h -= 2) {
|
|
x = w>>2;
|
|
do {
|
|
int32 Cb = pp[8];
|
|
int32 Cr = pp[9];
|
|
|
|
YCbCrtoRGB(cp [0], pp[0]);
|
|
YCbCrtoRGB(cp [1], pp[1]);
|
|
YCbCrtoRGB(cp [2], pp[2]);
|
|
YCbCrtoRGB(cp [3], pp[3]);
|
|
YCbCrtoRGB(cp1[0], pp[4]);
|
|
YCbCrtoRGB(cp1[1], pp[5]);
|
|
YCbCrtoRGB(cp1[2], pp[6]);
|
|
YCbCrtoRGB(cp1[3], pp[7]);
|
|
|
|
cp += 4;
|
|
cp1 += 4;
|
|
pp += 10;
|
|
} while (--x);
|
|
cp += incr;
|
|
cp1 += incr;
|
|
pp += fromskew;
|
|
}
|
|
} else {
|
|
while (h > 0) {
|
|
for (x = w; x > 0;) {
|
|
int32 Cb = pp[8];
|
|
int32 Cr = pp[9];
|
|
switch (x) {
|
|
default:
|
|
switch (h) {
|
|
default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
|
|
case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
|
|
} /* FALLTHROUGH */
|
|
case 3:
|
|
switch (h) {
|
|
default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
|
|
case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
|
|
} /* FALLTHROUGH */
|
|
case 2:
|
|
switch (h) {
|
|
default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
|
|
case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
|
|
} /* FALLTHROUGH */
|
|
case 1:
|
|
switch (h) {
|
|
default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
|
|
case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
|
|
} /* FALLTHROUGH */
|
|
}
|
|
if (x < 4) {
|
|
cp += x; cp1 += x;
|
|
x = 0;
|
|
}
|
|
else {
|
|
cp += 4; cp1 += 4;
|
|
x -= 4;
|
|
}
|
|
pp += 10;
|
|
}
|
|
if (h <= 2)
|
|
break;
|
|
h -= 2;
|
|
cp += incr;
|
|
cp1 += incr;
|
|
pp += fromskew;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
|
|
*/
|
|
DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
|
|
{
|
|
(void) y;
|
|
fromskew = (fromskew / 4) * (4*1+2);
|
|
do {
|
|
x = w>>2;
|
|
while(x>0) {
|
|
int32 Cb = pp[4];
|
|
int32 Cr = pp[5];
|
|
|
|
YCbCrtoRGB(cp [0], pp[0]);
|
|
YCbCrtoRGB(cp [1], pp[1]);
|
|
YCbCrtoRGB(cp [2], pp[2]);
|
|
YCbCrtoRGB(cp [3], pp[3]);
|
|
|
|
cp += 4;
|
|
pp += 6;
|
|
x--;
|
|
}
|
|
|
|
if( (w&3) != 0 )
|
|
{
|
|
int32 Cb = pp[4];
|
|
int32 Cr = pp[5];
|
|
|
|
switch( (w&3) ) {
|
|
case 3: YCbCrtoRGB(cp [2], pp[2]); /*-fallthrough*/
|
|
case 2: YCbCrtoRGB(cp [1], pp[1]); /*-fallthrough*/
|
|
case 1: YCbCrtoRGB(cp [0], pp[0]); /*-fallthrough*/
|
|
case 0: break;
|
|
}
|
|
|
|
cp += (w&3);
|
|
pp += 6;
|
|
}
|
|
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
} while (--h);
|
|
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
|
|
*/
|
|
DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
|
|
{
|
|
uint32* cp2;
|
|
int32 incr = 2*toskew+w;
|
|
(void) y;
|
|
fromskew = (fromskew / 2) * (2*2+2);
|
|
cp2 = cp+w+toskew;
|
|
while (h>=2) {
|
|
x = w;
|
|
while (x>=2) {
|
|
uint32 Cb = pp[4];
|
|
uint32 Cr = pp[5];
|
|
YCbCrtoRGB(cp[0], pp[0]);
|
|
YCbCrtoRGB(cp[1], pp[1]);
|
|
YCbCrtoRGB(cp2[0], pp[2]);
|
|
YCbCrtoRGB(cp2[1], pp[3]);
|
|
cp += 2;
|
|
cp2 += 2;
|
|
pp += 6;
|
|
x -= 2;
|
|
}
|
|
if (x==1) {
|
|
uint32 Cb = pp[4];
|
|
uint32 Cr = pp[5];
|
|
YCbCrtoRGB(cp[0], pp[0]);
|
|
YCbCrtoRGB(cp2[0], pp[2]);
|
|
cp ++ ;
|
|
cp2 ++ ;
|
|
pp += 6;
|
|
}
|
|
cp += incr;
|
|
cp2 += incr;
|
|
pp += fromskew;
|
|
h-=2;
|
|
}
|
|
if (h==1) {
|
|
x = w;
|
|
while (x>=2) {
|
|
uint32 Cb = pp[4];
|
|
uint32 Cr = pp[5];
|
|
YCbCrtoRGB(cp[0], pp[0]);
|
|
YCbCrtoRGB(cp[1], pp[1]);
|
|
cp += 2;
|
|
cp2 += 2;
|
|
pp += 6;
|
|
x -= 2;
|
|
}
|
|
if (x==1) {
|
|
uint32 Cb = pp[4];
|
|
uint32 Cr = pp[5];
|
|
YCbCrtoRGB(cp[0], pp[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
|
|
*/
|
|
DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
|
|
{
|
|
(void) y;
|
|
fromskew = (fromskew / 2) * (2*1+2);
|
|
do {
|
|
x = w>>1;
|
|
while(x>0) {
|
|
int32 Cb = pp[2];
|
|
int32 Cr = pp[3];
|
|
|
|
YCbCrtoRGB(cp[0], pp[0]);
|
|
YCbCrtoRGB(cp[1], pp[1]);
|
|
|
|
cp += 2;
|
|
pp += 4;
|
|
x --;
|
|
}
|
|
|
|
if( (w&1) != 0 )
|
|
{
|
|
int32 Cb = pp[2];
|
|
int32 Cr = pp[3];
|
|
|
|
YCbCrtoRGB(cp[0], pp[0]);
|
|
|
|
cp += 1;
|
|
pp += 4;
|
|
}
|
|
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
} while (--h);
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
|
|
*/
|
|
DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
|
|
{
|
|
uint32* cp2;
|
|
int32 incr = 2*toskew+w;
|
|
(void) y;
|
|
fromskew = (fromskew / 1) * (1 * 2 + 2);
|
|
cp2 = cp+w+toskew;
|
|
while (h>=2) {
|
|
x = w;
|
|
do {
|
|
uint32 Cb = pp[2];
|
|
uint32 Cr = pp[3];
|
|
YCbCrtoRGB(cp[0], pp[0]);
|
|
YCbCrtoRGB(cp2[0], pp[1]);
|
|
cp ++;
|
|
cp2 ++;
|
|
pp += 4;
|
|
} while (--x);
|
|
cp += incr;
|
|
cp2 += incr;
|
|
pp += fromskew;
|
|
h-=2;
|
|
}
|
|
if (h==1) {
|
|
x = w;
|
|
do {
|
|
uint32 Cb = pp[2];
|
|
uint32 Cr = pp[3];
|
|
YCbCrtoRGB(cp[0], pp[0]);
|
|
cp ++;
|
|
pp += 4;
|
|
} while (--x);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed YCbCr samples w/ no subsampling => RGB
|
|
*/
|
|
DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
|
|
{
|
|
(void) y;
|
|
fromskew = (fromskew / 1) * (1 * 1 + 2);
|
|
do {
|
|
x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
|
|
do {
|
|
int32 Cb = pp[1];
|
|
int32 Cr = pp[2];
|
|
|
|
YCbCrtoRGB(*cp++, pp[0]);
|
|
|
|
pp += 3;
|
|
} while (--x);
|
|
cp += toskew;
|
|
pp += fromskew;
|
|
} while (--h);
|
|
}
|
|
|
|
/*
|
|
* 8-bit packed YCbCr samples w/ no subsampling => RGB
|
|
*/
|
|
DECLARESepPutFunc(putseparate8bitYCbCr11tile)
|
|
{
|
|
(void) y;
|
|
(void) a;
|
|
/* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
|
|
for( ; h > 0; --h) {
|
|
x = w;
|
|
do {
|
|
uint32 dr, dg, db;
|
|
TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
|
|
*cp++ = PACK(dr,dg,db);
|
|
} while (--x);
|
|
SKEW(r, g, b, fromskew);
|
|
cp += toskew;
|
|
}
|
|
}
|
|
#undef YCbCrtoRGB
|
|
|
|
static int isInRefBlackWhiteRange(float f)
|
|
{
|
|
return f > (float)(-0x7FFFFFFF + 128) && f < (float)0x7FFFFFFF;
|
|
}
|
|
|
|
static int
|
|
initYCbCrConversion(TIFFRGBAImage* img)
|
|
{
|
|
static const char module[] = "initYCbCrConversion";
|
|
|
|
float *luma, *refBlackWhite;
|
|
|
|
if (img->ycbcr == NULL) {
|
|
img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
|
|
TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))
|
|
+ 4*256*sizeof (TIFFRGBValue)
|
|
+ 2*256*sizeof (int)
|
|
+ 3*256*sizeof (int32)
|
|
);
|
|
if (img->ycbcr == NULL) {
|
|
TIFFErrorExt(img->tif->tif_clientdata, module,
|
|
"No space for YCbCr->RGB conversion state");
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
|
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
|
|
&refBlackWhite);
|
|
|
|
/* Do some validation to avoid later issues. Detect NaN for now */
|
|
/* and also if lumaGreen is zero since we divide by it later */
|
|
if( luma[0] != luma[0] ||
|
|
luma[1] != luma[1] ||
|
|
luma[1] == 0.0 ||
|
|
luma[2] != luma[2] )
|
|
{
|
|
TIFFErrorExt(img->tif->tif_clientdata, module,
|
|
"Invalid values for YCbCrCoefficients tag");
|
|
return (0);
|
|
}
|
|
|
|
if( !isInRefBlackWhiteRange(refBlackWhite[0]) ||
|
|
!isInRefBlackWhiteRange(refBlackWhite[1]) ||
|
|
!isInRefBlackWhiteRange(refBlackWhite[2]) ||
|
|
!isInRefBlackWhiteRange(refBlackWhite[3]) ||
|
|
!isInRefBlackWhiteRange(refBlackWhite[4]) ||
|
|
!isInRefBlackWhiteRange(refBlackWhite[5]) )
|
|
{
|
|
TIFFErrorExt(img->tif->tif_clientdata, module,
|
|
"Invalid values for ReferenceBlackWhite tag");
|
|
return (0);
|
|
}
|
|
|
|
if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
|
|
return(0);
|
|
return (1);
|
|
}
|
|
|
|
static tileContigRoutine
|
|
initCIELabConversion(TIFFRGBAImage* img)
|
|
{
|
|
static const char module[] = "initCIELabConversion";
|
|
|
|
float *whitePoint;
|
|
float refWhite[3];
|
|
|
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
|
|
if (whitePoint[1] == 0.0f ) {
|
|
TIFFErrorExt(img->tif->tif_clientdata, module,
|
|
"Invalid value for WhitePoint tag.");
|
|
return NULL;
|
|
}
|
|
|
|
if (!img->cielab) {
|
|
img->cielab = (TIFFCIELabToRGB *)
|
|
_TIFFmalloc(sizeof(TIFFCIELabToRGB));
|
|
if (!img->cielab) {
|
|
TIFFErrorExt(img->tif->tif_clientdata, module,
|
|
"No space for CIE L*a*b*->RGB conversion state.");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
refWhite[1] = 100.0F;
|
|
refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
|
|
refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
|
|
/ whitePoint[1] * refWhite[1];
|
|
if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
|
|
TIFFErrorExt(img->tif->tif_clientdata, module,
|
|
"Failed to initialize CIE L*a*b*->RGB conversion state.");
|
|
_TIFFfree(img->cielab);
|
|
return NULL;
|
|
}
|
|
|
|
return putcontig8bitCIELab;
|
|
}
|
|
|
|
/*
|
|
* Greyscale images with less than 8 bits/sample are handled
|
|
* with a table to avoid lots of shifts and masks. The table
|
|
* is setup so that put*bwtile (below) can retrieve 8/bitspersample
|
|
* pixel values simply by indexing into the table with one
|
|
* number.
|
|
*/
|
|
static int
|
|
makebwmap(TIFFRGBAImage* img)
|
|
{
|
|
TIFFRGBValue* Map = img->Map;
|
|
int bitspersample = img->bitspersample;
|
|
int nsamples = 8 / bitspersample;
|
|
int i;
|
|
uint32* p;
|
|
|
|
if( nsamples == 0 )
|
|
nsamples = 1;
|
|
|
|
img->BWmap = (uint32**) _TIFFmalloc(
|
|
256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
|
|
if (img->BWmap == NULL) {
|
|
TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
|
|
return (0);
|
|
}
|
|
p = (uint32*)(img->BWmap + 256);
|
|
for (i = 0; i < 256; i++) {
|
|
TIFFRGBValue c;
|
|
img->BWmap[i] = p;
|
|
switch (bitspersample) {
|
|
#define GREY(x) c = Map[x]; *p++ = PACK(c,c,c);
|
|
case 1:
|
|
GREY(i>>7);
|
|
GREY((i>>6)&1);
|
|
GREY((i>>5)&1);
|
|
GREY((i>>4)&1);
|
|
GREY((i>>3)&1);
|
|
GREY((i>>2)&1);
|
|
GREY((i>>1)&1);
|
|
GREY(i&1);
|
|
break;
|
|
case 2:
|
|
GREY(i>>6);
|
|
GREY((i>>4)&3);
|
|
GREY((i>>2)&3);
|
|
GREY(i&3);
|
|
break;
|
|
case 4:
|
|
GREY(i>>4);
|
|
GREY(i&0xf);
|
|
break;
|
|
case 8:
|
|
case 16:
|
|
GREY(i);
|
|
break;
|
|
}
|
|
#undef GREY
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Construct a mapping table to convert from the range
|
|
* of the data samples to [0,255] --for display. This
|
|
* process also handles inverting B&W images when needed.
|
|
*/
|
|
static int
|
|
setupMap(TIFFRGBAImage* img)
|
|
{
|
|
int32 x, range;
|
|
|
|
range = (int32)((1L<<img->bitspersample)-1);
|
|
|
|
/* treat 16 bit the same as eight bit */
|
|
if( img->bitspersample == 16 )
|
|
range = (int32) 255;
|
|
|
|
img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
|
|
if (img->Map == NULL) {
|
|
TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
|
|
"No space for photometric conversion table");
|
|
return (0);
|
|
}
|
|
if (img->photometric == PHOTOMETRIC_MINISWHITE) {
|
|
for (x = 0; x <= range; x++)
|
|
img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
|
|
} else {
|
|
for (x = 0; x <= range; x++)
|
|
img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
|
|
}
|
|
if (img->bitspersample <= 16 &&
|
|
(img->photometric == PHOTOMETRIC_MINISBLACK ||
|
|
img->photometric == PHOTOMETRIC_MINISWHITE)) {
|
|
/*
|
|
* Use photometric mapping table to construct
|
|
* unpacking tables for samples <= 8 bits.
|
|
*/
|
|
if (!makebwmap(img))
|
|
return (0);
|
|
/* no longer need Map, free it */
|
|
_TIFFfree(img->Map);
|
|
img->Map = NULL;
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
checkcmap(TIFFRGBAImage* img)
|
|
{
|
|
uint16* r = img->redcmap;
|
|
uint16* g = img->greencmap;
|
|
uint16* b = img->bluecmap;
|
|
long n = 1L<<img->bitspersample;
|
|
|
|
while (n-- > 0)
|
|
if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
|
|
return (16);
|
|
return (8);
|
|
}
|
|
|
|
static void
|
|
cvtcmap(TIFFRGBAImage* img)
|
|
{
|
|
uint16* r = img->redcmap;
|
|
uint16* g = img->greencmap;
|
|
uint16* b = img->bluecmap;
|
|
long i;
|
|
|
|
for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
|
|
#define CVT(x) ((uint16)((x)>>8))
|
|
r[i] = CVT(r[i]);
|
|
g[i] = CVT(g[i]);
|
|
b[i] = CVT(b[i]);
|
|
#undef CVT
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Palette images with <= 8 bits/sample are handled
|
|
* with a table to avoid lots of shifts and masks. The table
|
|
* is setup so that put*cmaptile (below) can retrieve 8/bitspersample
|
|
* pixel values simply by indexing into the table with one
|
|
* number.
|
|
*/
|
|
static int
|
|
makecmap(TIFFRGBAImage* img)
|
|
{
|
|
int bitspersample = img->bitspersample;
|
|
int nsamples = 8 / bitspersample;
|
|
uint16* r = img->redcmap;
|
|
uint16* g = img->greencmap;
|
|
uint16* b = img->bluecmap;
|
|
uint32 *p;
|
|
int i;
|
|
|
|
img->PALmap = (uint32**) _TIFFmalloc(
|
|
256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
|
|
if (img->PALmap == NULL) {
|
|
TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
|
|
return (0);
|
|
}
|
|
p = (uint32*)(img->PALmap + 256);
|
|
for (i = 0; i < 256; i++) {
|
|
TIFFRGBValue c;
|
|
img->PALmap[i] = p;
|
|
#define CMAP(x) c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
|
|
switch (bitspersample) {
|
|
case 1:
|
|
CMAP(i>>7);
|
|
CMAP((i>>6)&1);
|
|
CMAP((i>>5)&1);
|
|
CMAP((i>>4)&1);
|
|
CMAP((i>>3)&1);
|
|
CMAP((i>>2)&1);
|
|
CMAP((i>>1)&1);
|
|
CMAP(i&1);
|
|
break;
|
|
case 2:
|
|
CMAP(i>>6);
|
|
CMAP((i>>4)&3);
|
|
CMAP((i>>2)&3);
|
|
CMAP(i&3);
|
|
break;
|
|
case 4:
|
|
CMAP(i>>4);
|
|
CMAP(i&0xf);
|
|
break;
|
|
case 8:
|
|
CMAP(i);
|
|
break;
|
|
}
|
|
#undef CMAP
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Construct any mapping table used
|
|
* by the associated put routine.
|
|
*/
|
|
static int
|
|
buildMap(TIFFRGBAImage* img)
|
|
{
|
|
switch (img->photometric) {
|
|
case PHOTOMETRIC_RGB:
|
|
case PHOTOMETRIC_YCBCR:
|
|
case PHOTOMETRIC_SEPARATED:
|
|
if (img->bitspersample == 8)
|
|
break;
|
|
/* fall through... */
|
|
case PHOTOMETRIC_MINISBLACK:
|
|
case PHOTOMETRIC_MINISWHITE:
|
|
if (!setupMap(img))
|
|
return (0);
|
|
break;
|
|
case PHOTOMETRIC_PALETTE:
|
|
/*
|
|
* Convert 16-bit colormap to 8-bit (unless it looks
|
|
* like an old-style 8-bit colormap).
|
|
*/
|
|
if (checkcmap(img) == 16)
|
|
cvtcmap(img);
|
|
else
|
|
TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
|
|
/*
|
|
* Use mapping table and colormap to construct
|
|
* unpacking tables for samples < 8 bits.
|
|
*/
|
|
if (img->bitspersample <= 8 && !makecmap(img))
|
|
return (0);
|
|
break;
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Select the appropriate conversion routine for packed data.
|
|
*/
|
|
static int
|
|
PickContigCase(TIFFRGBAImage* img)
|
|
{
|
|
img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
|
|
img->put.contig = NULL;
|
|
switch (img->photometric) {
|
|
case PHOTOMETRIC_RGB:
|
|
switch (img->bitspersample) {
|
|
case 8:
|
|
if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
|
|
img->samplesperpixel >= 4)
|
|
img->put.contig = putRGBAAcontig8bittile;
|
|
else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
|
|
img->samplesperpixel >= 4)
|
|
{
|
|
if (BuildMapUaToAa(img))
|
|
img->put.contig = putRGBUAcontig8bittile;
|
|
}
|
|
else if( img->samplesperpixel >= 3 )
|
|
img->put.contig = putRGBcontig8bittile;
|
|
break;
|
|
case 16:
|
|
if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
|
|
img->samplesperpixel >=4 )
|
|
{
|
|
if (BuildMapBitdepth16To8(img))
|
|
img->put.contig = putRGBAAcontig16bittile;
|
|
}
|
|
else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
|
|
img->samplesperpixel >=4 )
|
|
{
|
|
if (BuildMapBitdepth16To8(img) &&
|
|
BuildMapUaToAa(img))
|
|
img->put.contig = putRGBUAcontig16bittile;
|
|
}
|
|
else if( img->samplesperpixel >=3 )
|
|
{
|
|
if (BuildMapBitdepth16To8(img))
|
|
img->put.contig = putRGBcontig16bittile;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_SEPARATED:
|
|
if (img->samplesperpixel >=4 && buildMap(img)) {
|
|
if (img->bitspersample == 8) {
|
|
if (!img->Map)
|
|
img->put.contig = putRGBcontig8bitCMYKtile;
|
|
else
|
|
img->put.contig = putRGBcontig8bitCMYKMaptile;
|
|
}
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_PALETTE:
|
|
if (buildMap(img)) {
|
|
switch (img->bitspersample) {
|
|
case 8:
|
|
img->put.contig = put8bitcmaptile;
|
|
break;
|
|
case 4:
|
|
img->put.contig = put4bitcmaptile;
|
|
break;
|
|
case 2:
|
|
img->put.contig = put2bitcmaptile;
|
|
break;
|
|
case 1:
|
|
img->put.contig = put1bitcmaptile;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_MINISWHITE:
|
|
case PHOTOMETRIC_MINISBLACK:
|
|
if (buildMap(img)) {
|
|
switch (img->bitspersample) {
|
|
case 16:
|
|
img->put.contig = put16bitbwtile;
|
|
break;
|
|
case 8:
|
|
if (img->alpha && img->samplesperpixel == 2)
|
|
img->put.contig = putagreytile;
|
|
else
|
|
img->put.contig = putgreytile;
|
|
break;
|
|
case 4:
|
|
img->put.contig = put4bitbwtile;
|
|
break;
|
|
case 2:
|
|
img->put.contig = put2bitbwtile;
|
|
break;
|
|
case 1:
|
|
img->put.contig = put1bitbwtile;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_YCBCR:
|
|
if ((img->bitspersample==8) && (img->samplesperpixel==3))
|
|
{
|
|
if (initYCbCrConversion(img)!=0)
|
|
{
|
|
/*
|
|
* The 6.0 spec says that subsampling must be
|
|
* one of 1, 2, or 4, and that vertical subsampling
|
|
* must always be <= horizontal subsampling; so
|
|
* there are only a few possibilities and we just
|
|
* enumerate the cases.
|
|
* Joris: added support for the [1,2] case, nonetheless, to accommodate
|
|
* some OJPEG files
|
|
*/
|
|
uint16 SubsamplingHor;
|
|
uint16 SubsamplingVer;
|
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
|
|
switch ((SubsamplingHor<<4)|SubsamplingVer) {
|
|
case 0x44:
|
|
img->put.contig = putcontig8bitYCbCr44tile;
|
|
break;
|
|
case 0x42:
|
|
img->put.contig = putcontig8bitYCbCr42tile;
|
|
break;
|
|
case 0x41:
|
|
img->put.contig = putcontig8bitYCbCr41tile;
|
|
break;
|
|
case 0x22:
|
|
img->put.contig = putcontig8bitYCbCr22tile;
|
|
break;
|
|
case 0x21:
|
|
img->put.contig = putcontig8bitYCbCr21tile;
|
|
break;
|
|
case 0x12:
|
|
img->put.contig = putcontig8bitYCbCr12tile;
|
|
break;
|
|
case 0x11:
|
|
img->put.contig = putcontig8bitYCbCr11tile;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_CIELAB:
|
|
if (img->samplesperpixel == 3 && buildMap(img)) {
|
|
if (img->bitspersample == 8)
|
|
img->put.contig = initCIELabConversion(img);
|
|
break;
|
|
}
|
|
}
|
|
return ((img->get!=NULL) && (img->put.contig!=NULL));
|
|
}
|
|
|
|
/*
|
|
* Select the appropriate conversion routine for unpacked data.
|
|
*
|
|
* NB: we assume that unpacked single channel data is directed
|
|
* to the "packed routines.
|
|
*/
|
|
static int
|
|
PickSeparateCase(TIFFRGBAImage* img)
|
|
{
|
|
img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
|
|
img->put.separate = NULL;
|
|
switch (img->photometric) {
|
|
case PHOTOMETRIC_MINISWHITE:
|
|
case PHOTOMETRIC_MINISBLACK:
|
|
/* greyscale images processed pretty much as RGB by gtTileSeparate */
|
|
case PHOTOMETRIC_RGB:
|
|
switch (img->bitspersample) {
|
|
case 8:
|
|
if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
|
|
img->put.separate = putRGBAAseparate8bittile;
|
|
else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
|
|
{
|
|
if (BuildMapUaToAa(img))
|
|
img->put.separate = putRGBUAseparate8bittile;
|
|
}
|
|
else
|
|
img->put.separate = putRGBseparate8bittile;
|
|
break;
|
|
case 16:
|
|
if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
|
|
{
|
|
if (BuildMapBitdepth16To8(img))
|
|
img->put.separate = putRGBAAseparate16bittile;
|
|
}
|
|
else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
|
|
{
|
|
if (BuildMapBitdepth16To8(img) &&
|
|
BuildMapUaToAa(img))
|
|
img->put.separate = putRGBUAseparate16bittile;
|
|
}
|
|
else
|
|
{
|
|
if (BuildMapBitdepth16To8(img))
|
|
img->put.separate = putRGBseparate16bittile;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_SEPARATED:
|
|
if (img->bitspersample == 8 && img->samplesperpixel == 4)
|
|
{
|
|
img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
|
|
img->put.separate = putCMYKseparate8bittile;
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_YCBCR:
|
|
if ((img->bitspersample==8) && (img->samplesperpixel==3))
|
|
{
|
|
if (initYCbCrConversion(img)!=0)
|
|
{
|
|
uint16 hs, vs;
|
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
|
|
switch ((hs<<4)|vs) {
|
|
case 0x11:
|
|
img->put.separate = putseparate8bitYCbCr11tile;
|
|
break;
|
|
/* TODO: add other cases here */
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return ((img->get!=NULL) && (img->put.separate!=NULL));
|
|
}
|
|
|
|
static int
|
|
BuildMapUaToAa(TIFFRGBAImage* img)
|
|
{
|
|
static const char module[]="BuildMapUaToAa";
|
|
uint8* m;
|
|
uint16 na,nv;
|
|
assert(img->UaToAa==NULL);
|
|
img->UaToAa=_TIFFmalloc(65536);
|
|
if (img->UaToAa==NULL)
|
|
{
|
|
TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
|
|
return(0);
|
|
}
|
|
m=img->UaToAa;
|
|
for (na=0; na<256; na++)
|
|
{
|
|
for (nv=0; nv<256; nv++)
|
|
*m++=(uint8)((nv*na+127)/255);
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
static int
|
|
BuildMapBitdepth16To8(TIFFRGBAImage* img)
|
|
{
|
|
static const char module[]="BuildMapBitdepth16To8";
|
|
uint8* m;
|
|
uint32 n;
|
|
assert(img->Bitdepth16To8==NULL);
|
|
img->Bitdepth16To8=_TIFFmalloc(65536);
|
|
if (img->Bitdepth16To8==NULL)
|
|
{
|
|
TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
|
|
return(0);
|
|
}
|
|
m=img->Bitdepth16To8;
|
|
for (n=0; n<65536; n++)
|
|
*m++=(uint8)((n+128)/257);
|
|
return(1);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read a whole strip off data from the file, and convert to RGBA form.
|
|
* If this is the last strip, then it will only contain the portion of
|
|
* the strip that is actually within the image space. The result is
|
|
* organized in bottom to top form.
|
|
*/
|
|
|
|
|
|
int
|
|
TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
|
|
|
|
{
|
|
return TIFFReadRGBAStripExt(tif, row, raster, 0 );
|
|
}
|
|
|
|
int
|
|
TIFFReadRGBAStripExt(TIFF* tif, uint32 row, uint32 * raster, int stop_on_error)
|
|
|
|
{
|
|
char emsg[1024] = "";
|
|
TIFFRGBAImage img;
|
|
int ok;
|
|
uint32 rowsperstrip, rows_to_read;
|
|
|
|
if( TIFFIsTiled( tif ) )
|
|
{
|
|
TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
|
|
"Can't use TIFFReadRGBAStrip() with tiled file.");
|
|
return (0);
|
|
}
|
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
|
|
if( (row % rowsperstrip) != 0 )
|
|
{
|
|
TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
|
|
"Row passed to TIFFReadRGBAStrip() must be first in a strip.");
|
|
return (0);
|
|
}
|
|
|
|
if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
|
|
|
|
img.row_offset = row;
|
|
img.col_offset = 0;
|
|
|
|
if( row + rowsperstrip > img.height )
|
|
rows_to_read = img.height - row;
|
|
else
|
|
rows_to_read = rowsperstrip;
|
|
|
|
ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
|
|
|
|
TIFFRGBAImageEnd(&img);
|
|
} else {
|
|
TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
|
|
ok = 0;
|
|
}
|
|
|
|
return (ok);
|
|
}
|
|
|
|
/*
|
|
* Read a whole tile off data from the file, and convert to RGBA form.
|
|
* The returned RGBA data is organized from bottom to top of tile,
|
|
* and may include zeroed areas if the tile extends off the image.
|
|
*/
|
|
|
|
int
|
|
TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
|
|
|
|
{
|
|
return TIFFReadRGBATileExt(tif, col, row, raster, 0 );
|
|
}
|
|
|
|
|
|
int
|
|
TIFFReadRGBATileExt(TIFF* tif, uint32 col, uint32 row, uint32 * raster, int stop_on_error )
|
|
{
|
|
char emsg[1024] = "";
|
|
TIFFRGBAImage img;
|
|
int ok;
|
|
uint32 tile_xsize, tile_ysize;
|
|
uint32 read_xsize, read_ysize;
|
|
uint32 i_row;
|
|
|
|
/*
|
|
* Verify that our request is legal - on a tile file, and on a
|
|
* tile boundary.
|
|
*/
|
|
|
|
if( !TIFFIsTiled( tif ) )
|
|
{
|
|
TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
|
|
"Can't use TIFFReadRGBATile() with stripped file.");
|
|
return (0);
|
|
}
|
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
|
|
if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
|
|
{
|
|
TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
|
|
"Row/col passed to TIFFReadRGBATile() must be top"
|
|
"left corner of a tile.");
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Setup the RGBA reader.
|
|
*/
|
|
|
|
if (!TIFFRGBAImageOK(tif, emsg)
|
|
|| !TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
|
|
TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* The TIFFRGBAImageGet() function doesn't allow us to get off the
|
|
* edge of the image, even to fill an otherwise valid tile. So we
|
|
* figure out how much we can read, and fix up the tile buffer to
|
|
* a full tile configuration afterwards.
|
|
*/
|
|
|
|
if( row + tile_ysize > img.height )
|
|
read_ysize = img.height - row;
|
|
else
|
|
read_ysize = tile_ysize;
|
|
|
|
if( col + tile_xsize > img.width )
|
|
read_xsize = img.width - col;
|
|
else
|
|
read_xsize = tile_xsize;
|
|
|
|
/*
|
|
* Read the chunk of imagery.
|
|
*/
|
|
|
|
img.row_offset = row;
|
|
img.col_offset = col;
|
|
|
|
ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
|
|
|
|
TIFFRGBAImageEnd(&img);
|
|
|
|
/*
|
|
* If our read was incomplete we will need to fix up the tile by
|
|
* shifting the data around as if a full tile of data is being returned.
|
|
*
|
|
* This is all the more complicated because the image is organized in
|
|
* bottom to top format.
|
|
*/
|
|
|
|
if( read_xsize == tile_xsize && read_ysize == tile_ysize )
|
|
return( ok );
|
|
|
|
for( i_row = 0; i_row < read_ysize; i_row++ ) {
|
|
memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
|
|
raster + (read_ysize - i_row - 1) * read_xsize,
|
|
read_xsize * sizeof(uint32) );
|
|
_TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
|
|
0, sizeof(uint32) * (tile_xsize - read_xsize) );
|
|
}
|
|
|
|
for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
|
|
_TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
|
|
0, sizeof(uint32) * tile_xsize );
|
|
}
|
|
|
|
return (ok);
|
|
}
|
|
|
|
/* vim: set ts=8 sts=8 sw=8 noet: */
|
|
/*
|
|
* Local Variables:
|
|
* mode: c
|
|
* c-basic-offset: 8
|
|
* fill-column: 78
|
|
* End:
|
|
*/
|