mirror of
https://github.com/reactos/reactos.git
synced 2024-11-20 06:15:26 +00:00
1242 lines
38 KiB
C
1242 lines
38 KiB
C
/*
|
|
* Mesa 3-D graphics library
|
|
* Version: 7.5
|
|
*
|
|
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
|
|
* Copyright (C) 2009 VMware, Inc. All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
|
|
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
* \file swrast/s_span.c
|
|
* \brief Span processing functions used by all rasterization functions.
|
|
* This is where all the per-fragment tests are performed
|
|
* \author Brian Paul
|
|
*/
|
|
|
|
#include <precomp.h>
|
|
|
|
/**
|
|
* Set default fragment attributes for the span using the
|
|
* current raster values. Used prior to glDraw/CopyPixels
|
|
* and glBitmap.
|
|
*/
|
|
void
|
|
_swrast_span_default_attribs(struct gl_context *ctx, SWspan *span)
|
|
{
|
|
GLchan r, g, b, a;
|
|
/* Z*/
|
|
{
|
|
const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
|
|
if (ctx->DrawBuffer->Visual.depthBits <= 16)
|
|
span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
|
|
else {
|
|
GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
|
|
tmpf = MIN2(tmpf, depthMax);
|
|
span->z = (GLint)tmpf;
|
|
}
|
|
span->zStep = 0;
|
|
span->interpMask |= SPAN_Z;
|
|
}
|
|
|
|
/* W (for perspective correction) */
|
|
span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
|
|
span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
|
|
span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
|
|
|
|
/* primary color, or color index */
|
|
UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
|
|
UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
|
|
UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
|
|
UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
|
|
#if CHAN_TYPE == GL_FLOAT
|
|
span->red = r;
|
|
span->green = g;
|
|
span->blue = b;
|
|
span->alpha = a;
|
|
#else
|
|
span->red = IntToFixed(r);
|
|
span->green = IntToFixed(g);
|
|
span->blue = IntToFixed(b);
|
|
span->alpha = IntToFixed(a);
|
|
#endif
|
|
span->redStep = 0;
|
|
span->greenStep = 0;
|
|
span->blueStep = 0;
|
|
span->alphaStep = 0;
|
|
span->interpMask |= SPAN_RGBA;
|
|
|
|
COPY_4V(span->attrStart[FRAG_ATTRIB_COL], ctx->Current.RasterColor);
|
|
ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL], 0.0, 0.0, 0.0, 0.0);
|
|
ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL], 0.0, 0.0, 0.0, 0.0);
|
|
|
|
/* fog */
|
|
{
|
|
const SWcontext *swrast = SWRAST_CONTEXT(ctx);
|
|
GLfloat fogVal; /* a coord or a blend factor */
|
|
if (swrast->_PreferPixelFog) {
|
|
/* fog blend factors will be computed from fog coordinates per pixel */
|
|
fogVal = ctx->Current.RasterDistance;
|
|
}
|
|
else {
|
|
/* fog blend factor should be computed from fogcoord now */
|
|
fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
|
|
}
|
|
span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
|
|
span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
|
|
span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
|
|
}
|
|
|
|
/* texcoords */
|
|
{
|
|
const GLuint attr = FRAG_ATTRIB_TEX;
|
|
const GLfloat *tc = ctx->Current.RasterTexCoords;
|
|
if (tc[3] > 0.0F) {
|
|
/* use (s/q, t/q, r/q, 1) */
|
|
span->attrStart[attr][0] = tc[0] / tc[3];
|
|
span->attrStart[attr][1] = tc[1] / tc[3];
|
|
span->attrStart[attr][2] = tc[2] / tc[3];
|
|
span->attrStart[attr][3] = 1.0;
|
|
}
|
|
else {
|
|
ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
|
|
}
|
|
ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
|
|
ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Interpolate the active attributes (and'd with attrMask) to
|
|
* fill in span->array->attribs[].
|
|
* Perspective correction will be done. The point/line/triangle function
|
|
* should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
|
|
*/
|
|
static inline void
|
|
interpolate_active_attribs(struct gl_context *ctx, SWspan *span,
|
|
GLbitfield64 attrMask)
|
|
{
|
|
const SWcontext *swrast = SWRAST_CONTEXT(ctx);
|
|
|
|
/*
|
|
* Don't overwrite existing array values, such as colors that may have
|
|
* been produced by glDraw/CopyPixels.
|
|
*/
|
|
attrMask &= ~span->arrayAttribs;
|
|
|
|
ATTRIB_LOOP_BEGIN
|
|
if (attrMask & BITFIELD64_BIT(attr)) {
|
|
const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
|
|
GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
|
|
const GLfloat dv0dx = span->attrStepX[attr][0];
|
|
const GLfloat dv1dx = span->attrStepX[attr][1];
|
|
const GLfloat dv2dx = span->attrStepX[attr][2];
|
|
const GLfloat dv3dx = span->attrStepX[attr][3];
|
|
GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
|
|
GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
|
|
GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
|
|
GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
|
|
GLuint k;
|
|
for (k = 0; k < span->end; k++) {
|
|
const GLfloat invW = 1.0f / w;
|
|
span->array->attribs[attr][k][0] = v0 * invW;
|
|
span->array->attribs[attr][k][1] = v1 * invW;
|
|
span->array->attribs[attr][k][2] = v2 * invW;
|
|
span->array->attribs[attr][k][3] = v3 * invW;
|
|
v0 += dv0dx;
|
|
v1 += dv1dx;
|
|
v2 += dv2dx;
|
|
v3 += dv3dx;
|
|
w += dwdx;
|
|
}
|
|
ASSERT((span->arrayAttribs & BITFIELD64_BIT(attr)) == 0);
|
|
span->arrayAttribs |= BITFIELD64_BIT(attr);
|
|
}
|
|
ATTRIB_LOOP_END
|
|
}
|
|
|
|
|
|
/**
|
|
* Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
|
|
* color array.
|
|
*/
|
|
static inline void
|
|
interpolate_int_colors(struct gl_context *ctx, SWspan *span)
|
|
{
|
|
#if CHAN_BITS != 32
|
|
const GLuint n = span->end;
|
|
GLuint i;
|
|
|
|
ASSERT(!(span->arrayMask & SPAN_RGBA));
|
|
#endif
|
|
|
|
switch (span->array->ChanType) {
|
|
#if CHAN_BITS != 32
|
|
case GL_UNSIGNED_BYTE:
|
|
{
|
|
GLubyte (*rgba)[4] = span->array->rgba8;
|
|
if (span->interpMask & SPAN_FLAT) {
|
|
GLubyte color[4];
|
|
color[RCOMP] = FixedToInt(span->red);
|
|
color[GCOMP] = FixedToInt(span->green);
|
|
color[BCOMP] = FixedToInt(span->blue);
|
|
color[ACOMP] = FixedToInt(span->alpha);
|
|
for (i = 0; i < n; i++) {
|
|
COPY_4UBV(rgba[i], color);
|
|
}
|
|
}
|
|
else {
|
|
GLfixed r = span->red;
|
|
GLfixed g = span->green;
|
|
GLfixed b = span->blue;
|
|
GLfixed a = span->alpha;
|
|
GLint dr = span->redStep;
|
|
GLint dg = span->greenStep;
|
|
GLint db = span->blueStep;
|
|
GLint da = span->alphaStep;
|
|
for (i = 0; i < n; i++) {
|
|
rgba[i][RCOMP] = FixedToChan(r);
|
|
rgba[i][GCOMP] = FixedToChan(g);
|
|
rgba[i][BCOMP] = FixedToChan(b);
|
|
rgba[i][ACOMP] = FixedToChan(a);
|
|
r += dr;
|
|
g += dg;
|
|
b += db;
|
|
a += da;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case GL_UNSIGNED_SHORT:
|
|
{
|
|
GLushort (*rgba)[4] = span->array->rgba16;
|
|
if (span->interpMask & SPAN_FLAT) {
|
|
GLushort color[4];
|
|
color[RCOMP] = FixedToInt(span->red);
|
|
color[GCOMP] = FixedToInt(span->green);
|
|
color[BCOMP] = FixedToInt(span->blue);
|
|
color[ACOMP] = FixedToInt(span->alpha);
|
|
for (i = 0; i < n; i++) {
|
|
COPY_4V(rgba[i], color);
|
|
}
|
|
}
|
|
else {
|
|
GLushort (*rgba)[4] = span->array->rgba16;
|
|
GLfixed r, g, b, a;
|
|
GLint dr, dg, db, da;
|
|
r = span->red;
|
|
g = span->green;
|
|
b = span->blue;
|
|
a = span->alpha;
|
|
dr = span->redStep;
|
|
dg = span->greenStep;
|
|
db = span->blueStep;
|
|
da = span->alphaStep;
|
|
for (i = 0; i < n; i++) {
|
|
rgba[i][RCOMP] = FixedToChan(r);
|
|
rgba[i][GCOMP] = FixedToChan(g);
|
|
rgba[i][BCOMP] = FixedToChan(b);
|
|
rgba[i][ACOMP] = FixedToChan(a);
|
|
r += dr;
|
|
g += dg;
|
|
b += db;
|
|
a += da;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
#endif
|
|
case GL_FLOAT:
|
|
interpolate_active_attribs(ctx, span, FRAG_BIT_COL);
|
|
break;
|
|
default:
|
|
_mesa_problem(ctx, "bad datatype 0x%x in interpolate_int_colors",
|
|
span->array->ChanType);
|
|
}
|
|
span->arrayMask |= SPAN_RGBA;
|
|
}
|
|
|
|
/**
|
|
* Fill in the span.zArray array from the span->z, zStep values.
|
|
*/
|
|
void
|
|
_swrast_span_interpolate_z( const struct gl_context *ctx, SWspan *span )
|
|
{
|
|
const GLuint n = span->end;
|
|
GLuint i;
|
|
|
|
ASSERT(!(span->arrayMask & SPAN_Z));
|
|
|
|
if (ctx->DrawBuffer->Visual.depthBits <= 16) {
|
|
GLfixed zval = span->z;
|
|
GLuint *z = span->array->z;
|
|
for (i = 0; i < n; i++) {
|
|
z[i] = FixedToInt(zval);
|
|
zval += span->zStep;
|
|
}
|
|
}
|
|
else {
|
|
/* Deep Z buffer, no fixed->int shift */
|
|
GLuint zval = span->z;
|
|
GLuint *z = span->array->z;
|
|
for (i = 0; i < n; i++) {
|
|
z[i] = zval;
|
|
zval += span->zStep;
|
|
}
|
|
}
|
|
span->interpMask &= ~SPAN_Z;
|
|
span->arrayMask |= SPAN_Z;
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute mipmap LOD from partial derivatives.
|
|
* This the ideal solution, as given in the OpenGL spec.
|
|
*/
|
|
GLfloat
|
|
_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
|
|
GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
|
|
GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
|
|
{
|
|
GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
|
|
GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
|
|
GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
|
|
GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
|
|
GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
|
|
GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
|
|
GLfloat rho = MAX2(x, y);
|
|
GLfloat lambda = LOG2(rho);
|
|
return lambda;
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute mipmap LOD from partial derivatives.
|
|
* This is a faster approximation than above function.
|
|
*/
|
|
#if 0
|
|
GLfloat
|
|
_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
|
|
GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
|
|
GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
|
|
{
|
|
GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
|
|
GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
|
|
GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
|
|
GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
|
|
GLfloat maxU, maxV, rho, lambda;
|
|
dsdx2 = FABSF(dsdx2);
|
|
dsdy2 = FABSF(dsdy2);
|
|
dtdx2 = FABSF(dtdx2);
|
|
dtdy2 = FABSF(dtdy2);
|
|
maxU = MAX2(dsdx2, dsdy2) * texW;
|
|
maxV = MAX2(dtdx2, dtdy2) * texH;
|
|
rho = MAX2(maxU, maxV);
|
|
lambda = LOG2(rho);
|
|
return lambda;
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
|
|
* using the attrStart/Step values.
|
|
*
|
|
* This function only used during fixed-function fragment processing.
|
|
*
|
|
* Note: in the places where we divide by Q (or mult by invQ) we're
|
|
* really doing two things: perspective correction and texcoord
|
|
* projection. Remember, for texcoord (s,t,r,q) we need to index
|
|
* texels with (s/q, t/q, r/q).
|
|
*/
|
|
static void
|
|
interpolate_texcoords(struct gl_context *ctx, SWspan *span)
|
|
{
|
|
if (ctx->Texture._EnabledCoord) {
|
|
const GLuint attr = FRAG_ATTRIB_TEX;
|
|
const struct gl_texture_object *obj = ctx->Texture.Unit._Current;
|
|
GLfloat texW, texH;
|
|
GLboolean needLambda;
|
|
GLfloat (*texcoord)[4] = span->array->attribs[attr];
|
|
GLfloat *lambda = span->array->lambda;
|
|
const GLfloat dsdx = span->attrStepX[attr][0];
|
|
const GLfloat dsdy = span->attrStepY[attr][0];
|
|
const GLfloat dtdx = span->attrStepX[attr][1];
|
|
const GLfloat dtdy = span->attrStepY[attr][1];
|
|
const GLfloat drdx = span->attrStepX[attr][2];
|
|
const GLfloat dqdx = span->attrStepX[attr][3];
|
|
const GLfloat dqdy = span->attrStepY[attr][3];
|
|
GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
|
|
GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
|
|
GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
|
|
GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
|
|
|
|
if (obj) {
|
|
const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
|
|
const struct swrast_texture_image *swImg =
|
|
swrast_texture_image_const(img);
|
|
|
|
needLambda = (obj->Sampler.MinFilter != obj->Sampler.MagFilter);
|
|
/* LOD is calculated directly in the ansiotropic filter, we can
|
|
* skip the normal lambda function as the result is ignored.
|
|
*/
|
|
if (obj->Sampler.MaxAnisotropy > 1.0 &&
|
|
obj->Sampler.MinFilter == GL_LINEAR_MIPMAP_LINEAR) {
|
|
needLambda = GL_FALSE;
|
|
}
|
|
texW = swImg->WidthScale;
|
|
texH = swImg->HeightScale;
|
|
}
|
|
else {
|
|
/* using a fragment program */
|
|
texW = 1.0;
|
|
texH = 1.0;
|
|
needLambda = GL_FALSE;
|
|
}
|
|
|
|
if (needLambda) {
|
|
GLuint i;
|
|
for (i = 0; i < span->end; i++) {
|
|
const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
|
|
texcoord[i][0] = s * invQ;
|
|
texcoord[i][1] = t * invQ;
|
|
texcoord[i][2] = r * invQ;
|
|
texcoord[i][3] = q;
|
|
lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
|
|
dqdx, dqdy, texW, texH,
|
|
s, t, q, invQ);
|
|
s += dsdx;
|
|
t += dtdx;
|
|
r += drdx;
|
|
q += dqdx;
|
|
}
|
|
span->arrayMask |= SPAN_LAMBDA;
|
|
}
|
|
else {
|
|
GLuint i;
|
|
if (dqdx == 0.0F) {
|
|
/* Ortho projection or polygon's parallel to window X axis */
|
|
const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
|
|
for (i = 0; i < span->end; i++) {
|
|
texcoord[i][0] = s * invQ;
|
|
texcoord[i][1] = t * invQ;
|
|
texcoord[i][2] = r * invQ;
|
|
texcoord[i][3] = q;
|
|
lambda[i] = 0.0;
|
|
s += dsdx;
|
|
t += dtdx;
|
|
r += drdx;
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < span->end; i++) {
|
|
const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
|
|
texcoord[i][0] = s * invQ;
|
|
texcoord[i][1] = t * invQ;
|
|
texcoord[i][2] = r * invQ;
|
|
texcoord[i][3] = q;
|
|
lambda[i] = 0.0;
|
|
s += dsdx;
|
|
t += dtdx;
|
|
r += drdx;
|
|
q += dqdx;
|
|
}
|
|
}
|
|
} /* lambda */
|
|
} /* if */
|
|
}
|
|
|
|
/**
|
|
* Apply the current polygon stipple pattern to a span of pixels.
|
|
*/
|
|
static inline void
|
|
stipple_polygon_span(struct gl_context *ctx, SWspan *span)
|
|
{
|
|
GLubyte *mask = span->array->mask;
|
|
|
|
ASSERT(ctx->Polygon.StippleFlag);
|
|
|
|
if (span->arrayMask & SPAN_XY) {
|
|
/* arrays of x/y pixel coords */
|
|
GLuint i;
|
|
for (i = 0; i < span->end; i++) {
|
|
const GLint col = span->array->x[i] % 32;
|
|
const GLint row = span->array->y[i] % 32;
|
|
const GLuint stipple = ctx->PolygonStipple[row];
|
|
if (((1 << col) & stipple) == 0) {
|
|
mask[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* horizontal span of pixels */
|
|
const GLuint highBit = 1 << 31;
|
|
const GLuint stipple = ctx->PolygonStipple[span->y % 32];
|
|
GLuint i, m = highBit >> (GLuint) (span->x % 32);
|
|
for (i = 0; i < span->end; i++) {
|
|
if ((m & stipple) == 0) {
|
|
mask[i] = 0;
|
|
}
|
|
m = m >> 1;
|
|
if (m == 0) {
|
|
m = highBit;
|
|
}
|
|
}
|
|
}
|
|
span->writeAll = GL_FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
* Clip a pixel span to the current buffer/window boundaries:
|
|
* DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish
|
|
* window clipping and scissoring.
|
|
* Return: GL_TRUE some pixels still visible
|
|
* GL_FALSE nothing visible
|
|
*/
|
|
static inline GLuint
|
|
clip_span( struct gl_context *ctx, SWspan *span )
|
|
{
|
|
const GLint xmin = ctx->DrawBuffer->_Xmin;
|
|
const GLint xmax = ctx->DrawBuffer->_Xmax;
|
|
const GLint ymin = ctx->DrawBuffer->_Ymin;
|
|
const GLint ymax = ctx->DrawBuffer->_Ymax;
|
|
|
|
span->leftClip = 0;
|
|
|
|
if (span->arrayMask & SPAN_XY) {
|
|
/* arrays of x/y pixel coords */
|
|
const GLint *x = span->array->x;
|
|
const GLint *y = span->array->y;
|
|
const GLint n = span->end;
|
|
GLubyte *mask = span->array->mask;
|
|
GLint i;
|
|
GLuint passed = 0;
|
|
if (span->arrayMask & SPAN_MASK) {
|
|
/* note: using & intead of && to reduce branches */
|
|
for (i = 0; i < n; i++) {
|
|
mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
|
|
& (y[i] >= ymin) & (y[i] < ymax);
|
|
passed += mask[i];
|
|
}
|
|
}
|
|
else {
|
|
/* note: using & intead of && to reduce branches */
|
|
for (i = 0; i < n; i++) {
|
|
mask[i] = (x[i] >= xmin) & (x[i] < xmax)
|
|
& (y[i] >= ymin) & (y[i] < ymax);
|
|
passed += mask[i];
|
|
}
|
|
}
|
|
return passed > 0;
|
|
}
|
|
else {
|
|
/* horizontal span of pixels */
|
|
const GLint x = span->x;
|
|
const GLint y = span->y;
|
|
GLint n = span->end;
|
|
|
|
/* Trivial rejection tests */
|
|
if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
|
|
span->end = 0;
|
|
return GL_FALSE; /* all pixels clipped */
|
|
}
|
|
|
|
/* Clip to right */
|
|
if (x + n > xmax) {
|
|
ASSERT(x < xmax);
|
|
n = span->end = xmax - x;
|
|
}
|
|
|
|
/* Clip to the left */
|
|
if (x < xmin) {
|
|
const GLint leftClip = xmin - x;
|
|
GLuint i;
|
|
|
|
ASSERT(leftClip > 0);
|
|
ASSERT(x + n > xmin);
|
|
|
|
/* Clip 'leftClip' pixels from the left side.
|
|
* The span->leftClip field will be applied when we interpolate
|
|
* fragment attributes.
|
|
* For arrays of values, shift them left.
|
|
*/
|
|
for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
|
|
if (span->interpMask & (1 << i)) {
|
|
GLuint j;
|
|
for (j = 0; j < 4; j++) {
|
|
span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
span->red += leftClip * span->redStep;
|
|
span->green += leftClip * span->greenStep;
|
|
span->blue += leftClip * span->blueStep;
|
|
span->alpha += leftClip * span->alphaStep;
|
|
span->index += leftClip * span->indexStep;
|
|
span->z += leftClip * span->zStep;
|
|
span->intTex[0] += leftClip * span->intTexStep[0];
|
|
span->intTex[1] += leftClip * span->intTexStep[1];
|
|
|
|
#define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
|
|
memmove(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
|
|
|
|
for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
|
|
if (span->arrayAttribs & (1 << i)) {
|
|
/* shift array elements left by 'leftClip' */
|
|
SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
|
|
}
|
|
}
|
|
|
|
SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
|
|
SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
|
|
SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
|
|
SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
|
|
SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
|
|
SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
|
|
SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
|
|
SHIFT_ARRAY(span->array->lambda, leftClip, n - leftClip);
|
|
SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
|
|
|
|
#undef SHIFT_ARRAY
|
|
|
|
span->leftClip = leftClip;
|
|
span->x = xmin;
|
|
span->end -= leftClip;
|
|
span->writeAll = GL_FALSE;
|
|
}
|
|
|
|
ASSERT(span->x >= xmin);
|
|
ASSERT(span->x + span->end <= xmax);
|
|
ASSERT(span->y >= ymin);
|
|
ASSERT(span->y < ymax);
|
|
|
|
return GL_TRUE; /* some pixels visible */
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Apply antialiasing coverage value to alpha values.
|
|
*/
|
|
static inline void
|
|
apply_aa_coverage(SWspan *span)
|
|
{
|
|
const GLfloat *coverage = span->array->coverage;
|
|
GLuint i;
|
|
if (span->array->ChanType == GL_UNSIGNED_BYTE) {
|
|
GLubyte (*rgba)[4] = span->array->rgba8;
|
|
for (i = 0; i < span->end; i++) {
|
|
const GLfloat a = rgba[i][ACOMP] * coverage[i];
|
|
rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
|
|
ASSERT(coverage[i] >= 0.0);
|
|
ASSERT(coverage[i] <= 1.0);
|
|
}
|
|
}
|
|
else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
|
|
GLushort (*rgba)[4] = span->array->rgba16;
|
|
for (i = 0; i < span->end; i++) {
|
|
const GLfloat a = rgba[i][ACOMP] * coverage[i];
|
|
rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
|
|
}
|
|
}
|
|
else {
|
|
GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL];
|
|
for (i = 0; i < span->end; i++) {
|
|
rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
|
|
/* clamp later */
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Convert the span's color arrays to the given type.
|
|
* The only way 'output' can be greater than zero is when we have a fragment
|
|
* program that writes to gl_FragData[1] or higher.
|
|
* \param output which fragment program color output is being processed
|
|
*/
|
|
static inline void
|
|
convert_color_type(SWspan *span, GLenum newType, GLuint output)
|
|
{
|
|
GLvoid *src, *dst;
|
|
|
|
if (output > 0 || span->array->ChanType == GL_FLOAT) {
|
|
src = span->array->attribs[FRAG_ATTRIB_COL + output];
|
|
span->array->ChanType = GL_FLOAT;
|
|
}
|
|
else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
|
|
src = span->array->rgba8;
|
|
}
|
|
else {
|
|
ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
|
|
src = span->array->rgba16;
|
|
}
|
|
|
|
if (newType == GL_UNSIGNED_BYTE) {
|
|
dst = span->array->rgba8;
|
|
}
|
|
else if (newType == GL_UNSIGNED_SHORT) {
|
|
dst = span->array->rgba16;
|
|
}
|
|
else {
|
|
dst = span->array->attribs[FRAG_ATTRIB_COL];
|
|
}
|
|
|
|
_mesa_convert_colors(span->array->ChanType, src,
|
|
newType, dst,
|
|
span->end, span->array->mask);
|
|
|
|
span->array->ChanType = newType;
|
|
span->array->rgba = dst;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Apply fragment shader, fragment program or normal texturing to span.
|
|
*/
|
|
static inline void
|
|
shade_texture_span(struct gl_context *ctx, SWspan *span)
|
|
{
|
|
if (ctx->Texture._EnabledCoord) {
|
|
/* conventional texturing */
|
|
|
|
#if CHAN_BITS == 32
|
|
if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
|
|
interpolate_int_colors(ctx, span);
|
|
}
|
|
#else
|
|
if (!(span->arrayMask & SPAN_RGBA))
|
|
interpolate_int_colors(ctx, span);
|
|
#endif
|
|
if (!(span->arrayAttribs & FRAG_BIT_TEX))
|
|
interpolate_texcoords(ctx, span);
|
|
|
|
_swrast_texture_span(ctx, span);
|
|
}
|
|
}
|
|
|
|
|
|
/** Put colors at x/y locations into a renderbuffer */
|
|
static void
|
|
put_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
|
|
GLenum datatype,
|
|
GLuint count, const GLint x[], const GLint y[],
|
|
const void *values, const GLubyte *mask)
|
|
{
|
|
gl_pack_ubyte_rgba_func pack_ubyte;
|
|
gl_pack_float_rgba_func pack_float;
|
|
GLuint i;
|
|
|
|
if (datatype == GL_UNSIGNED_BYTE)
|
|
pack_ubyte = _mesa_get_pack_ubyte_rgba_function(rb->Format);
|
|
else
|
|
pack_float = _mesa_get_pack_float_rgba_function(rb->Format);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (mask[i]) {
|
|
GLubyte *dst = _swrast_pixel_address(rb, x[i], y[i]);
|
|
|
|
if (datatype == GL_UNSIGNED_BYTE) {
|
|
pack_ubyte((const GLubyte *) values + 4 * i, dst);
|
|
}
|
|
else {
|
|
assert(datatype == GL_FLOAT);
|
|
pack_float((const GLfloat *) values + 4 * i, dst);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/** Put row of colors into renderbuffer */
|
|
void
|
|
_swrast_put_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
|
|
GLenum datatype,
|
|
GLuint count, GLint x, GLint y,
|
|
const void *values, const GLubyte *mask)
|
|
{
|
|
GLubyte *dst = _swrast_pixel_address(rb, x, y);
|
|
|
|
if (!mask) {
|
|
if (datatype == GL_UNSIGNED_BYTE) {
|
|
_mesa_pack_ubyte_rgba_row(rb->Format, count,
|
|
(const GLubyte (*)[4]) values, dst);
|
|
}
|
|
else {
|
|
assert(datatype == GL_FLOAT);
|
|
_mesa_pack_float_rgba_row(rb->Format, count,
|
|
(const GLfloat (*)[4]) values, dst);
|
|
}
|
|
}
|
|
else {
|
|
const GLuint bpp = _mesa_get_format_bytes(rb->Format);
|
|
GLuint i, runLen, runStart;
|
|
/* We can't pass a 'mask' array to the _mesa_pack_rgba_row() functions
|
|
* so look for runs where mask=1...
|
|
*/
|
|
runLen = runStart = 0;
|
|
for (i = 0; i < count; i++) {
|
|
if (mask[i]) {
|
|
if (runLen == 0)
|
|
runStart = i;
|
|
runLen++;
|
|
}
|
|
|
|
if (!mask[i] || i == count - 1) {
|
|
/* might be the end of a run of pixels */
|
|
if (runLen > 0) {
|
|
if (datatype == GL_UNSIGNED_BYTE) {
|
|
_mesa_pack_ubyte_rgba_row(rb->Format, runLen,
|
|
(const GLubyte (*)[4]) values + runStart,
|
|
dst + runStart * bpp);
|
|
}
|
|
else {
|
|
assert(datatype == GL_FLOAT);
|
|
_mesa_pack_float_rgba_row(rb->Format, runLen,
|
|
(const GLfloat (*)[4]) values + runStart,
|
|
dst + runStart * bpp);
|
|
}
|
|
runLen = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Apply all the per-fragment operations to a span.
|
|
* This now includes texturing (_swrast_write_texture_span() is history).
|
|
* This function may modify any of the array values in the span.
|
|
* span->interpMask and span->arrayMask may be changed but will be restored
|
|
* to their original values before returning.
|
|
*/
|
|
void
|
|
_swrast_write_rgba_span( struct gl_context *ctx, SWspan *span)
|
|
{
|
|
const SWcontext *swrast = SWRAST_CONTEXT(ctx);
|
|
const GLuint colorMask = *((GLuint *)ctx->Color.ColorMask);
|
|
const GLbitfield origInterpMask = span->interpMask;
|
|
const GLbitfield origArrayMask = span->arrayMask;
|
|
const GLbitfield64 origArrayAttribs = span->arrayAttribs;
|
|
const GLenum origChanType = span->array->ChanType;
|
|
void * const origRgba = span->array->rgba;
|
|
const GLboolean texture = ctx->Texture._EnabledCoord;
|
|
struct gl_framebuffer *fb = ctx->DrawBuffer;
|
|
|
|
/*
|
|
printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__,
|
|
span->interpMask, span->arrayMask);
|
|
*/
|
|
|
|
ASSERT(span->primitive == GL_POINT ||
|
|
span->primitive == GL_LINE ||
|
|
span->primitive == GL_POLYGON ||
|
|
span->primitive == GL_BITMAP);
|
|
|
|
/* Fragment write masks */
|
|
if (span->arrayMask & SPAN_MASK) {
|
|
/* mask was initialized by caller, probably glBitmap */
|
|
span->writeAll = GL_FALSE;
|
|
}
|
|
else {
|
|
memset(span->array->mask, 1, span->end);
|
|
span->writeAll = GL_TRUE;
|
|
}
|
|
|
|
/* Clip to window/scissor box */
|
|
if (!clip_span(ctx, span)) {
|
|
return;
|
|
}
|
|
|
|
ASSERT(span->end <= MAX_WIDTH);
|
|
|
|
/* Depth bounds test */
|
|
if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
|
|
if (!_swrast_depth_bounds_test(ctx, span)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/* Make sure all fragments are within window bounds */
|
|
if (span->arrayMask & SPAN_XY) {
|
|
/* array of pixel locations */
|
|
GLuint i;
|
|
for (i = 0; i < span->end; i++) {
|
|
if (span->array->mask[i]) {
|
|
assert(span->array->x[i] >= fb->_Xmin);
|
|
assert(span->array->x[i] < fb->_Xmax);
|
|
assert(span->array->y[i] >= fb->_Ymin);
|
|
assert(span->array->y[i] < fb->_Ymax);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Polygon Stippling */
|
|
if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
|
|
stipple_polygon_span(ctx, span);
|
|
}
|
|
|
|
/* This is the normal place to compute the fragment color/Z
|
|
* from texturing or shading.
|
|
*/
|
|
if (texture && !swrast->_DeferredTexture) {
|
|
shade_texture_span(ctx, span);
|
|
}
|
|
|
|
/* Do the alpha test */
|
|
if (ctx->Color.AlphaEnabled) {
|
|
if (!_swrast_alpha_test(ctx, span)) {
|
|
/* all fragments failed test */
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
/* Stencil and Z testing */
|
|
if (ctx->Stencil._Enabled || ctx->Depth.Test) {
|
|
if (!(span->arrayMask & SPAN_Z))
|
|
_swrast_span_interpolate_z(ctx, span);
|
|
|
|
if (ctx->Stencil._Enabled) {
|
|
/* Combined Z/stencil tests */
|
|
if (!_swrast_stencil_and_ztest_span(ctx, span)) {
|
|
/* all fragments failed test */
|
|
goto end;
|
|
}
|
|
}
|
|
else if (fb->Visual.depthBits > 0) {
|
|
/* Just regular depth testing */
|
|
ASSERT(ctx->Depth.Test);
|
|
ASSERT(span->arrayMask & SPAN_Z);
|
|
if (!_swrast_depth_test_span(ctx, span)) {
|
|
/* all fragments failed test */
|
|
goto end;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We had to wait until now to check for glColorMask(0,0,0,0) because of
|
|
* the occlusion test.
|
|
*/
|
|
if (colorMask == 0) {
|
|
/* no colors to write */
|
|
goto end;
|
|
}
|
|
|
|
/* If we were able to defer fragment color computation to now, there's
|
|
* a good chance that many fragments will have already been killed by
|
|
* Z/stencil testing.
|
|
*/
|
|
if (texture && swrast->_DeferredTexture) {
|
|
shade_texture_span(ctx, span);
|
|
}
|
|
|
|
#if CHAN_BITS == 32
|
|
if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
|
|
interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
|
|
}
|
|
#else
|
|
if ((span->arrayMask & SPAN_RGBA) == 0) {
|
|
interpolate_int_colors(ctx, span);
|
|
}
|
|
#endif
|
|
|
|
ASSERT(span->arrayMask & SPAN_RGBA);
|
|
|
|
/* Fog */
|
|
if (swrast->_FogEnabled) {
|
|
_swrast_fog_rgba_span(ctx, span);
|
|
}
|
|
|
|
/* Antialias coverage application */
|
|
if (span->arrayMask & SPAN_COVERAGE) {
|
|
apply_aa_coverage(span);
|
|
}
|
|
|
|
/*
|
|
* Write to renderbuffers.
|
|
* Depending on glDrawBuffer() state and the which color outputs are
|
|
* written by the fragment shader, we may either replicate one color to
|
|
* all renderbuffers or write a different color to each renderbuffer.
|
|
* multiFragOutputs=TRUE for the later case.
|
|
*/
|
|
{
|
|
struct gl_renderbuffer *rb = fb->_ColorDrawBuffer;
|
|
|
|
/* color[fragOutput] will be written to buffer */
|
|
|
|
if (rb) {
|
|
struct swrast_renderbuffer *srb = swrast_renderbuffer(rb);
|
|
GLenum colorType = srb->ColorType;
|
|
|
|
assert(colorType == GL_UNSIGNED_BYTE ||
|
|
colorType == GL_FLOAT);
|
|
|
|
/* set span->array->rgba to colors for renderbuffer's datatype */
|
|
if (span->array->ChanType != colorType) {
|
|
convert_color_type(span, colorType, 0);
|
|
}
|
|
else {
|
|
if (span->array->ChanType == GL_UNSIGNED_BYTE) {
|
|
span->array->rgba = span->array->rgba8;
|
|
}
|
|
else {
|
|
span->array->rgba = (void *)span->array->attribs[FRAG_ATTRIB_COL];
|
|
}
|
|
}
|
|
|
|
|
|
ASSERT(rb->_BaseFormat == GL_RGBA ||
|
|
rb->_BaseFormat == GL_RGB ||
|
|
rb->_BaseFormat == GL_RED ||
|
|
rb->_BaseFormat == GL_RG ||
|
|
rb->_BaseFormat == GL_ALPHA);
|
|
|
|
if (ctx->Color.ColorLogicOpEnabled) {
|
|
_swrast_logicop_rgba_span(ctx, rb, span);
|
|
}
|
|
else if (ctx->Color.BlendEnabled) {
|
|
_swrast_blend_span(ctx, rb, span);
|
|
}
|
|
|
|
if (colorMask != 0xffffffff) {
|
|
_swrast_mask_rgba_span(ctx, rb, span);
|
|
}
|
|
|
|
if (span->arrayMask & SPAN_XY) {
|
|
/* array of pixel coords */
|
|
put_values(ctx, rb,
|
|
span->array->ChanType, span->end,
|
|
span->array->x, span->array->y,
|
|
span->array->rgba, span->array->mask);
|
|
}
|
|
else {
|
|
/* horizontal run of pixels */
|
|
_swrast_put_row(ctx, rb,
|
|
span->array->ChanType,
|
|
span->end, span->x, span->y,
|
|
span->array->rgba,
|
|
span->writeAll ? NULL: span->array->mask);
|
|
}
|
|
|
|
} /* if rb */
|
|
}
|
|
|
|
end:
|
|
/* restore these values before returning */
|
|
span->interpMask = origInterpMask;
|
|
span->arrayMask = origArrayMask;
|
|
span->arrayAttribs = origArrayAttribs;
|
|
span->array->ChanType = origChanType;
|
|
span->array->rgba = origRgba;
|
|
}
|
|
|
|
|
|
/**
|
|
* Read float RGBA pixels from a renderbuffer. Clipping will be done to
|
|
* prevent reading ouside the buffer's boundaries.
|
|
* \param rgba the returned colors
|
|
*/
|
|
void
|
|
_swrast_read_rgba_span( struct gl_context *ctx, struct gl_renderbuffer *rb,
|
|
GLuint n, GLint x, GLint y,
|
|
GLvoid *rgba)
|
|
{
|
|
struct swrast_renderbuffer *srb = swrast_renderbuffer(rb);
|
|
GLenum dstType = GL_FLOAT;
|
|
const GLint bufWidth = (GLint) rb->Width;
|
|
const GLint bufHeight = (GLint) rb->Height;
|
|
|
|
if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
|
|
/* completely above, below, or right */
|
|
/* XXX maybe leave rgba values undefined? */
|
|
memset(rgba, 0, 4 * n * sizeof(GLchan));
|
|
}
|
|
else {
|
|
GLint skip, length;
|
|
GLubyte *src;
|
|
|
|
if (x < 0) {
|
|
/* left edge clipping */
|
|
skip = -x;
|
|
length = (GLint) n - skip;
|
|
if (length < 0) {
|
|
/* completely left of window */
|
|
return;
|
|
}
|
|
if (length > bufWidth) {
|
|
length = bufWidth;
|
|
}
|
|
}
|
|
else if ((GLint) (x + n) > bufWidth) {
|
|
/* right edge clipping */
|
|
skip = 0;
|
|
length = bufWidth - x;
|
|
if (length < 0) {
|
|
/* completely to right of window */
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
/* no clipping */
|
|
skip = 0;
|
|
length = (GLint) n;
|
|
}
|
|
|
|
ASSERT(rb);
|
|
ASSERT(rb->_BaseFormat == GL_RGBA ||
|
|
rb->_BaseFormat == GL_RGB ||
|
|
rb->_BaseFormat == GL_RG ||
|
|
rb->_BaseFormat == GL_RED ||
|
|
rb->_BaseFormat == GL_LUMINANCE ||
|
|
rb->_BaseFormat == GL_INTENSITY ||
|
|
rb->_BaseFormat == GL_LUMINANCE_ALPHA ||
|
|
rb->_BaseFormat == GL_ALPHA);
|
|
|
|
assert(srb->Map);
|
|
|
|
src = _swrast_pixel_address(rb, x + skip, y);
|
|
|
|
if (dstType == GL_UNSIGNED_BYTE) {
|
|
_mesa_unpack_ubyte_rgba_row(rb->Format, length, src,
|
|
(GLubyte (*)[4]) rgba + skip);
|
|
}
|
|
else if (dstType == GL_FLOAT) {
|
|
_mesa_unpack_rgba_row(rb->Format, length, src,
|
|
(GLfloat (*)[4]) rgba + skip);
|
|
}
|
|
else {
|
|
_mesa_problem(ctx, "unexpected type in _swrast_read_rgba_span()");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Get colors at x/y positions with clipping.
|
|
* \param type type of values to return
|
|
*/
|
|
static void
|
|
get_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
|
|
GLuint count, const GLint x[], const GLint y[],
|
|
void *values, GLenum type)
|
|
{
|
|
GLuint i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (x[i] >= 0 && y[i] >= 0 &&
|
|
x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
|
|
/* inside */
|
|
const GLubyte *src = _swrast_pixel_address(rb, x[i], y[i]);
|
|
|
|
if (type == GL_UNSIGNED_BYTE) {
|
|
_mesa_unpack_ubyte_rgba_row(rb->Format, 1, src,
|
|
(GLubyte (*)[4]) values + i);
|
|
}
|
|
else if (type == GL_FLOAT) {
|
|
_mesa_unpack_rgba_row(rb->Format, 1, src,
|
|
(GLfloat (*)[4]) values + i);
|
|
}
|
|
else {
|
|
_mesa_problem(ctx, "unexpected type in get_values()");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Get row of colors with clipping.
|
|
* \param type type of values to return
|
|
*/
|
|
static void
|
|
get_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
|
|
GLuint count, GLint x, GLint y,
|
|
GLvoid *values, GLenum type)
|
|
{
|
|
GLint skip = 0;
|
|
GLubyte *src;
|
|
|
|
if (y < 0 || y >= (GLint) rb->Height)
|
|
return; /* above or below */
|
|
|
|
if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
|
|
return; /* entirely left or right */
|
|
|
|
if (x + count > rb->Width) {
|
|
/* right clip */
|
|
GLint clip = x + count - rb->Width;
|
|
count -= clip;
|
|
}
|
|
|
|
if (x < 0) {
|
|
/* left clip */
|
|
skip = -x;
|
|
x = 0;
|
|
count -= skip;
|
|
}
|
|
|
|
src = _swrast_pixel_address(rb, x, y);
|
|
|
|
if (type == GL_UNSIGNED_BYTE) {
|
|
_mesa_unpack_ubyte_rgba_row(rb->Format, count, src,
|
|
(GLubyte (*)[4]) values + skip);
|
|
}
|
|
else if (type == GL_FLOAT) {
|
|
_mesa_unpack_rgba_row(rb->Format, count, src,
|
|
(GLfloat (*)[4]) values + skip);
|
|
}
|
|
else {
|
|
_mesa_problem(ctx, "unexpected type in get_row()");
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Get RGBA pixels from the given renderbuffer.
|
|
* Used by blending, logicop and masking functions.
|
|
* \return pointer to the colors we read.
|
|
*/
|
|
void *
|
|
_swrast_get_dest_rgba(struct gl_context *ctx, struct gl_renderbuffer *rb,
|
|
SWspan *span)
|
|
{
|
|
void *rbPixels;
|
|
|
|
/* Point rbPixels to a temporary space */
|
|
rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1];
|
|
|
|
/* Get destination values from renderbuffer */
|
|
if (span->arrayMask & SPAN_XY) {
|
|
get_values(ctx, rb, span->end, span->array->x, span->array->y,
|
|
rbPixels, span->array->ChanType);
|
|
}
|
|
else {
|
|
get_row(ctx, rb, span->end, span->x, span->y,
|
|
rbPixels, span->array->ChanType);
|
|
}
|
|
|
|
return rbPixels;
|
|
}
|