reactos/dll/opengl/mesa/logic.c
Jérôme Gardou 5f2bebf7a5 [OPENGL32][MESA] Downgrade Mesa library to version 2.6
With this commit, we now use a forked version of MESA which only supports OpenGL 1.1, like the windows implementation does.
It exposes :
  - The same pixel formats
  - The same set of extensions
  - Nothing more
All of this without taking 10% of your build time.
If you need a more modern option, look at the MESA package from Rapps, which is (and must be) maintained outside of this code tree.
CORE-7499
2019-01-19 14:23:54 +01:00

726 lines
18 KiB
C

/* $Id: logic.c,v 1.7 1997/07/24 01:24:11 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 2.4
* Copyright (C) 1995-1997 Brian Paul
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* $Log: logic.c,v $
* Revision 1.7 1997/07/24 01:24:11 brianp
* changed precompiled header symbol from PCH to PC_HEADER
*
* Revision 1.6 1997/05/28 03:25:26 brianp
* added precompiled header (PCH) support
*
* Revision 1.5 1997/04/20 20:28:49 brianp
* replaced abort() with gl_problem()
*
* Revision 1.4 1997/03/04 18:56:57 brianp
* added #include <stdlib.h> for abort()
*
* Revision 1.3 1997/01/28 22:16:31 brianp
* added gl_logicop_rgba_span() and gl_logicop_rgba_pixels()
*
* Revision 1.2 1997/01/04 00:13:11 brianp
* was using ! instead of ~ to invert pixel bits (ugh!)
*
* Revision 1.1 1996/09/13 01:38:16 brianp
* Initial revision
*
*/
#ifdef PC_HEADER
#include "all.h"
#else
#include <stdlib.h>
#include "alphabuf.h"
#include "context.h"
#include "dlist.h"
#include "logic.h"
#include "macros.h"
#include "pb.h"
#include "span.h"
#include "types.h"
#endif
void gl_LogicOp( GLcontext *ctx, GLenum opcode )
{
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glLogicOp" );
return;
}
switch (opcode) {
case GL_CLEAR:
case GL_SET:
case GL_COPY:
case GL_COPY_INVERTED:
case GL_NOOP:
case GL_INVERT:
case GL_AND:
case GL_NAND:
case GL_OR:
case GL_NOR:
case GL_XOR:
case GL_EQUIV:
case GL_AND_REVERSE:
case GL_AND_INVERTED:
case GL_OR_REVERSE:
case GL_OR_INVERTED:
ctx->Color.LogicOp = opcode;
ctx->NewState |= NEW_RASTER_OPS;
return;
default:
gl_error( ctx, GL_INVALID_ENUM, "glLogicOp" );
return;
}
}
/*
* Apply the current logic operator to a span of CI pixels. This is only
* used if the device driver can't do logic ops.
*/
void gl_logicop_ci_span( GLcontext *ctx, GLuint n, GLint x, GLint y,
GLuint index[], GLubyte mask[] )
{
GLuint dest[MAX_WIDTH];
GLuint i;
/* Read dest values from frame buffer */
(*ctx->Driver.ReadIndexSpan)( ctx, n, x, y, dest );
switch (ctx->Color.LogicOp) {
case GL_CLEAR:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = 0;
}
}
break;
case GL_SET:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = 1;
}
}
break;
case GL_COPY:
/* do nothing */
break;
case GL_COPY_INVERTED:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~index[i];
}
}
break;
case GL_NOOP:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = dest[i];
}
}
break;
case GL_INVERT:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~dest[i];
}
}
break;
case GL_AND:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] &= dest[i];
}
}
break;
case GL_NAND:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~(index[i] & dest[i]);
}
}
break;
case GL_OR:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] |= dest[i];
}
}
break;
case GL_NOR:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~(index[i] | dest[i]);
}
}
break;
case GL_XOR:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] ^= dest[i];
}
}
break;
case GL_EQUIV:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~(index[i] ^ dest[i]);
}
}
break;
case GL_AND_REVERSE:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = index[i] & ~dest[i];
}
}
break;
case GL_AND_INVERTED:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~index[i] & dest[i];
}
}
break;
case GL_OR_REVERSE:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = index[i] | ~dest[i];
}
}
break;
case GL_OR_INVERTED:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~index[i] | dest[i];
}
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "gl_logic error" );
}
}
/*
* Apply the current logic operator to an array of CI pixels. This is only
* used if the device driver can't do logic ops.
*/
void gl_logicop_ci_pixels( GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
GLuint index[], GLubyte mask[] )
{
GLuint dest[PB_SIZE];
GLuint i;
/* Read dest values from frame buffer */
(*ctx->Driver.ReadIndexPixels)( ctx, n, x, y, dest, mask );
switch (ctx->Color.LogicOp) {
case GL_CLEAR:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = 0;
}
}
break;
case GL_SET:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = 1;
}
}
break;
case GL_COPY:
/* do nothing */
break;
case GL_COPY_INVERTED:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~index[i];
}
}
break;
case GL_NOOP:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = dest[i];
}
}
break;
case GL_INVERT:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~dest[i];
}
}
break;
case GL_AND:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] &= dest[i];
}
}
break;
case GL_NAND:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~(index[i] & dest[i]);
}
}
break;
case GL_OR:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] |= dest[i];
}
}
break;
case GL_NOR:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~(index[i] | dest[i]);
}
}
break;
case GL_XOR:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] ^= dest[i];
}
}
break;
case GL_EQUIV:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~(index[i] ^ dest[i]);
}
}
break;
case GL_AND_REVERSE:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = index[i] & ~dest[i];
}
}
break;
case GL_AND_INVERTED:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~index[i] & dest[i];
}
}
break;
case GL_OR_REVERSE:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = index[i] | ~dest[i];
}
}
break;
case GL_OR_INVERTED:
for (i=0;i<n;i++) {
if (mask[i]) {
index[i] = ~index[i] | dest[i];
}
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "gl_logic_pixels error" );
}
}
/*
* Apply the current logic operator to a span of RGBA pixels. This is only
* used if the device driver can't do logic ops.
*/
void gl_logicop_rgba_span( GLcontext *ctx,
GLuint n, GLint x, GLint y,
GLubyte red[], GLubyte green[],
GLubyte blue[], GLubyte alpha[],
GLubyte mask[] )
{
GLubyte rdest[MAX_WIDTH], gdest[MAX_WIDTH];
GLubyte bdest[MAX_WIDTH], adest[MAX_WIDTH];
GLuint i;
/* Read span of current frame buffer pixels */
gl_read_color_span( ctx, n, x, y, rdest, gdest, bdest, adest );
/* apply logic op */
switch (ctx->Color.LogicOp) {
case GL_CLEAR:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = green[i] = blue[i] = alpha[i] = 0;
}
}
break;
case GL_SET:
{
GLubyte r = (GLint) ctx->Visual->RedScale;
GLubyte g = (GLint) ctx->Visual->GreenScale;
GLubyte b = (GLint) ctx->Visual->BlueScale;
GLubyte a = (GLint) ctx->Visual->AlphaScale;
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = r;
green[i] = g;
blue[i] = b;
alpha[i] = a;
}
}
}
break;
case GL_COPY:
/* do nothing */
break;
case GL_COPY_INVERTED:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~red[i];
green[i] = ~green[i];
blue[i] = ~blue[i];
alpha[i] = ~alpha[i];
}
}
break;
case GL_NOOP:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = rdest[i];
green[i] = gdest[i];
blue[i] = bdest[i];
alpha[i] = adest[i];
}
}
break;
case GL_INVERT:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~rdest[i];
green[i] = ~gdest[i];
blue[i] = ~bdest[i];
alpha[i] = ~adest[i];
}
}
break;
case GL_AND:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] &= rdest[i];
green[i] &= gdest[i];
blue[i] &= bdest[i];
alpha[i] &= adest[i];
}
}
break;
case GL_NAND:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~(red[i] & rdest[i]);
green[i] = ~(green[i] & gdest[i]);
blue[i] = ~(blue[i] & bdest[i]);
alpha[i] = ~(alpha[i] & adest[i]);
}
}
break;
case GL_OR:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] |= rdest[i];
green[i] |= gdest[i];
blue[i] |= bdest[i];
alpha[i] |= adest[i];
}
}
break;
case GL_NOR:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~(red[i] | rdest[i]);
green[i] = ~(green[i] | gdest[i]);
blue[i] = ~(blue[i] | bdest[i]);
alpha[i] = ~(alpha[i] | adest[i]);
}
}
break;
case GL_XOR:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] ^= rdest[i];
green[i] ^= gdest[i];
blue[i] ^= bdest[i];
alpha[i] ^= adest[i];
}
}
break;
case GL_EQUIV:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~(red[i] ^ rdest[i]);
green[i] = ~(green[i] ^ gdest[i]);
blue[i] = ~(blue[i] ^ bdest[i]);
alpha[i] = ~(alpha[i] ^ adest[i]);
}
}
break;
case GL_AND_REVERSE:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = red[i] & ~rdest[i];
green[i] = green[i] & ~gdest[i];
blue[i] = blue[i] & ~bdest[i];
alpha[i] = alpha[i] & ~adest[i];
}
}
break;
case GL_AND_INVERTED:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~red[i] & rdest[i];
green[i] = ~green[i] & gdest[i];
blue[i] = ~blue[i] & bdest[i];
alpha[i] = ~alpha[i] & adest[i];
}
}
break;
case GL_OR_REVERSE:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = red[i] | ~rdest[i];
green[i] = green[i] | ~gdest[i];
blue[i] = blue[i] | ~bdest[i];
alpha[i] = alpha[i] | ~adest[i];
}
}
break;
case GL_OR_INVERTED:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~red[i] | rdest[i];
green[i] = ~green[i] | gdest[i];
blue[i] = ~blue[i] | bdest[i];
alpha[i] = ~alpha[i] | adest[i];
}
}
break;
default:
/* should never happen */
gl_problem(ctx, "Bad function in gl_logicop_rgba_span");
return;
}
}
/*
* Apply the current logic operator to an array of RGBA pixels. This is only
* used if the device driver can't do logic ops.
*/
void gl_logicop_rgba_pixels( GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
GLubyte red[], GLubyte green[],
GLubyte blue[], GLubyte alpha[],
GLubyte mask[] )
{
GLubyte rdest[PB_SIZE], gdest[PB_SIZE], bdest[PB_SIZE], adest[PB_SIZE];
GLuint i;
/* Read pixels from current color buffer */
(*ctx->Driver.ReadColorPixels)( ctx, n, x, y, rdest, gdest, bdest, adest, mask );
if (ctx->RasterMask & ALPHABUF_BIT) {
gl_read_alpha_pixels( ctx, n, x, y, adest, mask );
}
/* apply logic op */
switch (ctx->Color.LogicOp) {
case GL_CLEAR:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = green[i] = blue[i] = alpha[i] = 0;
}
}
break;
case GL_SET:
{
GLubyte r = (GLint) ctx->Visual->RedScale;
GLubyte g = (GLint) ctx->Visual->GreenScale;
GLubyte b = (GLint) ctx->Visual->BlueScale;
GLubyte a = (GLint) ctx->Visual->AlphaScale;
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = r;
green[i] = g;
blue[i] = b;
alpha[i] = a;
}
}
}
break;
case GL_COPY:
/* do nothing */
break;
case GL_COPY_INVERTED:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~red[i];
green[i] = ~green[i];
blue[i] = ~blue[i];
alpha[i] = ~alpha[i];
}
}
break;
case GL_NOOP:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = rdest[i];
green[i] = gdest[i];
blue[i] = bdest[i];
alpha[i] = adest[i];
}
}
break;
case GL_INVERT:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~rdest[i];
green[i] = ~gdest[i];
blue[i] = ~bdest[i];
alpha[i] = ~adest[i];
}
}
break;
case GL_AND:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] &= rdest[i];
green[i] &= gdest[i];
blue[i] &= bdest[i];
alpha[i] &= adest[i];
}
}
break;
case GL_NAND:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~(red[i] & rdest[i]);
green[i] = ~(green[i] & gdest[i]);
blue[i] = ~(blue[i] & bdest[i]);
alpha[i] = ~(alpha[i] & adest[i]);
}
}
break;
case GL_OR:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] |= rdest[i];
green[i] |= gdest[i];
blue[i] |= bdest[i];
alpha[i] |= adest[i];
}
}
break;
case GL_NOR:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~(red[i] | rdest[i]);
green[i] = ~(green[i] | gdest[i]);
blue[i] = ~(blue[i] | bdest[i]);
alpha[i] = ~(alpha[i] | adest[i]);
}
}
break;
case GL_XOR:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] ^= rdest[i];
green[i] ^= gdest[i];
blue[i] ^= bdest[i];
alpha[i] ^= adest[i];
}
}
break;
case GL_EQUIV:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~(red[i] ^ rdest[i]);
green[i] = ~(green[i] ^ gdest[i]);
blue[i] = ~(blue[i] ^ bdest[i]);
alpha[i] = ~(alpha[i] ^ adest[i]);
}
}
break;
case GL_AND_REVERSE:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = red[i] & ~rdest[i];
green[i] = green[i] & ~gdest[i];
blue[i] = blue[i] & ~bdest[i];
alpha[i] = alpha[i] & ~adest[i];
}
}
break;
case GL_AND_INVERTED:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~red[i] & rdest[i];
green[i] = ~green[i] & gdest[i];
blue[i] = ~blue[i] & bdest[i];
alpha[i] = ~alpha[i] & adest[i];
}
}
break;
case GL_OR_REVERSE:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = red[i] | ~rdest[i];
green[i] = green[i] | ~gdest[i];
blue[i] = blue[i] | ~bdest[i];
alpha[i] = alpha[i] | ~adest[i];
}
}
break;
case GL_OR_INVERTED:
for (i=0;i<n;i++) {
if (mask[i]) {
red[i] = ~red[i] | rdest[i];
green[i] = ~green[i] | gdest[i];
blue[i] = ~blue[i] | bdest[i];
alpha[i] = ~alpha[i] | adest[i];
}
}
break;
default:
/* should never happen */
gl_problem(ctx, "Bad function in gl_logicop_rgba_pixels");
return;
}
}