reactos/subsystems/win32/win32k/ntuser/keyboard.c
Jérôme Gardou 63b50165b2 sync with trunk r47227
svn path=/branches/reactos-yarotows/; revision=47228
2010-05-15 22:30:01 +00:00

1090 lines
27 KiB
C

/*
* ReactOS W32 Subsystem
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 ReactOS Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* COPYRIGHT: See COPYING in the top level directory
* PROJECT: ReactOS kernel
* PURPOSE: Messages
* FILE: subsys/win32k/ntuser/keyboard.c
* PROGRAMER: Casper S. Hornstrup (chorns@users.sourceforge.net)
* REVISION HISTORY:
* 06-06-2001 CSH Created
*/
/* INCLUDES ******************************************************************/
#include <win32k.h>
#define NDEBUG
#include <debug.h>
/* Lock modifiers */
#define CAPITAL_BIT 0x80000000
#define NUMLOCK_BIT 0x40000000
#define MOD_BITS_MASK 0x3fffffff
#define MOD_KCTRL 0x02
/* Key States */
#define KS_DOWN_MASK 0xc0
#define KS_DOWN_BIT 0x80
#define KS_LOCK_BIT 0x01
/* Scan Codes */
#define SC_KEY_UP 0x8000
/* lParam bits */
#define LP_EXT_BIT (1<<24)
/* From kbdxx.c -- Key changes with numlock */
#define KNUMP 0x400
BYTE gQueueKeyStateTable[256];
/* FUNCTIONS *****************************************************************/
/* Initialization -- Right now, just zero the key state and init the lock */
NTSTATUS FASTCALL InitKeyboardImpl(VOID)
{
RtlZeroMemory(&gQueueKeyStateTable,0x100);
return STATUS_SUCCESS;
}
/*** Statics used by TranslateMessage ***/
/*** Shift state code was out of hand, sorry. --- arty */
static UINT DontDistinguishShifts( UINT ret )
{
if( ret == VK_LSHIFT || ret == VK_RSHIFT )
ret = VK_SHIFT;
if( ret == VK_LCONTROL || ret == VK_RCONTROL )
ret = VK_CONTROL;
if( ret == VK_LMENU || ret == VK_RMENU )
ret = VK_MENU;
return ret;
}
static VOID APIENTRY SetKeyState(DWORD key, DWORD vk, DWORD ext, BOOL down)
{
ASSERT(vk <= 0xff);
/* Special handling for toggles like numpad and caps lock */
if (vk == VK_CAPITAL || vk == VK_NUMLOCK)
{
if (down)
gQueueKeyStateTable[vk] ^= KS_LOCK_BIT;
}
if (vk == VK_SHIFT)
vk = ext ? VK_RSHIFT : VK_LSHIFT;
if (vk == VK_CONTROL)
vk = ext ? VK_RCONTROL : VK_LCONTROL;
if (vk == VK_MENU)
vk = ext ? VK_RMENU : VK_LMENU;
if (down)
gQueueKeyStateTable[vk] |= KS_DOWN_BIT;
else
gQueueKeyStateTable[vk] &= ~KS_DOWN_MASK;
if (vk == VK_LSHIFT || vk == VK_RSHIFT)
{
if ((gQueueKeyStateTable[VK_LSHIFT] & KS_DOWN_BIT) ||
(gQueueKeyStateTable[VK_RSHIFT] & KS_DOWN_BIT))
{
gQueueKeyStateTable[VK_SHIFT] |= KS_DOWN_BIT;
}
else
{
gQueueKeyStateTable[VK_SHIFT] &= ~KS_DOWN_MASK;
}
}
if (vk == VK_LCONTROL || vk == VK_RCONTROL)
{
if ((gQueueKeyStateTable[VK_LCONTROL] & KS_DOWN_BIT) ||
(gQueueKeyStateTable[VK_RCONTROL] & KS_DOWN_BIT))
{
gQueueKeyStateTable[VK_CONTROL] |= KS_DOWN_BIT;
}
else
{
gQueueKeyStateTable[VK_CONTROL] &= ~KS_DOWN_MASK;
}
}
if (vk == VK_LMENU || vk == VK_RMENU)
{
if ((gQueueKeyStateTable[VK_LMENU] & KS_DOWN_BIT) ||
(gQueueKeyStateTable[VK_RMENU] & KS_DOWN_BIT))
{
gQueueKeyStateTable[VK_MENU] |= KS_DOWN_BIT;
}
else
{
gQueueKeyStateTable[VK_MENU] &= ~KS_DOWN_MASK;
}
}
}
VOID DumpKeyState( PBYTE KeyState )
{
int i;
DbgPrint( "KeyState { " );
for( i = 0; i < 0x100; i++ )
{
if( KeyState[i] )
DbgPrint( "%02x(%02x) ", i, KeyState[i] );
}
DbgPrint( "};\n" );
}
static BYTE KeysSet( PKBDTABLES pkKT, PBYTE KeyState,
int FakeModLeft, int FakeModRight )
{
if( !KeyState || !pkKT )
return 0;
/* Search special codes first */
if( FakeModLeft && KeyState[FakeModLeft] )
return KeyState[FakeModLeft];
else if( FakeModRight && KeyState[FakeModRight] )
return KeyState[FakeModRight];
return 0;
}
/* Search the keyboard layout modifiers table for the shift bit. I don't
* want to count on the shift bit not moving, because it can be specified
* in the layout */
static DWORD FASTCALL GetShiftBit( PKBDTABLES pkKT, DWORD Vk )
{
int i;
for( i = 0; pkKT->pCharModifiers->pVkToBit[i].Vk; i++ )
if( pkKT->pCharModifiers->pVkToBit[i].Vk == Vk )
return pkKT->pCharModifiers->pVkToBit[i].ModBits;
return 0;
}
static DWORD ModBits( PKBDTABLES pkKT, PBYTE KeyState )
{
DWORD ModBits = 0;
if( !KeyState )
return 0;
/* DumpKeyState( KeyState ); */
if (KeysSet( pkKT, KeyState, VK_LSHIFT, VK_RSHIFT ) &
KS_DOWN_BIT)
ModBits |= GetShiftBit( pkKT, VK_SHIFT );
if (KeysSet( pkKT, KeyState, VK_SHIFT, 0 ) &
KS_DOWN_BIT)
ModBits |= GetShiftBit( pkKT, VK_SHIFT );
if (KeysSet( pkKT, KeyState, VK_LCONTROL, VK_RCONTROL ) &
KS_DOWN_BIT )
ModBits |= GetShiftBit( pkKT, VK_CONTROL );
if (KeysSet( pkKT, KeyState, VK_CONTROL, 0 ) &
KS_DOWN_BIT )
ModBits |= GetShiftBit( pkKT, VK_CONTROL );
if (KeysSet( pkKT, KeyState, VK_LMENU, VK_RMENU ) &
KS_DOWN_BIT )
ModBits |= GetShiftBit( pkKT, VK_MENU );
/* Handle Alt+Gr */
if (pkKT->fLocalFlags & 0x1)
if (KeysSet( pkKT, KeyState, VK_RMENU, 0 ) &
KS_DOWN_BIT)
ModBits |= GetShiftBit( pkKT, VK_CONTROL );
/* Deal with VK_CAPITAL */
if (KeysSet( pkKT, KeyState, VK_CAPITAL, 0 ) & KS_LOCK_BIT)
{
ModBits |= CAPITAL_BIT;
}
/* Deal with VK_NUMLOCK */
if (KeysSet( pkKT, KeyState, VK_NUMLOCK, 0 ) & KS_LOCK_BIT)
{
ModBits |= NUMLOCK_BIT;
}
DPRINT( "Current Mod Bits: %x\n", ModBits );
return ModBits;
}
static BOOL TryToTranslateChar(WORD wVirtKey,
DWORD ModBits,
PBOOL pbDead,
PBOOL pbLigature,
PWCHAR pwcTranslatedChar,
PKBDTABLES keyLayout )
{
PVK_TO_WCHAR_TABLE vtwTbl;
PVK_TO_WCHARS10 vkPtr;
size_t size_this_entry;
int nMod;
DWORD CapsMod = 0, CapsState = 0;
CapsState = ModBits & ~MOD_BITS_MASK;
ModBits = ModBits & MOD_BITS_MASK;
DPRINT ( "TryToTranslate: %04x %x\n", wVirtKey, ModBits );
if (ModBits > keyLayout->pCharModifiers->wMaxModBits)
{
return FALSE;
}
for (nMod = 0; keyLayout->pVkToWcharTable[nMod].nModifications; nMod++)
{
vtwTbl = &keyLayout->pVkToWcharTable[nMod];
size_this_entry = vtwTbl->cbSize;
vkPtr = (PVK_TO_WCHARS10)((BYTE *)vtwTbl->pVkToWchars);
while(vkPtr->VirtualKey)
{
if( wVirtKey == (vkPtr->VirtualKey & 0xff) )
{
CapsMod = keyLayout->pCharModifiers->ModNumber
[ModBits ^
((CapsState & CAPITAL_BIT) ? vkPtr->Attributes : 0)];
if( CapsMod >= keyLayout->pVkToWcharTable[nMod].nModifications )
{
return FALSE;
}
if( vkPtr->wch[CapsMod] == WCH_NONE )
{
return FALSE;
}
*pbDead = vkPtr->wch[CapsMod] == WCH_DEAD;
*pbLigature = vkPtr->wch[CapsMod] == WCH_LGTR;
*pwcTranslatedChar = vkPtr->wch[CapsMod];
DPRINT("%d %04x: CapsMod %08x CapsState %08x Char %04x\n",
nMod, wVirtKey,
CapsMod, CapsState, *pwcTranslatedChar);
if( *pbDead )
{
vkPtr = (PVK_TO_WCHARS10)(((BYTE *)vkPtr) + size_this_entry);
if( vkPtr->VirtualKey != 0xff )
{
DPRINT( "Found dead key with no trailer in the table.\n" );
DPRINT( "VK: %04x, ADDR: %p\n", wVirtKey, vkPtr );
return FALSE;
}
*pwcTranslatedChar = vkPtr->wch[CapsMod];
}
return TRUE;
}
vkPtr = (PVK_TO_WCHARS10)(((BYTE *)vkPtr) + size_this_entry);
}
}
return FALSE;
}
static
int APIENTRY
ToUnicodeInner(UINT wVirtKey,
UINT wScanCode,
PBYTE lpKeyState,
LPWSTR pwszBuff,
int cchBuff,
UINT wFlags,
PKBDTABLES pkKT)
{
WCHAR wcTranslatedChar;
BOOL bDead;
BOOL bLigature;
if( !pkKT )
return 0;
if( TryToTranslateChar( wVirtKey,
ModBits( pkKT, lpKeyState ),
&bDead,
&bLigature,
&wcTranslatedChar,
pkKT ) )
{
if( bLigature )
{
DPRINT("Not handling ligature (yet)\n" );
return 0;
}
if( cchBuff > 0 )
pwszBuff[0] = wcTranslatedChar;
return bDead ? -1 : 1;
}
return 0;
}
DWORD FASTCALL UserGetKeyState(DWORD key)
{
DWORD ret = 0;
if( key < 0x100 )
{
ret = ((DWORD)(gQueueKeyStateTable[key] & KS_DOWN_BIT) << 8 ) |
(gQueueKeyStateTable[key] & KS_LOCK_BIT);
}
return ret;
}
SHORT
APIENTRY
NtUserGetKeyState(
INT key)
{
DECLARE_RETURN(DWORD);
DPRINT("Enter NtUserGetKeyState\n");
UserEnterExclusive();
RETURN(UserGetKeyState(key));
CLEANUP:
DPRINT("Leave NtUserGetKeyState, ret=%i\n",_ret_);
UserLeave();
END_CLEANUP;
}
DWORD FASTCALL UserGetAsyncKeyState(DWORD key)
{
DWORD ret = 0;
if( key < 0x100 )
{
ret = ((DWORD)(gQueueKeyStateTable[key] & KS_DOWN_BIT) << 8 ) |
(gQueueKeyStateTable[key] & KS_LOCK_BIT);
}
return ret;
}
SHORT
APIENTRY
NtUserGetAsyncKeyState(
INT key)
{
DECLARE_RETURN(SHORT);
DPRINT("Enter NtUserGetAsyncKeyState\n");
UserEnterExclusive();
RETURN((SHORT)UserGetAsyncKeyState(key));
CLEANUP:
DPRINT("Leave NtUserGetAsyncKeyState, ret=%i\n",_ret_);
UserLeave();
END_CLEANUP;
}
BOOL FASTCALL
IntTranslateKbdMessage(LPMSG lpMsg,
UINT flags)
{
PTHREADINFO pti;
static INT dead_char = 0;
LONG UState = 0;
WCHAR wp[2] = { 0 };
MSG NewMsg = { 0 };
PKBDTABLES keyLayout;
BOOL Result = FALSE;
DWORD ScanCode = 0;
pti = PsGetCurrentThreadWin32Thread();
keyLayout = pti->KeyboardLayout->KBTables;
if( !keyLayout )
return FALSE;
if (lpMsg->message < WM_KEYFIRST || lpMsg->message > WM_KEYLAST)
return FALSE;
if (lpMsg->message != WM_KEYDOWN && lpMsg->message != WM_SYSKEYDOWN)
return FALSE;
/* All messages have to contain the cursor point. */
NewMsg.pt = gpsi->ptCursor;
switch (lpMsg->wParam)
{
case VK_PACKET:
NewMsg.message = (lpMsg->message == WM_KEYDOWN) ? WM_CHAR : WM_SYSCHAR;
NewMsg.hwnd = lpMsg->hwnd;
NewMsg.wParam = HIWORD(lpMsg->lParam);
NewMsg.lParam = LOWORD(lpMsg->lParam);
MsqPostMessage(pti->MessageQueue, &NewMsg, FALSE, QS_KEY);
return TRUE;
}
ScanCode = (lpMsg->lParam >> 16) & 0xff;
UState = ToUnicodeInner(lpMsg->wParam, HIWORD(lpMsg->lParam) & 0xff,
gQueueKeyStateTable, wp, 2, 0,
keyLayout );
if (UState == 1)
{
NewMsg.message = (lpMsg->message == WM_KEYDOWN) ? WM_CHAR : WM_SYSCHAR;
if (dead_char)
{
ULONG i;
WCHAR first, second;
DPRINT("PREVIOUS DEAD CHAR: %c\n", dead_char);
for( i = 0; keyLayout->pDeadKey[i].dwBoth; i++ )
{
first = keyLayout->pDeadKey[i].dwBoth >> 16;
second = keyLayout->pDeadKey[i].dwBoth;
if (first == dead_char && second == wp[0])
{
wp[0] = keyLayout->pDeadKey[i].wchComposed;
dead_char = 0;
break;
}
}
DPRINT("FINAL CHAR: %c\n", wp[0]);
}
if (dead_char)
{
NewMsg.hwnd = lpMsg->hwnd;
NewMsg.wParam = dead_char;
NewMsg.lParam = lpMsg->lParam;
dead_char = 0;
MsqPostMessage(pti->MessageQueue, &NewMsg, FALSE, QS_KEY);
}
NewMsg.hwnd = lpMsg->hwnd;
NewMsg.wParam = wp[0];
NewMsg.lParam = lpMsg->lParam;
DPRINT( "CHAR='%c' %04x %08x\n", wp[0], wp[0], lpMsg->lParam );
MsqPostMessage(pti->MessageQueue, &NewMsg, FALSE, QS_KEY);
Result = TRUE;
}
else if (UState == -1)
{
NewMsg.message =
(lpMsg->message == WM_KEYDOWN) ? WM_DEADCHAR : WM_SYSDEADCHAR;
NewMsg.hwnd = lpMsg->hwnd;
NewMsg.wParam = wp[0];
NewMsg.lParam = lpMsg->lParam;
dead_char = wp[0];
MsqPostMessage(pti->MessageQueue, &NewMsg, FALSE, QS_KEY);
Result = TRUE;
}
return Result;
}
DWORD
APIENTRY
NtUserGetKeyboardState(
LPBYTE lpKeyState)
{
BOOL Result = TRUE;
DECLARE_RETURN(DWORD);
DPRINT("Enter NtUserGetKeyboardState\n");
UserEnterShared();
if (lpKeyState)
{
if(!NT_SUCCESS(MmCopyToCaller(lpKeyState, gQueueKeyStateTable, 256)))
Result = FALSE;
}
RETURN(Result);
CLEANUP:
DPRINT("Leave NtUserGetKeyboardState, ret=%i\n",_ret_);
UserLeave();
END_CLEANUP;
}
BOOL
APIENTRY
NtUserSetKeyboardState(LPBYTE lpKeyState)
{
BOOL Result = TRUE;
DECLARE_RETURN(DWORD);
DPRINT("Enter NtUserSetKeyboardState\n");
UserEnterExclusive();
if (lpKeyState)
{
if(! NT_SUCCESS(MmCopyFromCaller(gQueueKeyStateTable, lpKeyState, 256)))
Result = FALSE;
}
RETURN(Result);
CLEANUP:
DPRINT("Leave NtUserSetKeyboardState, ret=%i\n",_ret_);
UserLeave();
END_CLEANUP;
}
static UINT VkToScan( UINT Code, BOOL ExtCode, PKBDTABLES pkKT )
{
int i;
for( i = 0; i < pkKT->bMaxVSCtoVK; i++ )
{
if( pkKT->pusVSCtoVK[i] == Code )
{
return i;
}
}
return 0;
}
UINT ScanToVk( UINT Code, BOOL ExtKey, PKBDTABLES pkKT )
{
if( !pkKT )
{
DPRINT("ScanToVk: No layout\n");
return 0;
}
if( ExtKey )
{
int i;
for( i = 0; pkKT->pVSCtoVK_E0[i].Vsc; i++ )
{
if( pkKT->pVSCtoVK_E0[i].Vsc == Code )
return pkKT->pVSCtoVK_E0[i].Vk & 0xff;
}
for( i = 0; pkKT->pVSCtoVK_E1[i].Vsc; i++ )
{
if( pkKT->pVSCtoVK_E1[i].Vsc == Code )
return pkKT->pVSCtoVK_E1[i].Vk & 0xff;
}
return 0;
}
else
{
if( Code >= pkKT->bMaxVSCtoVK )
{
return 0;
}
return pkKT->pusVSCtoVK[Code] & 0xff;
}
}
/*
* Map a virtual key code, or virtual scan code, to a scan code, key code,
* or unshifted unicode character.
*
* Code: See Below
* Type:
* 0 -- Code is a virtual key code that is converted into a virtual scan code
* that does not distinguish between left and right shift keys.
* 1 -- Code is a virtual scan code that is converted into a virtual key code
* that does not distinguish between left and right shift keys.
* 2 -- Code is a virtual key code that is converted into an unshifted unicode
* character.
* 3 -- Code is a virtual scan code that is converted into a virtual key code
* that distinguishes left and right shift keys.
* KeyLayout: Keyboard layout handle (currently, unused)
*
* @implemented
*/
static UINT IntMapVirtualKeyEx( UINT Code, UINT Type, PKBDTABLES keyLayout )
{
UINT ret = 0;
switch( Type )
{
case 0:
if( Code == VK_SHIFT )
Code = VK_LSHIFT;
if( Code == VK_MENU )
Code = VK_LMENU;
if( Code == VK_CONTROL )
Code = VK_LCONTROL;
ret = VkToScan( Code, FALSE, keyLayout );
break;
case 1:
ret =
DontDistinguishShifts
(IntMapVirtualKeyEx( Code, 3, keyLayout ) );
break;
case 2:
{
WCHAR wp[2] = {0};
ret = VkToScan( Code, FALSE, keyLayout );
ToUnicodeInner( Code, ret, 0, wp, 2, 0, keyLayout );
ret = wp[0];
}
break;
case 3:
ret = ScanToVk( Code, FALSE, keyLayout );
break;
}
return ret;
}
UINT
APIENTRY
NtUserMapVirtualKeyEx( UINT Code, UINT Type, DWORD keyboardId, HKL dwhkl )
{
PTHREADINFO pti;
PKBDTABLES keyLayout;
DECLARE_RETURN(UINT);
DPRINT("Enter NtUserMapVirtualKeyEx\n");
UserEnterExclusive();
pti = PsGetCurrentThreadWin32Thread();
keyLayout = pti ? pti->KeyboardLayout->KBTables : 0;
if( !keyLayout )
RETURN(0);
RETURN(IntMapVirtualKeyEx( Code, Type, keyLayout ));
CLEANUP:
DPRINT("Leave NtUserMapVirtualKeyEx, ret=%i\n",_ret_);
UserLeave();
END_CLEANUP;
}
int
APIENTRY
NtUserToUnicodeEx(
UINT wVirtKey,
UINT wScanCode,
PBYTE lpKeyState,
LPWSTR pwszBuff,
int cchBuff,
UINT wFlags,
HKL dwhkl )
{
PTHREADINFO pti;
BYTE KeyStateBuf[0x100];
PWCHAR OutPwszBuff = 0;
int ret = 0;
DECLARE_RETURN(int);
DPRINT("Enter NtUserSetKeyboardState\n");
UserEnterShared();//fixme: this syscall doesnt seem to need any locking...
/* Key up? */
if (wScanCode & SC_KEY_UP)
{
RETURN(0);
}
if( !NT_SUCCESS(MmCopyFromCaller(KeyStateBuf,
lpKeyState,
sizeof(KeyStateBuf))) )
{
DPRINT1( "Couldn't copy key state from caller.\n" );
RETURN(0);
}
/* Virtual code is correct? */
if (wVirtKey < 0x100)
{
OutPwszBuff = ExAllocatePoolWithTag(NonPagedPool,sizeof(WCHAR) * cchBuff, TAG_STRING);
if( !OutPwszBuff )
{
DPRINT1( "ExAllocatePool(%d) failed\n", sizeof(WCHAR) * cchBuff);
RETURN(0);
}
RtlZeroMemory( OutPwszBuff, sizeof( WCHAR ) * cchBuff );
pti = PsGetCurrentThreadWin32Thread();
ret = ToUnicodeInner( wVirtKey,
wScanCode,
KeyStateBuf,
OutPwszBuff,
cchBuff,
wFlags,
pti ? pti->KeyboardLayout->KBTables : 0 );
MmCopyToCaller(pwszBuff,OutPwszBuff,sizeof(WCHAR)*cchBuff);
ExFreePoolWithTag(OutPwszBuff, TAG_STRING);
}
RETURN(ret);
CLEANUP:
DPRINT("Leave NtUserSetKeyboardState, ret=%i\n",_ret_);
UserLeave();
END_CLEANUP;
}
static int W32kSimpleToupper( int ch )
{
if( ch >= 'a' && ch <= 'z' )
ch = ch - 'a' + 'A';
return ch;
}
DWORD
APIENTRY
NtUserGetKeyNameText( LONG lParam, LPWSTR lpString, int nSize )
{
PTHREADINFO pti;
int i;
DWORD ret = 0;
UINT CareVk = 0;
UINT VkCode = 0;
UINT ScanCode = (lParam >> 16) & 0xff;
BOOL ExtKey = lParam & (1<<24) ? TRUE : FALSE;
PKBDTABLES keyLayout;
VSC_LPWSTR *KeyNames;
DECLARE_RETURN(DWORD);
DPRINT("Enter NtUserGetKeyNameText\n");
UserEnterShared();
pti = PsGetCurrentThreadWin32Thread();
keyLayout = pti ? pti->KeyboardLayout->KBTables : 0;
if( !keyLayout || nSize < 1 )
RETURN(0);
if( lParam & (1<<25) )
{
CareVk = VkCode = ScanToVk( ScanCode, ExtKey, keyLayout );
switch (VkCode)
{
case VK_RSHIFT:
ScanCode |= 0x100;
case VK_LSHIFT:
VkCode = VK_SHIFT;
break;
case VK_LCONTROL:
case VK_RCONTROL:
VkCode = VK_CONTROL;
break;
case VK_LMENU:
case VK_RMENU:
VkCode = VK_MENU;
break;
}
}
else
{
VkCode = ScanToVk( ScanCode, ExtKey, keyLayout );
}
KeyNames = 0;
if( CareVk != VkCode )
ScanCode = VkToScan( VkCode, ExtKey, keyLayout );
if( ExtKey )
KeyNames = keyLayout->pKeyNamesExt;
else
KeyNames = keyLayout->pKeyNames;
for( i = 0; KeyNames[i].pwsz; i++ )
{
if( KeyNames[i].vsc == ScanCode )
{
UINT StrLen = wcslen(KeyNames[i].pwsz);
UINT StrMax = StrLen > (nSize - 1) ? (nSize - 1) : StrLen;
WCHAR null_wc = 0;
if( NT_SUCCESS( MmCopyToCaller( lpString,
KeyNames[i].pwsz,
StrMax * sizeof(WCHAR) ) ) &&
NT_SUCCESS( MmCopyToCaller( lpString + StrMax,
&null_wc,
sizeof( WCHAR ) ) ) )
{
ret = StrMax;
break;
}
}
}
if( ret == 0 )
{
WCHAR UCName[2];
UCName[0] = W32kSimpleToupper(IntMapVirtualKeyEx( VkCode, 2, keyLayout ));
UCName[1] = 0;
ret = 1;
if( !NT_SUCCESS(MmCopyToCaller( lpString, UCName, 2 * sizeof(WCHAR) )) )
RETURN(0);
}
RETURN(ret);
CLEANUP:
DPRINT("Leave NtUserGetKeyNameText, ret=%i\n",_ret_);
UserLeave();
END_CLEANUP;
}
/*
* Filter this message according to the current key layout, setting wParam
* appropriately.
*/
VOID FASTCALL
W32kKeyProcessMessage(LPMSG Msg,
PKBDTABLES KeyboardLayout,
BYTE Prefix)
{
DWORD ScanCode = 0, ModifierBits = 0;
DWORD i = 0;
DWORD BaseMapping = 0;
DWORD RawVk = 0;
static WORD NumpadConversion[][2] =
{ { VK_DELETE, VK_DECIMAL },
{ VK_INSERT, VK_NUMPAD0 },
{ VK_END, VK_NUMPAD1 },
{ VK_DOWN, VK_NUMPAD2 },
{ VK_NEXT, VK_NUMPAD3 },
{ VK_LEFT, VK_NUMPAD4 },
{ VK_CLEAR, VK_NUMPAD5 },
{ VK_RIGHT, VK_NUMPAD6 },
{ VK_HOME, VK_NUMPAD7 },
{ VK_UP, VK_NUMPAD8 },
{ VK_PRIOR, VK_NUMPAD9 },
{ 0,0 } };
PVSC_VK VscVkTable = NULL;
if( !KeyboardLayout || !Msg ||
(Msg->message != WM_KEYDOWN && Msg->message != WM_SYSKEYDOWN &&
Msg->message != WM_KEYUP && Msg->message != WM_SYSKEYUP) )
{
return;
}
/* arty -- handle numpad -- On real windows, the actual key produced
* by the messaging layer is different based on the state of numlock. */
ModifierBits = ModBits(KeyboardLayout,gQueueKeyStateTable);
/* Get the raw scan code, so we can look up whether the key is a numpad
* key
*
* Shift and the LP_EXT_BIT cancel. */
ScanCode = (Msg->lParam >> 16) & 0xff;
BaseMapping = Msg->wParam =
IntMapVirtualKeyEx( ScanCode, 1, KeyboardLayout );
if( Prefix == 0 )
{
if( ScanCode >= KeyboardLayout->bMaxVSCtoVK )
RawVk = 0xff;
else
RawVk = KeyboardLayout->pusVSCtoVK[ScanCode];
}
else
{
if( Prefix == 0xE0 )
{
/* ignore shift codes */
if( ScanCode == 0x2A || ScanCode == 0x36 )
{
return;
}
VscVkTable = KeyboardLayout->pVSCtoVK_E0;
}
else if( Prefix == 0xE1 )
{
VscVkTable = KeyboardLayout->pVSCtoVK_E1;
}
RawVk = 0xff;
while (VscVkTable->Vsc)
{
if( VscVkTable->Vsc == ScanCode )
{
RawVk = VscVkTable->Vk;
}
VscVkTable++;
}
}
if ((ModifierBits & NUMLOCK_BIT) &&
!(ModifierBits & GetShiftBit(KeyboardLayout, VK_SHIFT)) &&
(RawVk & KNUMP) &&
!(Msg->lParam & LP_EXT_BIT))
{
/* The key in question is a numpad key. Search for a translation. */
for (i = 0; NumpadConversion[i][0]; i++)
{
if ((BaseMapping & 0xff) == NumpadConversion[i][0]) /* RawVk? */
{
Msg->wParam = NumpadConversion[i][1];
break;
}
}
}
DPRINT("Key: [%04x -> %04x]\n", BaseMapping, Msg->wParam);
/* Now that we have the VK, we can set the keymap appropriately
* This is a better place for this code, as it's guaranteed to be
* run, unlike translate message. */
if (Msg->message == WM_KEYDOWN || Msg->message == WM_SYSKEYDOWN)
{
SetKeyState( ScanCode, Msg->wParam, Msg->lParam & LP_EXT_BIT,
TRUE ); /* Strike key */
}
else if (Msg->message == WM_KEYUP || Msg->message == WM_SYSKEYUP)
{
SetKeyState( ScanCode, Msg->wParam, Msg->lParam & LP_EXT_BIT,
FALSE ); /* Release key */
}
/* We need to unset SYSKEYDOWN if the ALT key is an ALT+Gr */
if( gQueueKeyStateTable[VK_RMENU] & KS_DOWN_BIT )
{
if( Msg->message == WM_SYSKEYDOWN )
Msg->message = WM_KEYDOWN;
else
Msg->message = WM_KEYUP;
}
}
DWORD FASTCALL
UserGetKeyboardType(
DWORD TypeFlag)
{
switch(TypeFlag)
{
case 0: /* Keyboard type */
return 4; /* AT-101 */
case 1: /* Keyboard Subtype */
return 0; /* There are no defined subtypes */
case 2: /* Number of F-keys */
return 12; /* We're doing an 101 for now, so return 12 F-keys */
default:
DPRINT1("Unknown type!\n");
return 0; /* The book says 0 here, so 0 */
}
}
/*
Based on TryToTranslateChar, instead of processing VirtualKey match,
look for wChar match.
*/
DWORD
APIENTRY
NtUserVkKeyScanEx(
WCHAR wChar,
HKL hKeyboardLayout,
BOOL UsehKL ) // TRUE from KeyboardLayout, FALSE from pkbl = (THREADINFO)->KeyboardLayout
{
PKBDTABLES KeyLayout;
PVK_TO_WCHAR_TABLE vtwTbl;
PVK_TO_WCHARS10 vkPtr;
size_t size_this_entry;
int nMod;
PKBL pkbl = NULL;
DWORD CapsMod = 0, CapsState = 0, Ret = -1;
DPRINT("NtUserVkKeyScanEx() wChar %d, KbdLayout 0x%p\n", wChar, hKeyboardLayout);
UserEnterShared();
if (UsehKL)
{
if ( !hKeyboardLayout || !(pkbl = UserHklToKbl(hKeyboardLayout)))
goto Exit;
}
else // From VkKeyScanAW it is FALSE so KeyboardLayout is white noise.
{
pkbl = ((PTHREADINFO)PsGetCurrentThreadWin32Thread())->KeyboardLayout;
}
KeyLayout = pkbl->KBTables;
for (nMod = 0; KeyLayout->pVkToWcharTable[nMod].nModifications; nMod++)
{
vtwTbl = &KeyLayout->pVkToWcharTable[nMod];
size_this_entry = vtwTbl->cbSize;
vkPtr = (PVK_TO_WCHARS10)((BYTE *)vtwTbl->pVkToWchars);
while(vkPtr->VirtualKey)
{
/*
0x01 Shift key
0x02 Ctrl key
0x04 Alt key
Should have only 8 valid possibilities. Including zero.
*/
for(CapsState = 0; CapsState < vtwTbl->nModifications; CapsState++)
{
if(vkPtr->wch[CapsState] == wChar)
{
CapsMod = KeyLayout->pCharModifiers->ModNumber[CapsState];
DPRINT("nMod %d wC %04x: CapsMod %08x CapsState %08x MaxModBits %08x\n",
nMod, wChar, CapsMod, CapsState, KeyLayout->pCharModifiers->wMaxModBits);
Ret = ((CapsMod << 8)|(vkPtr->VirtualKey & 0xff));
goto Exit;
}
}
vkPtr = (PVK_TO_WCHARS10)(((BYTE *)vkPtr) + size_this_entry);
}
}
Exit:
UserLeave();
return Ret;
}
/* EOF */