reactos/dll/opengl/mesa/eval.c
Jérôme Gardou 5f2bebf7a5 [OPENGL32][MESA] Downgrade Mesa library to version 2.6
With this commit, we now use a forked version of MESA which only supports OpenGL 1.1, like the windows implementation does.
It exposes :
  - The same pixel formats
  - The same set of extensions
  - Nothing more
All of this without taking 10% of your build time.
If you need a more modern option, look at the MESA package from Rapps, which is (and must be) maintained outside of this code tree.
CORE-7499
2019-01-19 14:23:54 +01:00

2467 lines
72 KiB
C

/* $Id: eval.c,v 1.9 1998/02/03 00:53:51 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 2.6
* Copyright (C) 1995-1997 Brian Paul
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* $Log: eval.c,v $
* Revision 1.9 1998/02/03 00:53:51 brianp
* fixed bug in gl_copy_map_points*() functions (Sam Jordan)
*
* Revision 1.8 1997/07/24 01:25:01 brianp
* changed precompiled header symbol from PCH to PC_HEADER
*
* Revision 1.7 1997/06/20 01:58:47 brianp
* changed color components from GLfixed to GLubyte
*
* Revision 1.6 1997/05/28 03:24:22 brianp
* added precompiled header (PCH) support
*
* Revision 1.5 1997/05/14 03:27:04 brianp
* removed context argument from gl_init_eval()
*
* Revision 1.4 1997/05/01 01:38:38 brianp
* use NORMALIZE_3FV() from mmath.h instead of private NORMALIZE() macro
*
* Revision 1.3 1997/04/02 03:10:58 brianp
* changed some #include's
*
* Revision 1.2 1996/09/15 14:17:30 brianp
* now use GLframebuffer and GLvisual
*
* Revision 1.1 1996/09/13 01:38:16 brianp
* Initial revision
*
*/
/*
* eval.c was written by
* Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
* Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
*
* My original implementation of evaluators was simplistic and didn't
* compute surface normal vectors properly. Bernd and Volker applied
* used more sophisticated methods to get better results.
*
* Thanks guys!
*/
#ifdef PC_HEADER
#include "all.h"
#else
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "context.h"
#include "eval.h"
#include "dlist.h"
#include "macros.h"
#include "mmath.h"
#include "types.h"
#include "vbfill.h"
#endif
/*
* Do one-time initialization for evaluators.
*/
void gl_init_eval( void )
{
static int init_flag = 0;
/* Compute a table of nCr (combination) values used by the
* Bernstein polynomial generator.
*/
if (init_flag==0)
{ /* no initialization needed */
}
init_flag = 1;
}
/*
* Horner scheme for Bezier curves
*
* Bezier curves can be computed via a Horner scheme.
* Horner is numerically less stable than the de Casteljau
* algorithm, but it is faster. For curves of degree n
* the complexity of Horner is O(n) and de Casteljau is O(n^2).
* Since stability is not important for displaying curve
* points I decided to use the Horner scheme.
*
* A cubic Bezier curve with control points b0, b1, b2, b3 can be
* written as
*
* (([3] [3] ) [3] ) [3]
* c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
*
* [n]
* where s=1-t and the binomial coefficients [i]. These can
* be computed iteratively using the identity:
*
* [n] [n ] [n]
* [i] = (n-i+1)/i * [i-1] and [0] = 1
*/
static void
horner_bezier_curve(GLfloat *cp, GLfloat *out, GLfloat t,
GLuint dim, GLuint order)
{
GLfloat s, powert;
GLuint i, k, bincoeff;
if(order >= 2)
{
bincoeff = order-1;
s = 1.0-t;
for(k=0; k<dim; k++)
out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
{
bincoeff *= order-i;
bincoeff /= i;
for(k=0; k<dim; k++)
out[k] = s*out[k] + bincoeff*powert*cp[k];
}
}
else /* order=1 -> constant curve */
{
for(k=0; k<dim; k++)
out[k] = cp[k];
}
}
/*
* Tensor product Bezier surfaces
*
* Again the Horner scheme is used to compute a point on a
* TP Bezier surface. First a control polygon for a curve
* on the surface in one parameter direction is computed,
* then the point on the curve for the other parameter
* direction is evaluated.
*
* To store the curve control polygon additional storage
* for max(uorder,vorder) points is needed in the
* control net cn.
*/
static void
horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
GLuint dim, GLuint uorder, GLuint vorder)
{
GLfloat *cp = cn + uorder*vorder*dim;
GLuint i, uinc = vorder*dim;
if(vorder > uorder)
{
if(uorder >= 2)
{
GLfloat s, poweru;
GLuint j, k, bincoeff;
/* Compute the control polygon for the surface-curve in u-direction */
for(j=0; j<vorder; j++)
{
GLfloat *ucp = &cn[j*dim];
/* Each control point is the point for parameter u on a */
/* curve defined by the control polygons in u-direction */
bincoeff = uorder-1;
s = 1.0-u;
for(k=0; k<dim; k++)
cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
i++, poweru*=u, ucp +=uinc)
{
bincoeff *= uorder-i;
bincoeff /= i;
for(k=0; k<dim; k++)
cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
}
}
/* Evaluate curve point in v */
horner_bezier_curve(cp, out, v, dim, vorder);
}
else /* uorder=1 -> cn defines a curve in v */
horner_bezier_curve(cn, out, v, dim, vorder);
}
else /* vorder <= uorder */
{
if(vorder > 1)
{
GLuint i;
/* Compute the control polygon for the surface-curve in u-direction */
for(i=0; i<uorder; i++, cn += uinc)
{
/* For constant i all cn[i][j] (j=0..vorder) are located */
/* on consecutive memory locations, so we can use */
/* horner_bezier_curve to compute the control points */
horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
}
/* Evaluate curve point in u */
horner_bezier_curve(cp, out, u, dim, uorder);
}
else /* vorder=1 -> cn defines a curve in u */
horner_bezier_curve(cn, out, u, dim, uorder);
}
}
/*
* The direct de Casteljau algorithm is used when a point on the
* surface and the tangent directions spanning the tangent plane
* should be computed (this is needed to compute normals to the
* surface). In this case the de Casteljau algorithm approach is
* nicer because a point and the partial derivatives can be computed
* at the same time. To get the correct tangent length du and dv
* must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
* Since only the directions are needed, this scaling step is omitted.
*
* De Casteljau needs additional storage for uorder*vorder
* values in the control net cn.
*/
static void
de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
GLfloat u, GLfloat v, GLuint dim,
GLuint uorder, GLuint vorder)
{
GLfloat *dcn = cn + uorder*vorder*dim;
GLfloat us = 1.0-u, vs = 1.0-v;
GLuint h, i, j, k;
GLuint minorder = uorder < vorder ? uorder : vorder;
GLuint uinc = vorder*dim;
GLuint dcuinc = vorder;
/* Each component is evaluated separately to save buffer space */
/* This does not drasticaly decrease the performance of the */
/* algorithm. If additional storage for (uorder-1)*(vorder-1) */
/* points would be available, the components could be accessed */
/* in the innermost loop which could lead to less cache misses. */
#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
#define DCN(I, J) dcn[(I)*dcuinc+(J)]
if(minorder < 3)
{
if(uorder==vorder)
{
for(k=0; k<dim; k++)
{
/* Derivative direction in u */
du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
v*(CN(1,1,k) - CN(0,1,k));
/* Derivative direction in v */
dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
u*(CN(1,1,k) - CN(1,0,k));
/* bilinear de Casteljau step */
out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
u*(vs*CN(1,0,k) + v*CN(1,1,k));
}
}
else if(minorder == uorder)
{
for(k=0; k<dim; k++)
{
/* bilinear de Casteljau step */
DCN(1,0) = CN(1,0,k) - CN(0,0,k);
DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
for(j=0; j<vorder-1; j++)
{
/* for the derivative in u */
DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k);
DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
/* for the `point' */
DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
}
/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<vorder-1; h++)
for(j=0; j<vorder-h; j++)
{
/* for the derivative in u */
DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
/* for the `point' */
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
}
/* derivative direction in v */
dv[k] = DCN(0,1) - DCN(0,0);
/* derivative direction in u */
du[k] = vs*DCN(1,0) + v*DCN(1,1);
/* last linear de Casteljau step */
out[k] = vs*DCN(0,0) + v*DCN(0,1);
}
}
else /* minorder == vorder */
{
for(k=0; k<dim; k++)
{
/* bilinear de Casteljau step */
DCN(0,1) = CN(0,1,k) - CN(0,0,k);
DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
for(i=0; i<uorder-1; i++)
{
/* for the derivative in v */
DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k);
DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
/* for the `point' */
DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
}
/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<uorder-1; h++)
for(i=0; i<uorder-h; i++)
{
/* for the derivative in v */
DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
/* for the `point' */
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
}
/* derivative direction in u */
du[k] = DCN(1,0) - DCN(0,0);
/* derivative direction in v */
dv[k] = us*DCN(0,1) + u*DCN(1,1);
/* last linear de Casteljau step */
out[k] = us*DCN(0,0) + u*DCN(1,0);
}
}
}
else if(uorder == vorder)
{
for(k=0; k<dim; k++)
{
/* first bilinear de Casteljau step */
for(i=0; i<uorder-1; i++)
{
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
for(j=0; j<vorder-1; j++)
{
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* remaining bilinear de Casteljau steps until the second last step */
for(h=2; h<minorder-1; h++)
for(i=0; i<uorder-h; i++)
{
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
for(j=0; j<vorder-h; j++)
{
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* derivative direction in u */
du[k] = vs*(DCN(1,0) - DCN(0,0)) +
v*(DCN(1,1) - DCN(0,1));
/* derivative direction in v */
dv[k] = us*(DCN(0,1) - DCN(0,0)) +
u*(DCN(1,1) - DCN(1,0));
/* last bilinear de Casteljau step */
out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) +
u*(vs*DCN(1,0) + v*DCN(1,1));
}
}
else if(minorder == uorder)
{
for(k=0; k<dim; k++)
{
/* first bilinear de Casteljau step */
for(i=0; i<uorder-1; i++)
{
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
for(j=0; j<vorder-1; j++)
{
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* remaining bilinear de Casteljau steps until the second last step */
for(h=2; h<minorder-1; h++)
for(i=0; i<uorder-h; i++)
{
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
for(j=0; j<vorder-h; j++)
{
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* last bilinear de Casteljau step */
DCN(2,0) = DCN(1,0) - DCN(0,0);
DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
for(j=0; j<vorder-1; j++)
{
/* for the derivative in u */
DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1);
DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
/* for the `point' */
DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
}
/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<vorder-1; h++)
for(j=0; j<vorder-h; j++)
{
/* for the derivative in u */
DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
/* for the `point' */
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
}
/* derivative direction in v */
dv[k] = DCN(0,1) - DCN(0,0);
/* derivative direction in u */
du[k] = vs*DCN(2,0) + v*DCN(2,1);
/* last linear de Casteljau step */
out[k] = vs*DCN(0,0) + v*DCN(0,1);
}
}
else /* minorder == vorder */
{
for(k=0; k<dim; k++)
{
/* first bilinear de Casteljau step */
for(i=0; i<uorder-1; i++)
{
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
for(j=0; j<vorder-1; j++)
{
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* remaining bilinear de Casteljau steps until the second last step */
for(h=2; h<minorder-1; h++)
for(i=0; i<uorder-h; i++)
{
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
for(j=0; j<vorder-h; j++)
{
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* last bilinear de Casteljau step */
DCN(0,2) = DCN(0,1) - DCN(0,0);
DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
for(i=0; i<uorder-1; i++)
{
/* for the derivative in v */
DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0);
DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
/* for the `point' */
DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1);
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
}
/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<uorder-1; h++)
for(i=0; i<uorder-h; i++)
{
/* for the derivative in v */
DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
/* for the `point' */
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
}
/* derivative direction in u */
du[k] = DCN(1,0) - DCN(0,0);
/* derivative direction in v */
dv[k] = us*DCN(0,2) + u*DCN(1,2);
/* last linear de Casteljau step */
out[k] = us*DCN(0,0) + u*DCN(1,0);
}
}
#undef DCN
#undef CN
}
/*
* Return the number of components per control point for any type of
* evaluator. Return 0 if bad target.
*/
static GLint components( GLenum target )
{
switch (target) {
case GL_MAP1_VERTEX_3: return 3;
case GL_MAP1_VERTEX_4: return 4;
case GL_MAP1_INDEX: return 1;
case GL_MAP1_COLOR_4: return 4;
case GL_MAP1_NORMAL: return 3;
case GL_MAP1_TEXTURE_COORD_1: return 1;
case GL_MAP1_TEXTURE_COORD_2: return 2;
case GL_MAP1_TEXTURE_COORD_3: return 3;
case GL_MAP1_TEXTURE_COORD_4: return 4;
case GL_MAP2_VERTEX_3: return 3;
case GL_MAP2_VERTEX_4: return 4;
case GL_MAP2_INDEX: return 1;
case GL_MAP2_COLOR_4: return 4;
case GL_MAP2_NORMAL: return 3;
case GL_MAP2_TEXTURE_COORD_1: return 1;
case GL_MAP2_TEXTURE_COORD_2: return 2;
case GL_MAP2_TEXTURE_COORD_3: return 3;
case GL_MAP2_TEXTURE_COORD_4: return 4;
default: return 0;
}
}
/**********************************************************************/
/*** Copy and deallocate control points ***/
/**********************************************************************/
/*
* Copy 1-parametric evaluator control points from user-specified
* memory space to a buffer of contiguous control points.
* Input: see glMap1f for details
* Return: pointer to buffer of contiguous control points or NULL if out
* of memory.
*/
GLfloat *gl_copy_map_points1f( GLenum target,
GLint ustride, GLint uorder,
const GLfloat *points )
{
GLfloat *buffer, *p;
GLuint i, k, size = components(target);
if (!points || size==0) {
return NULL;
}
buffer = (GLfloat *) malloc(uorder * size * sizeof(GLfloat));
if(buffer)
for(i=0, p=buffer; i<uorder; i++, points+=ustride)
for(k=0; k<size; k++)
*p++ = points[k];
return buffer;
}
/*
* Same as above but convert doubles to floats.
*/
GLfloat *gl_copy_map_points1d( GLenum target,
GLint ustride, GLint uorder,
const GLdouble *points )
{
GLfloat *buffer, *p;
GLuint i, k, size = components(target);
if (!points || size==0) {
return NULL;
}
buffer = (GLfloat *) malloc(uorder * size * sizeof(GLfloat));
if(buffer)
for(i=0, p=buffer; i<uorder; i++, points+=ustride)
for(k=0; k<size; k++)
*p++ = (GLfloat) points[k];
return buffer;
}
/*
* Copy 2-parametric evaluator control points from user-specified
* memory space to a buffer of contiguous control points.
* Additional memory is allocated to be used by the horner and
* de Casteljau evaluation schemes.
*
* Input: see glMap2f for details
* Return: pointer to buffer of contiguous control points or NULL if out
* of memory.
*/
GLfloat *gl_copy_map_points2f( GLenum target,
GLint ustride, GLint uorder,
GLint vstride, GLint vorder,
const GLfloat *points )
{
GLfloat *buffer, *p;
GLuint i, j, k, size, dsize, hsize;
GLint uinc;
size = components(target);
if (!points || size==0) {
return NULL;
}
/* max(uorder, vorder) additional points are used in */
/* horner evaluation and uorder*vorder additional */
/* values are needed for de Casteljau */
dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
hsize = (uorder > vorder ? uorder : vorder)*size;
if(hsize>dsize)
buffer = (GLfloat *) malloc((uorder*vorder*size+hsize)*sizeof(GLfloat));
else
buffer = (GLfloat *) malloc((uorder*vorder*size+dsize)*sizeof(GLfloat));
/* compute the increment value for the u-loop */
uinc = ustride - vorder*vstride;
if (buffer)
for (i=0, p=buffer; i<uorder; i++, points += uinc)
for (j=0; j<vorder; j++, points += vstride)
for (k=0; k<size; k++)
*p++ = points[k];
return buffer;
}
/*
* Same as above but convert doubles to floats.
*/
GLfloat *gl_copy_map_points2d(GLenum target,
GLint ustride, GLint uorder,
GLint vstride, GLint vorder,
const GLdouble *points )
{
GLfloat *buffer, *p;
GLuint i, j, k, size, hsize, dsize;
GLint uinc;
size = components(target);
if (!points || size==0) {
return NULL;
}
/* max(uorder, vorder) additional points are used in */
/* horner evaluation and uorder*vorder additional */
/* values are needed for de Casteljau */
dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
hsize = (uorder > vorder ? uorder : vorder)*size;
if(hsize>dsize)
buffer = (GLfloat *) malloc((uorder*vorder*size+hsize)*sizeof(GLfloat));
else
buffer = (GLfloat *) malloc((uorder*vorder*size+dsize)*sizeof(GLfloat));
/* compute the increment value for the u-loop */
uinc = ustride - vorder*vstride;
if (buffer)
for (i=0, p=buffer; i<uorder; i++, points += uinc)
for (j=0; j<vorder; j++, points += vstride)
for (k=0; k<size; k++)
*p++ = (GLfloat) points[k];
return buffer;
}
/*
* This function is called by the display list deallocator function to
* specify that a given set of control points are no longer needed.
*/
void gl_free_control_points( GLcontext* ctx, GLenum target, GLfloat *data )
{
struct gl_1d_map *map1 = NULL;
struct gl_2d_map *map2 = NULL;
switch (target) {
case GL_MAP1_VERTEX_3:
map1 = &ctx->EvalMap.Map1Vertex3;
break;
case GL_MAP1_VERTEX_4:
map1 = &ctx->EvalMap.Map1Vertex4;
break;
case GL_MAP1_INDEX:
map1 = &ctx->EvalMap.Map1Index;
break;
case GL_MAP1_COLOR_4:
map1 = &ctx->EvalMap.Map1Color4;
break;
case GL_MAP1_NORMAL:
map1 = &ctx->EvalMap.Map1Normal;
break;
case GL_MAP1_TEXTURE_COORD_1:
map1 = &ctx->EvalMap.Map1Texture1;
break;
case GL_MAP1_TEXTURE_COORD_2:
map1 = &ctx->EvalMap.Map1Texture2;
break;
case GL_MAP1_TEXTURE_COORD_3:
map1 = &ctx->EvalMap.Map1Texture3;
break;
case GL_MAP1_TEXTURE_COORD_4:
map1 = &ctx->EvalMap.Map1Texture4;
break;
case GL_MAP2_VERTEX_3:
map2 = &ctx->EvalMap.Map2Vertex3;
break;
case GL_MAP2_VERTEX_4:
map2 = &ctx->EvalMap.Map2Vertex4;
break;
case GL_MAP2_INDEX:
map2 = &ctx->EvalMap.Map2Index;
break;
case GL_MAP2_COLOR_4:
map2 = &ctx->EvalMap.Map2Color4;
break;
case GL_MAP2_NORMAL:
map2 = &ctx->EvalMap.Map2Normal;
break;
case GL_MAP2_TEXTURE_COORD_1:
map2 = &ctx->EvalMap.Map2Texture1;
break;
case GL_MAP2_TEXTURE_COORD_2:
map2 = &ctx->EvalMap.Map2Texture2;
break;
case GL_MAP2_TEXTURE_COORD_3:
map2 = &ctx->EvalMap.Map2Texture3;
break;
case GL_MAP2_TEXTURE_COORD_4:
map2 = &ctx->EvalMap.Map2Texture4;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "gl_free_control_points" );
return;
}
if (map1) {
if (data==map1->Points) {
/* The control points in the display list are currently */
/* being used so we can mark them as discard-able. */
map1->Retain = GL_FALSE;
}
else {
/* The control points in the display list are not currently */
/* being used. */
free( data );
}
}
if (map2) {
if (data==map2->Points) {
/* The control points in the display list are currently */
/* being used so we can mark them as discard-able. */
map2->Retain = GL_FALSE;
}
else {
/* The control points in the display list are not currently */
/* being used. */
free( data );
}
}
}
/**********************************************************************/
/*** API entry points ***/
/**********************************************************************/
/*
* Note that the array of control points must be 'unpacked' at this time.
* Input: retain - if TRUE, this control point data is also in a display
* list and can't be freed until the list is freed.
*/
void gl_Map1f( GLcontext* ctx, GLenum target,
GLfloat u1, GLfloat u2, GLint stride,
GLint order, const GLfloat *points, GLboolean retain )
{
GLuint k;
if (!points) {
gl_error( ctx, GL_OUT_OF_MEMORY, "glMap1f" );
return;
}
/* may be a new stride after copying control points */
stride = components( target );
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glMap1" );
return;
}
if (u1==u2) {
gl_error( ctx, GL_INVALID_VALUE, "glMap1(u1,u2)" );
return;
}
if (order<1 || order>MAX_EVAL_ORDER) {
gl_error( ctx, GL_INVALID_VALUE, "glMap1(order)" );
return;
}
k = components( target );
if (k==0) {
gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
}
if (stride < k) {
gl_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" );
return;
}
switch (target) {
case GL_MAP1_VERTEX_3:
ctx->EvalMap.Map1Vertex3.Order = order;
ctx->EvalMap.Map1Vertex3.u1 = u1;
ctx->EvalMap.Map1Vertex3.u2 = u2;
if (ctx->EvalMap.Map1Vertex3.Points
&& !ctx->EvalMap.Map1Vertex3.Retain) {
free( ctx->EvalMap.Map1Vertex3.Points );
}
ctx->EvalMap.Map1Vertex3.Points = (GLfloat *) points;
ctx->EvalMap.Map1Vertex3.Retain = retain;
break;
case GL_MAP1_VERTEX_4:
ctx->EvalMap.Map1Vertex4.Order = order;
ctx->EvalMap.Map1Vertex4.u1 = u1;
ctx->EvalMap.Map1Vertex4.u2 = u2;
if (ctx->EvalMap.Map1Vertex4.Points
&& !ctx->EvalMap.Map1Vertex4.Retain) {
free( ctx->EvalMap.Map1Vertex4.Points );
}
ctx->EvalMap.Map1Vertex4.Points = (GLfloat *) points;
ctx->EvalMap.Map1Vertex4.Retain = retain;
break;
case GL_MAP1_INDEX:
ctx->EvalMap.Map1Index.Order = order;
ctx->EvalMap.Map1Index.u1 = u1;
ctx->EvalMap.Map1Index.u2 = u2;
if (ctx->EvalMap.Map1Index.Points
&& !ctx->EvalMap.Map1Index.Retain) {
free( ctx->EvalMap.Map1Index.Points );
}
ctx->EvalMap.Map1Index.Points = (GLfloat *) points;
ctx->EvalMap.Map1Index.Retain = retain;
break;
case GL_MAP1_COLOR_4:
ctx->EvalMap.Map1Color4.Order = order;
ctx->EvalMap.Map1Color4.u1 = u1;
ctx->EvalMap.Map1Color4.u2 = u2;
if (ctx->EvalMap.Map1Color4.Points
&& !ctx->EvalMap.Map1Color4.Retain) {
free( ctx->EvalMap.Map1Color4.Points );
}
ctx->EvalMap.Map1Color4.Points = (GLfloat *) points;
ctx->EvalMap.Map1Color4.Retain = retain;
break;
case GL_MAP1_NORMAL:
ctx->EvalMap.Map1Normal.Order = order;
ctx->EvalMap.Map1Normal.u1 = u1;
ctx->EvalMap.Map1Normal.u2 = u2;
if (ctx->EvalMap.Map1Normal.Points
&& !ctx->EvalMap.Map1Normal.Retain) {
free( ctx->EvalMap.Map1Normal.Points );
}
ctx->EvalMap.Map1Normal.Points = (GLfloat *) points;
ctx->EvalMap.Map1Normal.Retain = retain;
break;
case GL_MAP1_TEXTURE_COORD_1:
ctx->EvalMap.Map1Texture1.Order = order;
ctx->EvalMap.Map1Texture1.u1 = u1;
ctx->EvalMap.Map1Texture1.u2 = u2;
if (ctx->EvalMap.Map1Texture1.Points
&& !ctx->EvalMap.Map1Texture1.Retain) {
free( ctx->EvalMap.Map1Texture1.Points );
}
ctx->EvalMap.Map1Texture1.Points = (GLfloat *) points;
ctx->EvalMap.Map1Texture1.Retain = retain;
break;
case GL_MAP1_TEXTURE_COORD_2:
ctx->EvalMap.Map1Texture2.Order = order;
ctx->EvalMap.Map1Texture2.u1 = u1;
ctx->EvalMap.Map1Texture2.u2 = u2;
if (ctx->EvalMap.Map1Texture2.Points
&& !ctx->EvalMap.Map1Texture2.Retain) {
free( ctx->EvalMap.Map1Texture2.Points );
}
ctx->EvalMap.Map1Texture2.Points = (GLfloat *) points;
ctx->EvalMap.Map1Texture2.Retain = retain;
break;
case GL_MAP1_TEXTURE_COORD_3:
ctx->EvalMap.Map1Texture3.Order = order;
ctx->EvalMap.Map1Texture3.u1 = u1;
ctx->EvalMap.Map1Texture3.u2 = u2;
if (ctx->EvalMap.Map1Texture3.Points
&& !ctx->EvalMap.Map1Texture3.Retain) {
free( ctx->EvalMap.Map1Texture3.Points );
}
ctx->EvalMap.Map1Texture3.Points = (GLfloat *) points;
ctx->EvalMap.Map1Texture3.Retain = retain;
break;
case GL_MAP1_TEXTURE_COORD_4:
ctx->EvalMap.Map1Texture4.Order = order;
ctx->EvalMap.Map1Texture4.u1 = u1;
ctx->EvalMap.Map1Texture4.u2 = u2;
if (ctx->EvalMap.Map1Texture4.Points
&& !ctx->EvalMap.Map1Texture4.Retain) {
free( ctx->EvalMap.Map1Texture4.Points );
}
ctx->EvalMap.Map1Texture4.Points = (GLfloat *) points;
ctx->EvalMap.Map1Texture4.Retain = retain;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
}
}
/*
* Note that the array of control points must be 'unpacked' at this time.
* Input: retain - if TRUE, this control point data is also in a display
* list and can't be freed until the list is freed.
*/
void gl_Map2f( GLcontext* ctx, GLenum target,
GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
const GLfloat *points, GLboolean retain )
{
GLuint k;
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glMap2" );
return;
}
if (u1==u2) {
gl_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" );
return;
}
if (v1==v2) {
gl_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" );
return;
}
if (uorder<1 || uorder>MAX_EVAL_ORDER) {
gl_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" );
return;
}
if (vorder<1 || vorder>MAX_EVAL_ORDER) {
gl_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" );
return;
}
k = components( target );
if (k==0) {
gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
}
if (ustride < k) {
gl_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" );
return;
}
if (vstride < k) {
gl_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" );
return;
}
switch (target) {
case GL_MAP2_VERTEX_3:
ctx->EvalMap.Map2Vertex3.Uorder = uorder;
ctx->EvalMap.Map2Vertex3.u1 = u1;
ctx->EvalMap.Map2Vertex3.u2 = u2;
ctx->EvalMap.Map2Vertex3.Vorder = vorder;
ctx->EvalMap.Map2Vertex3.v1 = v1;
ctx->EvalMap.Map2Vertex3.v2 = v2;
if (ctx->EvalMap.Map2Vertex3.Points
&& !ctx->EvalMap.Map2Vertex3.Retain) {
free( ctx->EvalMap.Map2Vertex3.Points );
}
ctx->EvalMap.Map2Vertex3.Retain = retain;
ctx->EvalMap.Map2Vertex3.Points = (GLfloat *) points;
break;
case GL_MAP2_VERTEX_4:
ctx->EvalMap.Map2Vertex4.Uorder = uorder;
ctx->EvalMap.Map2Vertex4.u1 = u1;
ctx->EvalMap.Map2Vertex4.u2 = u2;
ctx->EvalMap.Map2Vertex4.Vorder = vorder;
ctx->EvalMap.Map2Vertex4.v1 = v1;
ctx->EvalMap.Map2Vertex4.v2 = v2;
if (ctx->EvalMap.Map2Vertex4.Points
&& !ctx->EvalMap.Map2Vertex4.Retain) {
free( ctx->EvalMap.Map2Vertex4.Points );
}
ctx->EvalMap.Map2Vertex4.Points = (GLfloat *) points;
ctx->EvalMap.Map2Vertex4.Retain = retain;
break;
case GL_MAP2_INDEX:
ctx->EvalMap.Map2Index.Uorder = uorder;
ctx->EvalMap.Map2Index.u1 = u1;
ctx->EvalMap.Map2Index.u2 = u2;
ctx->EvalMap.Map2Index.Vorder = vorder;
ctx->EvalMap.Map2Index.v1 = v1;
ctx->EvalMap.Map2Index.v2 = v2;
if (ctx->EvalMap.Map2Index.Points
&& !ctx->EvalMap.Map2Index.Retain) {
free( ctx->EvalMap.Map2Index.Points );
}
ctx->EvalMap.Map2Index.Retain = retain;
ctx->EvalMap.Map2Index.Points = (GLfloat *) points;
break;
case GL_MAP2_COLOR_4:
ctx->EvalMap.Map2Color4.Uorder = uorder;
ctx->EvalMap.Map2Color4.u1 = u1;
ctx->EvalMap.Map2Color4.u2 = u2;
ctx->EvalMap.Map2Color4.Vorder = vorder;
ctx->EvalMap.Map2Color4.v1 = v1;
ctx->EvalMap.Map2Color4.v2 = v2;
if (ctx->EvalMap.Map2Color4.Points
&& !ctx->EvalMap.Map2Color4.Retain) {
free( ctx->EvalMap.Map2Color4.Points );
}
ctx->EvalMap.Map2Color4.Retain = retain;
ctx->EvalMap.Map2Color4.Points = (GLfloat *) points;
break;
case GL_MAP2_NORMAL:
ctx->EvalMap.Map2Normal.Uorder = uorder;
ctx->EvalMap.Map2Normal.u1 = u1;
ctx->EvalMap.Map2Normal.u2 = u2;
ctx->EvalMap.Map2Normal.Vorder = vorder;
ctx->EvalMap.Map2Normal.v1 = v1;
ctx->EvalMap.Map2Normal.v2 = v2;
if (ctx->EvalMap.Map2Normal.Points
&& !ctx->EvalMap.Map2Normal.Retain) {
free( ctx->EvalMap.Map2Normal.Points );
}
ctx->EvalMap.Map2Normal.Retain = retain;
ctx->EvalMap.Map2Normal.Points = (GLfloat *) points;
break;
case GL_MAP2_TEXTURE_COORD_1:
ctx->EvalMap.Map2Texture1.Uorder = uorder;
ctx->EvalMap.Map2Texture1.u1 = u1;
ctx->EvalMap.Map2Texture1.u2 = u2;
ctx->EvalMap.Map2Texture1.Vorder = vorder;
ctx->EvalMap.Map2Texture1.v1 = v1;
ctx->EvalMap.Map2Texture1.v2 = v2;
if (ctx->EvalMap.Map2Texture1.Points
&& !ctx->EvalMap.Map2Texture1.Retain) {
free( ctx->EvalMap.Map2Texture1.Points );
}
ctx->EvalMap.Map2Texture1.Retain = retain;
ctx->EvalMap.Map2Texture1.Points = (GLfloat *) points;
break;
case GL_MAP2_TEXTURE_COORD_2:
ctx->EvalMap.Map2Texture2.Uorder = uorder;
ctx->EvalMap.Map2Texture2.u1 = u1;
ctx->EvalMap.Map2Texture2.u2 = u2;
ctx->EvalMap.Map2Texture2.Vorder = vorder;
ctx->EvalMap.Map2Texture2.v1 = v1;
ctx->EvalMap.Map2Texture2.v2 = v2;
if (ctx->EvalMap.Map2Texture2.Points
&& !ctx->EvalMap.Map2Texture2.Retain) {
free( ctx->EvalMap.Map2Texture2.Points );
}
ctx->EvalMap.Map2Texture2.Retain = retain;
ctx->EvalMap.Map2Texture2.Points = (GLfloat *) points;
break;
case GL_MAP2_TEXTURE_COORD_3:
ctx->EvalMap.Map2Texture3.Uorder = uorder;
ctx->EvalMap.Map2Texture3.u1 = u1;
ctx->EvalMap.Map2Texture3.u2 = u2;
ctx->EvalMap.Map2Texture3.Vorder = vorder;
ctx->EvalMap.Map2Texture3.v1 = v1;
ctx->EvalMap.Map2Texture3.v2 = v2;
if (ctx->EvalMap.Map2Texture3.Points
&& !ctx->EvalMap.Map2Texture3.Retain) {
free( ctx->EvalMap.Map2Texture3.Points );
}
ctx->EvalMap.Map2Texture3.Retain = retain;
ctx->EvalMap.Map2Texture3.Points = (GLfloat *) points;
break;
case GL_MAP2_TEXTURE_COORD_4:
ctx->EvalMap.Map2Texture4.Uorder = uorder;
ctx->EvalMap.Map2Texture4.u1 = u1;
ctx->EvalMap.Map2Texture4.u2 = u2;
ctx->EvalMap.Map2Texture4.Vorder = vorder;
ctx->EvalMap.Map2Texture4.v1 = v1;
ctx->EvalMap.Map2Texture4.v2 = v2;
if (ctx->EvalMap.Map2Texture4.Points
&& !ctx->EvalMap.Map2Texture4.Retain) {
free( ctx->EvalMap.Map2Texture4.Points );
}
ctx->EvalMap.Map2Texture4.Retain = retain;
ctx->EvalMap.Map2Texture4.Points = (GLfloat *) points;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
}
}
void gl_GetMapdv( GLcontext* ctx, GLenum target, GLenum query, GLdouble *v )
{
GLuint i, n;
GLfloat *data;
switch (query) {
case GL_COEFF:
switch (target) {
case GL_MAP1_COLOR_4:
data = ctx->EvalMap.Map1Color4.Points;
n = ctx->EvalMap.Map1Color4.Order * 4;
break;
case GL_MAP1_INDEX:
data = ctx->EvalMap.Map1Index.Points;
n = ctx->EvalMap.Map1Index.Order;
break;
case GL_MAP1_NORMAL:
data = ctx->EvalMap.Map1Normal.Points;
n = ctx->EvalMap.Map1Normal.Order * 3;
break;
case GL_MAP1_TEXTURE_COORD_1:
data = ctx->EvalMap.Map1Texture1.Points;
n = ctx->EvalMap.Map1Texture1.Order * 1;
break;
case GL_MAP1_TEXTURE_COORD_2:
data = ctx->EvalMap.Map1Texture2.Points;
n = ctx->EvalMap.Map1Texture2.Order * 2;
break;
case GL_MAP1_TEXTURE_COORD_3:
data = ctx->EvalMap.Map1Texture3.Points;
n = ctx->EvalMap.Map1Texture3.Order * 3;
break;
case GL_MAP1_TEXTURE_COORD_4:
data = ctx->EvalMap.Map1Texture4.Points;
n = ctx->EvalMap.Map1Texture4.Order * 4;
break;
case GL_MAP1_VERTEX_3:
data = ctx->EvalMap.Map1Vertex3.Points;
n = ctx->EvalMap.Map1Vertex3.Order * 3;
break;
case GL_MAP1_VERTEX_4:
data = ctx->EvalMap.Map1Vertex4.Points;
n = ctx->EvalMap.Map1Vertex4.Order * 4;
break;
case GL_MAP2_COLOR_4:
data = ctx->EvalMap.Map2Color4.Points;
n = ctx->EvalMap.Map2Color4.Uorder
* ctx->EvalMap.Map2Color4.Vorder * 4;
break;
case GL_MAP2_INDEX:
data = ctx->EvalMap.Map2Index.Points;
n = ctx->EvalMap.Map2Index.Uorder
* ctx->EvalMap.Map2Index.Vorder;
break;
case GL_MAP2_NORMAL:
data = ctx->EvalMap.Map2Normal.Points;
n = ctx->EvalMap.Map2Normal.Uorder
* ctx->EvalMap.Map2Normal.Vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_1:
data = ctx->EvalMap.Map2Texture1.Points;
n = ctx->EvalMap.Map2Texture1.Uorder
* ctx->EvalMap.Map2Texture1.Vorder * 1;
break;
case GL_MAP2_TEXTURE_COORD_2:
data = ctx->EvalMap.Map2Texture2.Points;
n = ctx->EvalMap.Map2Texture2.Uorder
* ctx->EvalMap.Map2Texture2.Vorder * 2;
break;
case GL_MAP2_TEXTURE_COORD_3:
data = ctx->EvalMap.Map2Texture3.Points;
n = ctx->EvalMap.Map2Texture3.Uorder
* ctx->EvalMap.Map2Texture3.Vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_4:
data = ctx->EvalMap.Map2Texture4.Points;
n = ctx->EvalMap.Map2Texture4.Uorder
* ctx->EvalMap.Map2Texture4.Vorder * 4;
break;
case GL_MAP2_VERTEX_3:
data = ctx->EvalMap.Map2Vertex3.Points;
n = ctx->EvalMap.Map2Vertex3.Uorder
* ctx->EvalMap.Map2Vertex3.Vorder * 3;
break;
case GL_MAP2_VERTEX_4:
data = ctx->EvalMap.Map2Vertex4.Points;
n = ctx->EvalMap.Map2Vertex4.Uorder
* ctx->EvalMap.Map2Vertex4.Vorder * 4;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
}
if (data) {
for (i=0;i<n;i++) {
v[i] = data[i];
}
}
break;
case GL_ORDER:
switch (target) {
case GL_MAP1_COLOR_4:
*v = ctx->EvalMap.Map1Color4.Order;
break;
case GL_MAP1_INDEX:
*v = ctx->EvalMap.Map1Index.Order;
break;
case GL_MAP1_NORMAL:
*v = ctx->EvalMap.Map1Normal.Order;
break;
case GL_MAP1_TEXTURE_COORD_1:
*v = ctx->EvalMap.Map1Texture1.Order;
break;
case GL_MAP1_TEXTURE_COORD_2:
*v = ctx->EvalMap.Map1Texture2.Order;
break;
case GL_MAP1_TEXTURE_COORD_3:
*v = ctx->EvalMap.Map1Texture3.Order;
break;
case GL_MAP1_TEXTURE_COORD_4:
*v = ctx->EvalMap.Map1Texture4.Order;
break;
case GL_MAP1_VERTEX_3:
*v = ctx->EvalMap.Map1Vertex3.Order;
break;
case GL_MAP1_VERTEX_4:
*v = ctx->EvalMap.Map1Vertex4.Order;
break;
case GL_MAP2_COLOR_4:
v[0] = ctx->EvalMap.Map2Color4.Uorder;
v[1] = ctx->EvalMap.Map2Color4.Vorder;
break;
case GL_MAP2_INDEX:
v[0] = ctx->EvalMap.Map2Index.Uorder;
v[1] = ctx->EvalMap.Map2Index.Vorder;
break;
case GL_MAP2_NORMAL:
v[0] = ctx->EvalMap.Map2Normal.Uorder;
v[1] = ctx->EvalMap.Map2Normal.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map2Texture1.Uorder;
v[1] = ctx->EvalMap.Map2Texture1.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map2Texture2.Uorder;
v[1] = ctx->EvalMap.Map2Texture2.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map2Texture3.Uorder;
v[1] = ctx->EvalMap.Map2Texture3.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map2Texture4.Uorder;
v[1] = ctx->EvalMap.Map2Texture4.Vorder;
break;
case GL_MAP2_VERTEX_3:
v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
break;
case GL_MAP2_VERTEX_4:
v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
}
break;
case GL_DOMAIN:
switch (target) {
case GL_MAP1_COLOR_4:
v[0] = ctx->EvalMap.Map1Color4.u1;
v[1] = ctx->EvalMap.Map1Color4.u2;
break;
case GL_MAP1_INDEX:
v[0] = ctx->EvalMap.Map1Index.u1;
v[1] = ctx->EvalMap.Map1Index.u2;
break;
case GL_MAP1_NORMAL:
v[0] = ctx->EvalMap.Map1Normal.u1;
v[1] = ctx->EvalMap.Map1Normal.u2;
break;
case GL_MAP1_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map1Texture1.u1;
v[1] = ctx->EvalMap.Map1Texture1.u2;
break;
case GL_MAP1_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map1Texture2.u1;
v[1] = ctx->EvalMap.Map1Texture2.u2;
break;
case GL_MAP1_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map1Texture3.u1;
v[1] = ctx->EvalMap.Map1Texture3.u2;
break;
case GL_MAP1_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map1Texture4.u1;
v[1] = ctx->EvalMap.Map1Texture4.u2;
break;
case GL_MAP1_VERTEX_3:
v[0] = ctx->EvalMap.Map1Vertex3.u1;
v[1] = ctx->EvalMap.Map1Vertex3.u2;
break;
case GL_MAP1_VERTEX_4:
v[0] = ctx->EvalMap.Map1Vertex4.u1;
v[1] = ctx->EvalMap.Map1Vertex4.u2;
break;
case GL_MAP2_COLOR_4:
v[0] = ctx->EvalMap.Map2Color4.u1;
v[1] = ctx->EvalMap.Map2Color4.u2;
v[2] = ctx->EvalMap.Map2Color4.v1;
v[3] = ctx->EvalMap.Map2Color4.v2;
break;
case GL_MAP2_INDEX:
v[0] = ctx->EvalMap.Map2Index.u1;
v[1] = ctx->EvalMap.Map2Index.u2;
v[2] = ctx->EvalMap.Map2Index.v1;
v[3] = ctx->EvalMap.Map2Index.v2;
break;
case GL_MAP2_NORMAL:
v[0] = ctx->EvalMap.Map2Normal.u1;
v[1] = ctx->EvalMap.Map2Normal.u2;
v[2] = ctx->EvalMap.Map2Normal.v1;
v[3] = ctx->EvalMap.Map2Normal.v2;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map2Texture1.u1;
v[1] = ctx->EvalMap.Map2Texture1.u2;
v[2] = ctx->EvalMap.Map2Texture1.v1;
v[3] = ctx->EvalMap.Map2Texture1.v2;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map2Texture2.u1;
v[1] = ctx->EvalMap.Map2Texture2.u2;
v[2] = ctx->EvalMap.Map2Texture2.v1;
v[3] = ctx->EvalMap.Map2Texture2.v2;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map2Texture3.u1;
v[1] = ctx->EvalMap.Map2Texture3.u2;
v[2] = ctx->EvalMap.Map2Texture3.v1;
v[3] = ctx->EvalMap.Map2Texture3.v2;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map2Texture4.u1;
v[1] = ctx->EvalMap.Map2Texture4.u2;
v[2] = ctx->EvalMap.Map2Texture4.v1;
v[3] = ctx->EvalMap.Map2Texture4.v2;
break;
case GL_MAP2_VERTEX_3:
v[0] = ctx->EvalMap.Map2Vertex3.u1;
v[1] = ctx->EvalMap.Map2Vertex3.u2;
v[2] = ctx->EvalMap.Map2Vertex3.v1;
v[3] = ctx->EvalMap.Map2Vertex3.v2;
break;
case GL_MAP2_VERTEX_4:
v[0] = ctx->EvalMap.Map2Vertex4.u1;
v[1] = ctx->EvalMap.Map2Vertex4.u2;
v[2] = ctx->EvalMap.Map2Vertex4.v1;
v[3] = ctx->EvalMap.Map2Vertex4.v2;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" );
}
}
void gl_GetMapfv( GLcontext* ctx, GLenum target, GLenum query, GLfloat *v )
{
GLuint i, n;
GLfloat *data;
switch (query) {
case GL_COEFF:
switch (target) {
case GL_MAP1_COLOR_4:
data = ctx->EvalMap.Map1Color4.Points;
n = ctx->EvalMap.Map1Color4.Order * 4;
break;
case GL_MAP1_INDEX:
data = ctx->EvalMap.Map1Index.Points;
n = ctx->EvalMap.Map1Index.Order;
break;
case GL_MAP1_NORMAL:
data = ctx->EvalMap.Map1Normal.Points;
n = ctx->EvalMap.Map1Normal.Order * 3;
break;
case GL_MAP1_TEXTURE_COORD_1:
data = ctx->EvalMap.Map1Texture1.Points;
n = ctx->EvalMap.Map1Texture1.Order * 1;
break;
case GL_MAP1_TEXTURE_COORD_2:
data = ctx->EvalMap.Map1Texture2.Points;
n = ctx->EvalMap.Map1Texture2.Order * 2;
break;
case GL_MAP1_TEXTURE_COORD_3:
data = ctx->EvalMap.Map1Texture3.Points;
n = ctx->EvalMap.Map1Texture3.Order * 3;
break;
case GL_MAP1_TEXTURE_COORD_4:
data = ctx->EvalMap.Map1Texture4.Points;
n = ctx->EvalMap.Map1Texture4.Order * 4;
break;
case GL_MAP1_VERTEX_3:
data = ctx->EvalMap.Map1Vertex3.Points;
n = ctx->EvalMap.Map1Vertex3.Order * 3;
break;
case GL_MAP1_VERTEX_4:
data = ctx->EvalMap.Map1Vertex4.Points;
n = ctx->EvalMap.Map1Vertex4.Order * 4;
break;
case GL_MAP2_COLOR_4:
data = ctx->EvalMap.Map2Color4.Points;
n = ctx->EvalMap.Map2Color4.Uorder
* ctx->EvalMap.Map2Color4.Vorder * 4;
break;
case GL_MAP2_INDEX:
data = ctx->EvalMap.Map2Index.Points;
n = ctx->EvalMap.Map2Index.Uorder
* ctx->EvalMap.Map2Index.Vorder;
break;
case GL_MAP2_NORMAL:
data = ctx->EvalMap.Map2Normal.Points;
n = ctx->EvalMap.Map2Normal.Uorder
* ctx->EvalMap.Map2Normal.Vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_1:
data = ctx->EvalMap.Map2Texture1.Points;
n = ctx->EvalMap.Map2Texture1.Uorder
* ctx->EvalMap.Map2Texture1.Vorder * 1;
break;
case GL_MAP2_TEXTURE_COORD_2:
data = ctx->EvalMap.Map2Texture2.Points;
n = ctx->EvalMap.Map2Texture2.Uorder
* ctx->EvalMap.Map2Texture2.Vorder * 2;
break;
case GL_MAP2_TEXTURE_COORD_3:
data = ctx->EvalMap.Map2Texture3.Points;
n = ctx->EvalMap.Map2Texture3.Uorder
* ctx->EvalMap.Map2Texture3.Vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_4:
data = ctx->EvalMap.Map2Texture4.Points;
n = ctx->EvalMap.Map2Texture4.Uorder
* ctx->EvalMap.Map2Texture4.Vorder * 4;
break;
case GL_MAP2_VERTEX_3:
data = ctx->EvalMap.Map2Vertex3.Points;
n = ctx->EvalMap.Map2Vertex3.Uorder
* ctx->EvalMap.Map2Vertex3.Vorder * 3;
break;
case GL_MAP2_VERTEX_4:
data = ctx->EvalMap.Map2Vertex4.Points;
n = ctx->EvalMap.Map2Vertex4.Uorder
* ctx->EvalMap.Map2Vertex4.Vorder * 4;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
}
if (data) {
for (i=0;i<n;i++) {
v[i] = data[i];
}
}
break;
case GL_ORDER:
switch (target) {
case GL_MAP1_COLOR_4:
*v = ctx->EvalMap.Map1Color4.Order;
break;
case GL_MAP1_INDEX:
*v = ctx->EvalMap.Map1Index.Order;
break;
case GL_MAP1_NORMAL:
*v = ctx->EvalMap.Map1Normal.Order;
break;
case GL_MAP1_TEXTURE_COORD_1:
*v = ctx->EvalMap.Map1Texture1.Order;
break;
case GL_MAP1_TEXTURE_COORD_2:
*v = ctx->EvalMap.Map1Texture2.Order;
break;
case GL_MAP1_TEXTURE_COORD_3:
*v = ctx->EvalMap.Map1Texture3.Order;
break;
case GL_MAP1_TEXTURE_COORD_4:
*v = ctx->EvalMap.Map1Texture4.Order;
break;
case GL_MAP1_VERTEX_3:
*v = ctx->EvalMap.Map1Vertex3.Order;
break;
case GL_MAP1_VERTEX_4:
*v = ctx->EvalMap.Map1Vertex4.Order;
break;
case GL_MAP2_COLOR_4:
v[0] = ctx->EvalMap.Map2Color4.Uorder;
v[1] = ctx->EvalMap.Map2Color4.Vorder;
break;
case GL_MAP2_INDEX:
v[0] = ctx->EvalMap.Map2Index.Uorder;
v[1] = ctx->EvalMap.Map2Index.Vorder;
break;
case GL_MAP2_NORMAL:
v[0] = ctx->EvalMap.Map2Normal.Uorder;
v[1] = ctx->EvalMap.Map2Normal.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map2Texture1.Uorder;
v[1] = ctx->EvalMap.Map2Texture1.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map2Texture2.Uorder;
v[1] = ctx->EvalMap.Map2Texture2.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map2Texture3.Uorder;
v[1] = ctx->EvalMap.Map2Texture3.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map2Texture4.Uorder;
v[1] = ctx->EvalMap.Map2Texture4.Vorder;
break;
case GL_MAP2_VERTEX_3:
v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
break;
case GL_MAP2_VERTEX_4:
v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
}
break;
case GL_DOMAIN:
switch (target) {
case GL_MAP1_COLOR_4:
v[0] = ctx->EvalMap.Map1Color4.u1;
v[1] = ctx->EvalMap.Map1Color4.u2;
break;
case GL_MAP1_INDEX:
v[0] = ctx->EvalMap.Map1Index.u1;
v[1] = ctx->EvalMap.Map1Index.u2;
break;
case GL_MAP1_NORMAL:
v[0] = ctx->EvalMap.Map1Normal.u1;
v[1] = ctx->EvalMap.Map1Normal.u2;
break;
case GL_MAP1_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map1Texture1.u1;
v[1] = ctx->EvalMap.Map1Texture1.u2;
break;
case GL_MAP1_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map1Texture2.u1;
v[1] = ctx->EvalMap.Map1Texture2.u2;
break;
case GL_MAP1_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map1Texture3.u1;
v[1] = ctx->EvalMap.Map1Texture3.u2;
break;
case GL_MAP1_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map1Texture4.u1;
v[1] = ctx->EvalMap.Map1Texture4.u2;
break;
case GL_MAP1_VERTEX_3:
v[0] = ctx->EvalMap.Map1Vertex3.u1;
v[1] = ctx->EvalMap.Map1Vertex3.u2;
break;
case GL_MAP1_VERTEX_4:
v[0] = ctx->EvalMap.Map1Vertex4.u1;
v[1] = ctx->EvalMap.Map1Vertex4.u2;
break;
case GL_MAP2_COLOR_4:
v[0] = ctx->EvalMap.Map2Color4.u1;
v[1] = ctx->EvalMap.Map2Color4.u2;
v[2] = ctx->EvalMap.Map2Color4.v1;
v[3] = ctx->EvalMap.Map2Color4.v2;
break;
case GL_MAP2_INDEX:
v[0] = ctx->EvalMap.Map2Index.u1;
v[1] = ctx->EvalMap.Map2Index.u2;
v[2] = ctx->EvalMap.Map2Index.v1;
v[3] = ctx->EvalMap.Map2Index.v2;
break;
case GL_MAP2_NORMAL:
v[0] = ctx->EvalMap.Map2Normal.u1;
v[1] = ctx->EvalMap.Map2Normal.u2;
v[2] = ctx->EvalMap.Map2Normal.v1;
v[3] = ctx->EvalMap.Map2Normal.v2;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map2Texture1.u1;
v[1] = ctx->EvalMap.Map2Texture1.u2;
v[2] = ctx->EvalMap.Map2Texture1.v1;
v[3] = ctx->EvalMap.Map2Texture1.v2;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map2Texture2.u1;
v[1] = ctx->EvalMap.Map2Texture2.u2;
v[2] = ctx->EvalMap.Map2Texture2.v1;
v[3] = ctx->EvalMap.Map2Texture2.v2;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map2Texture3.u1;
v[1] = ctx->EvalMap.Map2Texture3.u2;
v[2] = ctx->EvalMap.Map2Texture3.v1;
v[3] = ctx->EvalMap.Map2Texture3.v2;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map2Texture4.u1;
v[1] = ctx->EvalMap.Map2Texture4.u2;
v[2] = ctx->EvalMap.Map2Texture4.v1;
v[3] = ctx->EvalMap.Map2Texture4.v2;
break;
case GL_MAP2_VERTEX_3:
v[0] = ctx->EvalMap.Map2Vertex3.u1;
v[1] = ctx->EvalMap.Map2Vertex3.u2;
v[2] = ctx->EvalMap.Map2Vertex3.v1;
v[3] = ctx->EvalMap.Map2Vertex3.v2;
break;
case GL_MAP2_VERTEX_4:
v[0] = ctx->EvalMap.Map2Vertex4.u1;
v[1] = ctx->EvalMap.Map2Vertex4.u2;
v[2] = ctx->EvalMap.Map2Vertex4.v1;
v[3] = ctx->EvalMap.Map2Vertex4.v2;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" );
}
}
void gl_GetMapiv( GLcontext* ctx, GLenum target, GLenum query, GLint *v )
{
GLuint i, n;
GLfloat *data;
switch (query) {
case GL_COEFF:
switch (target) {
case GL_MAP1_COLOR_4:
data = ctx->EvalMap.Map1Color4.Points;
n = ctx->EvalMap.Map1Color4.Order * 4;
break;
case GL_MAP1_INDEX:
data = ctx->EvalMap.Map1Index.Points;
n = ctx->EvalMap.Map1Index.Order;
break;
case GL_MAP1_NORMAL:
data = ctx->EvalMap.Map1Normal.Points;
n = ctx->EvalMap.Map1Normal.Order * 3;
break;
case GL_MAP1_TEXTURE_COORD_1:
data = ctx->EvalMap.Map1Texture1.Points;
n = ctx->EvalMap.Map1Texture1.Order * 1;
break;
case GL_MAP1_TEXTURE_COORD_2:
data = ctx->EvalMap.Map1Texture2.Points;
n = ctx->EvalMap.Map1Texture2.Order * 2;
break;
case GL_MAP1_TEXTURE_COORD_3:
data = ctx->EvalMap.Map1Texture3.Points;
n = ctx->EvalMap.Map1Texture3.Order * 3;
break;
case GL_MAP1_TEXTURE_COORD_4:
data = ctx->EvalMap.Map1Texture4.Points;
n = ctx->EvalMap.Map1Texture4.Order * 4;
break;
case GL_MAP1_VERTEX_3:
data = ctx->EvalMap.Map1Vertex3.Points;
n = ctx->EvalMap.Map1Vertex3.Order * 3;
break;
case GL_MAP1_VERTEX_4:
data = ctx->EvalMap.Map1Vertex4.Points;
n = ctx->EvalMap.Map1Vertex4.Order * 4;
break;
case GL_MAP2_COLOR_4:
data = ctx->EvalMap.Map2Color4.Points;
n = ctx->EvalMap.Map2Color4.Uorder
* ctx->EvalMap.Map2Color4.Vorder * 4;
break;
case GL_MAP2_INDEX:
data = ctx->EvalMap.Map2Index.Points;
n = ctx->EvalMap.Map2Index.Uorder
* ctx->EvalMap.Map2Index.Vorder;
break;
case GL_MAP2_NORMAL:
data = ctx->EvalMap.Map2Normal.Points;
n = ctx->EvalMap.Map2Normal.Uorder
* ctx->EvalMap.Map2Normal.Vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_1:
data = ctx->EvalMap.Map2Texture1.Points;
n = ctx->EvalMap.Map2Texture1.Uorder
* ctx->EvalMap.Map2Texture1.Vorder * 1;
break;
case GL_MAP2_TEXTURE_COORD_2:
data = ctx->EvalMap.Map2Texture2.Points;
n = ctx->EvalMap.Map2Texture2.Uorder
* ctx->EvalMap.Map2Texture2.Vorder * 2;
break;
case GL_MAP2_TEXTURE_COORD_3:
data = ctx->EvalMap.Map2Texture3.Points;
n = ctx->EvalMap.Map2Texture3.Uorder
* ctx->EvalMap.Map2Texture3.Vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_4:
data = ctx->EvalMap.Map2Texture4.Points;
n = ctx->EvalMap.Map2Texture4.Uorder
* ctx->EvalMap.Map2Texture4.Vorder * 4;
break;
case GL_MAP2_VERTEX_3:
data = ctx->EvalMap.Map2Vertex3.Points;
n = ctx->EvalMap.Map2Vertex3.Uorder
* ctx->EvalMap.Map2Vertex3.Vorder * 3;
break;
case GL_MAP2_VERTEX_4:
data = ctx->EvalMap.Map2Vertex4.Points;
n = ctx->EvalMap.Map2Vertex4.Uorder
* ctx->EvalMap.Map2Vertex4.Vorder * 4;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
}
if (data) {
for (i=0;i<n;i++) {
v[i] = ROUNDF(data[i]);
}
}
break;
case GL_ORDER:
switch (target) {
case GL_MAP1_COLOR_4:
*v = ctx->EvalMap.Map1Color4.Order;
break;
case GL_MAP1_INDEX:
*v = ctx->EvalMap.Map1Index.Order;
break;
case GL_MAP1_NORMAL:
*v = ctx->EvalMap.Map1Normal.Order;
break;
case GL_MAP1_TEXTURE_COORD_1:
*v = ctx->EvalMap.Map1Texture1.Order;
break;
case GL_MAP1_TEXTURE_COORD_2:
*v = ctx->EvalMap.Map1Texture2.Order;
break;
case GL_MAP1_TEXTURE_COORD_3:
*v = ctx->EvalMap.Map1Texture3.Order;
break;
case GL_MAP1_TEXTURE_COORD_4:
*v = ctx->EvalMap.Map1Texture4.Order;
break;
case GL_MAP1_VERTEX_3:
*v = ctx->EvalMap.Map1Vertex3.Order;
break;
case GL_MAP1_VERTEX_4:
*v = ctx->EvalMap.Map1Vertex4.Order;
break;
case GL_MAP2_COLOR_4:
v[0] = ctx->EvalMap.Map2Color4.Uorder;
v[1] = ctx->EvalMap.Map2Color4.Vorder;
break;
case GL_MAP2_INDEX:
v[0] = ctx->EvalMap.Map2Index.Uorder;
v[1] = ctx->EvalMap.Map2Index.Vorder;
break;
case GL_MAP2_NORMAL:
v[0] = ctx->EvalMap.Map2Normal.Uorder;
v[1] = ctx->EvalMap.Map2Normal.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map2Texture1.Uorder;
v[1] = ctx->EvalMap.Map2Texture1.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map2Texture2.Uorder;
v[1] = ctx->EvalMap.Map2Texture2.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map2Texture3.Uorder;
v[1] = ctx->EvalMap.Map2Texture3.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map2Texture4.Uorder;
v[1] = ctx->EvalMap.Map2Texture4.Vorder;
break;
case GL_MAP2_VERTEX_3:
v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
break;
case GL_MAP2_VERTEX_4:
v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
}
break;
case GL_DOMAIN:
switch (target) {
case GL_MAP1_COLOR_4:
v[0] = ROUNDF(ctx->EvalMap.Map1Color4.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Color4.u2);
break;
case GL_MAP1_INDEX:
v[0] = ROUNDF(ctx->EvalMap.Map1Index.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Index.u2);
break;
case GL_MAP1_NORMAL:
v[0] = ROUNDF(ctx->EvalMap.Map1Normal.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Normal.u2);
break;
case GL_MAP1_TEXTURE_COORD_1:
v[0] = ROUNDF(ctx->EvalMap.Map1Texture1.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Texture1.u2);
break;
case GL_MAP1_TEXTURE_COORD_2:
v[0] = ROUNDF(ctx->EvalMap.Map1Texture2.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Texture2.u2);
break;
case GL_MAP1_TEXTURE_COORD_3:
v[0] = ROUNDF(ctx->EvalMap.Map1Texture3.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Texture3.u2);
break;
case GL_MAP1_TEXTURE_COORD_4:
v[0] = ROUNDF(ctx->EvalMap.Map1Texture4.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Texture4.u2);
break;
case GL_MAP1_VERTEX_3:
v[0] = ROUNDF(ctx->EvalMap.Map1Vertex3.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Vertex3.u2);
break;
case GL_MAP1_VERTEX_4:
v[0] = ROUNDF(ctx->EvalMap.Map1Vertex4.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Vertex4.u2);
break;
case GL_MAP2_COLOR_4:
v[0] = ROUNDF(ctx->EvalMap.Map2Color4.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Color4.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Color4.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Color4.v2);
break;
case GL_MAP2_INDEX:
v[0] = ROUNDF(ctx->EvalMap.Map2Index.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Index.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Index.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Index.v2);
break;
case GL_MAP2_NORMAL:
v[0] = ROUNDF(ctx->EvalMap.Map2Normal.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Normal.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Normal.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Normal.v2);
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ROUNDF(ctx->EvalMap.Map2Texture1.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Texture1.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Texture1.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Texture1.v2);
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ROUNDF(ctx->EvalMap.Map2Texture2.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Texture2.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Texture2.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Texture2.v2);
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ROUNDF(ctx->EvalMap.Map2Texture3.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Texture3.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Texture3.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Texture3.v2);
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ROUNDF(ctx->EvalMap.Map2Texture4.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Texture4.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Texture4.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Texture4.v2);
break;
case GL_MAP2_VERTEX_3:
v[0] = ROUNDF(ctx->EvalMap.Map2Vertex3.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Vertex3.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Vertex3.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Vertex3.v2);
break;
case GL_MAP2_VERTEX_4:
v[0] = ROUNDF(ctx->EvalMap.Map2Vertex4.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Vertex4.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Vertex4.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Vertex4.v2);
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(query)" );
}
}
void gl_EvalCoord1f(GLcontext* ctx, GLfloat u)
{
GLfloat vertex[4];
GLfloat normal[3];
GLfloat fcolor[4];
GLubyte icolor[4];
GLubyte *colorptr;
GLfloat texcoord[4];
GLuint index;
register GLfloat uu;
/** Vertex **/
if (ctx->Eval.Map1Vertex4)
{
struct gl_1d_map *map = &ctx->EvalMap.Map1Vertex4;
uu = (u - map->u1) / (map->u2 - map->u1);
horner_bezier_curve(map->Points, vertex, uu, 4, map->Order);
}
else if (ctx->Eval.Map1Vertex3)
{
struct gl_1d_map *map = &ctx->EvalMap.Map1Vertex3;
uu = (u - map->u1) / (map->u2 - map->u1);
horner_bezier_curve(map->Points, vertex, uu, 3, map->Order);
vertex[3] = 1.0;
}
/** Color Index **/
if (ctx->Eval.Map1Index)
{
struct gl_1d_map *map = &ctx->EvalMap.Map1Index;
GLfloat findex;
uu = (u - map->u1) / (map->u2 - map->u1);
horner_bezier_curve(map->Points, &findex, uu, 1, map->Order);
index = (GLuint) (GLint) findex;
}
else {
index = ctx->Current.Index;
}
/** Color **/
if (ctx->Eval.Map1Color4) {
struct gl_1d_map *map = &ctx->EvalMap.Map1Color4;
uu = (u - map->u1) / (map->u2 - map->u1);
horner_bezier_curve(map->Points, fcolor, uu, 4, map->Order);
icolor[0] = (GLint) (fcolor[0] * ctx->Visual->RedScale);
icolor[1] = (GLint) (fcolor[1] * ctx->Visual->GreenScale);
icolor[2] = (GLint) (fcolor[2] * ctx->Visual->BlueScale);
icolor[3] = (GLint) (fcolor[3] * ctx->Visual->AlphaScale);
colorptr = icolor;
}
else {
GLubyte col[4];
COPY_4V(col, ctx->Current.ByteColor );
colorptr = col;
}
/** Normal Vector **/
if (ctx->Eval.Map1Normal) {
struct gl_1d_map *map = &ctx->EvalMap.Map1Normal;
uu = (u - map->u1) / (map->u2 - map->u1);
horner_bezier_curve(map->Points, normal, uu, 3, map->Order);
}
else {
normal[0] = ctx->Current.Normal[0];
normal[1] = ctx->Current.Normal[1];
normal[2] = ctx->Current.Normal[2];
}
/** Texture Coordinates **/
if (ctx->Eval.Map1TextureCoord4) {
struct gl_1d_map *map = &ctx->EvalMap.Map1Texture4;
uu = (u - map->u1) / (map->u2 - map->u1);
horner_bezier_curve(map->Points, texcoord, uu, 4, map->Order);
}
else if (ctx->Eval.Map1TextureCoord3) {
struct gl_1d_map *map = &ctx->EvalMap.Map1Texture3;
uu = (u - map->u1) / (map->u2 - map->u1);
horner_bezier_curve(map->Points, texcoord, uu, 3, map->Order);
texcoord[3] = 1.0;
}
else if (ctx->Eval.Map1TextureCoord2) {
struct gl_1d_map *map = &ctx->EvalMap.Map1Texture2;
uu = (u - map->u1) / (map->u2 - map->u1);
horner_bezier_curve(map->Points, texcoord, uu, 2, map->Order);
texcoord[2] = 0.0;
texcoord[3] = 1.0;
}
else if (ctx->Eval.Map1TextureCoord1) {
struct gl_1d_map *map = &ctx->EvalMap.Map1Texture1;
uu = (u - map->u1) / (map->u2 - map->u1);
horner_bezier_curve(map->Points, texcoord, uu, 1, map->Order);
texcoord[1] = 0.0;
texcoord[2] = 0.0;
texcoord[3] = 1.0;
}
else {
texcoord[0] = ctx->Current.TexCoord[0];
texcoord[1] = ctx->Current.TexCoord[1];
texcoord[2] = ctx->Current.TexCoord[2];
texcoord[3] = ctx->Current.TexCoord[3];
}
gl_eval_vertex( ctx, vertex, normal, colorptr, index, texcoord );
}
void gl_EvalCoord2f( GLcontext* ctx, GLfloat u, GLfloat v )
{
GLfloat vertex[4];
GLfloat normal[3];
GLfloat fcolor[4];
GLubyte icolor[4];
GLubyte *colorptr;
GLfloat texcoord[4];
GLuint index;
register GLfloat uu, vv;
#define CROSS_PROD(n, u, v) \
(n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1]; \
(n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2]; \
(n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0]
/** Vertex **/
if(ctx->Eval.Map2Vertex4) {
struct gl_2d_map *map = &ctx->EvalMap.Map2Vertex4;
uu = (u - map->u1) / (map->u2 - map->u1);
vv = (v - map->v1) / (map->v2 - map->v1);
if (ctx->Eval.AutoNormal) {
GLfloat du[4], dv[4];
de_casteljau_surf(map->Points, vertex, du, dv, uu, vv, 4,
map->Uorder, map->Vorder);
CROSS_PROD(normal, du, dv);
NORMALIZE_3FV(normal);
}
else {
horner_bezier_surf(map->Points, vertex, uu, vv, 4,
map->Uorder, map->Vorder);
}
}
else if (ctx->Eval.Map2Vertex3) {
struct gl_2d_map *map = &ctx->EvalMap.Map2Vertex3;
uu = (u - map->u1) / (map->u2 - map->u1);
vv = (v - map->v1) / (map->v2 - map->v1);
if (ctx->Eval.AutoNormal) {
GLfloat du[3], dv[3];
de_casteljau_surf(map->Points, vertex, du, dv, uu, vv, 3,
map->Uorder, map->Vorder);
CROSS_PROD(normal, du, dv);
NORMALIZE_3FV(normal);
}
else {
horner_bezier_surf(map->Points, vertex, uu, vv, 3,
map->Uorder, map->Vorder);
}
vertex[3] = 1.0;
}
#undef CROSS_PROD
/** Color Index **/
if (ctx->Eval.Map2Index) {
GLfloat findex;
struct gl_2d_map *map = &ctx->EvalMap.Map2Index;
uu = (u - map->u1) / (map->u2 - map->u1);
vv = (v - map->v1) / (map->v2 - map->v1);
horner_bezier_surf(map->Points, &findex, uu, vv, 1,
map->Uorder, map->Vorder);
index = (GLuint) (GLint) findex;
}
else {
index = ctx->Current.Index;
}
/** Color **/
if (ctx->Eval.Map2Color4) {
struct gl_2d_map *map = &ctx->EvalMap.Map2Color4;
uu = (u - map->u1) / (map->u2 - map->u1);
vv = (v - map->v1) / (map->v2 - map->v1);
horner_bezier_surf(map->Points, fcolor, uu, vv, 4,
map->Uorder, map->Vorder);
icolor[0] = (GLint) (fcolor[0] * ctx->Visual->RedScale);
icolor[1] = (GLint) (fcolor[1] * ctx->Visual->GreenScale);
icolor[2] = (GLint) (fcolor[2] * ctx->Visual->BlueScale);
icolor[3] = (GLint) (fcolor[3] * ctx->Visual->AlphaScale);
colorptr = icolor;
}
else {
GLubyte col[4];
COPY_4V(col, ctx->Current.ByteColor );
colorptr = col;
}
/** Normal **/
if (!ctx->Eval.AutoNormal
|| (!ctx->Eval.Map2Vertex3 && !ctx->Eval.Map2Vertex4)) {
if (ctx->Eval.Map2Normal) {
struct gl_2d_map *map = &ctx->EvalMap.Map2Normal;
uu = (u - map->u1) / (map->u2 - map->u1);
vv = (v - map->v1) / (map->v2 - map->v1);
horner_bezier_surf(map->Points, normal, uu, vv, 3,
map->Uorder, map->Vorder);
}
else {
normal[0] = ctx->Current.Normal[0];
normal[1] = ctx->Current.Normal[1];
normal[2] = ctx->Current.Normal[2];
}
}
/** Texture Coordinates **/
if (ctx->Eval.Map2TextureCoord4) {
struct gl_2d_map *map = &ctx->EvalMap.Map2Texture4;
uu = (u - map->u1) / (map->u2 - map->u1);
vv = (v - map->v1) / (map->v2 - map->v1);
horner_bezier_surf(map->Points, texcoord, uu, vv, 4,
map->Uorder, map->Vorder);
}
else if (ctx->Eval.Map2TextureCoord3) {
struct gl_2d_map *map = &ctx->EvalMap.Map2Texture3;
uu = (u - map->u1) / (map->u2 - map->u1);
vv = (v - map->v1) / (map->v2 - map->v1);
horner_bezier_surf(map->Points, texcoord, uu, vv, 3,
map->Uorder, map->Vorder);
texcoord[3] = 1.0;
}
else if (ctx->Eval.Map2TextureCoord2) {
struct gl_2d_map *map = &ctx->EvalMap.Map2Texture2;
uu = (u - map->u1) / (map->u2 - map->u1);
vv = (v - map->v1) / (map->v2 - map->v1);
horner_bezier_surf(map->Points, texcoord, uu, vv, 2,
map->Uorder, map->Vorder);
texcoord[2] = 0.0;
texcoord[3] = 1.0;
}
else if (ctx->Eval.Map2TextureCoord1) {
struct gl_2d_map *map = &ctx->EvalMap.Map2Texture1;
uu = (u - map->u1) / (map->u2 - map->u1);
vv = (v - map->v1) / (map->v2 - map->v1);
horner_bezier_surf(map->Points, texcoord, uu, vv, 1,
map->Uorder, map->Vorder);
texcoord[1] = 0.0;
texcoord[2] = 0.0;
texcoord[3] = 1.0;
}
else
{
texcoord[0] = ctx->Current.TexCoord[0];
texcoord[1] = ctx->Current.TexCoord[1];
texcoord[2] = ctx->Current.TexCoord[2];
texcoord[3] = ctx->Current.TexCoord[3];
}
gl_eval_vertex( ctx, vertex, normal, colorptr, index, texcoord );
}
void gl_MapGrid1f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2 )
{
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glMapGrid1f" );
return;
}
if (un<1) {
gl_error( ctx, GL_INVALID_VALUE, "glMapGrid1f" );
return;
}
ctx->Eval.MapGrid1un = un;
ctx->Eval.MapGrid1u1 = u1;
ctx->Eval.MapGrid1u2 = u2;
}
void gl_MapGrid2f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2,
GLint vn, GLfloat v1, GLfloat v2 )
{
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glMapGrid2f" );
return;
}
if (un<1) {
gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(un)" );
return;
}
if (vn<1) {
gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(vn)" );
return;
}
ctx->Eval.MapGrid2un = un;
ctx->Eval.MapGrid2u1 = u1;
ctx->Eval.MapGrid2u2 = u2;
ctx->Eval.MapGrid2vn = vn;
ctx->Eval.MapGrid2v1 = v1;
ctx->Eval.MapGrid2v2 = v2;
}
void gl_EvalPoint1( GLcontext* ctx, GLint i )
{
GLfloat u, du;
if (i==0) {
u = ctx->Eval.MapGrid1u1;
}
else if (i==ctx->Eval.MapGrid1un) {
u = ctx->Eval.MapGrid1u2;
}
else {
du = (ctx->Eval.MapGrid1u2 - ctx->Eval.MapGrid1u1)
/ (GLfloat) ctx->Eval.MapGrid1un;
u = i * du + ctx->Eval.MapGrid1u1;
}
gl_EvalCoord1f( ctx, u );
}
void gl_EvalPoint2( GLcontext* ctx, GLint i, GLint j )
{
GLfloat u, du;
GLfloat v, dv;
if (i==0) {
u = ctx->Eval.MapGrid2u1;
}
else if (i==ctx->Eval.MapGrid2un) {
u = ctx->Eval.MapGrid2u2;
}
else {
du = (ctx->Eval.MapGrid2u2 - ctx->Eval.MapGrid2u1)
/ (GLfloat) ctx->Eval.MapGrid2un;
u = i * du + ctx->Eval.MapGrid2u1;
}
if (j==0) {
v = ctx->Eval.MapGrid2v1;
}
else if (j==ctx->Eval.MapGrid2vn) {
v = ctx->Eval.MapGrid2v2;
}
else {
dv = (ctx->Eval.MapGrid2v2 - ctx->Eval.MapGrid2v1)
/ (GLfloat) ctx->Eval.MapGrid2vn;
v = j * dv + ctx->Eval.MapGrid2v1;
}
gl_EvalCoord2f( ctx, u, v );
}
void gl_EvalMesh1( GLcontext* ctx, GLenum mode, GLint i1, GLint i2 )
{
GLint i;
GLfloat u, du;
GLenum prim;
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glEvalMesh1" );
return;
}
switch (mode) {
case GL_POINT:
prim = GL_POINTS;
break;
case GL_LINE:
prim = GL_LINE_STRIP;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh1(mode)" );
return;
}
du = (ctx->Eval.MapGrid1u2 - ctx->Eval.MapGrid1u1)
/ (GLfloat) ctx->Eval.MapGrid1un;
gl_Begin( ctx, prim );
for (i=i1;i<=i2;i++) {
if (i==0) {
u = ctx->Eval.MapGrid1u1;
}
else if (i==ctx->Eval.MapGrid1un) {
u = ctx->Eval.MapGrid1u2;
}
else {
u = i * du + ctx->Eval.MapGrid1u1;
}
gl_EvalCoord1f( ctx, u );
}
gl_End(ctx);
}
void gl_EvalMesh2( GLcontext* ctx, GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2 )
{
GLint i, j;
GLfloat u, du, v, dv, v1, v2;
if (INSIDE_BEGIN_END(ctx)) {
gl_error( ctx, GL_INVALID_OPERATION, "glEvalMesh2" );
return;
}
du = (ctx->Eval.MapGrid2u2 - ctx->Eval.MapGrid2u1)
/ (GLfloat) ctx->Eval.MapGrid2un;
dv = (ctx->Eval.MapGrid2v2 - ctx->Eval.MapGrid2v1)
/ (GLfloat) ctx->Eval.MapGrid2vn;
#define I_TO_U( I, U ) \
if ((I)==0) { \
U = ctx->Eval.MapGrid2u1; \
} \
else if ((I)==ctx->Eval.MapGrid2un) { \
U = ctx->Eval.MapGrid2u2; \
} \
else { \
U = (I) * du + ctx->Eval.MapGrid2u1;\
}
#define J_TO_V( J, V ) \
if ((J)==0) { \
V = ctx->Eval.MapGrid2v1; \
} \
else if ((J)==ctx->Eval.MapGrid2vn) { \
V = ctx->Eval.MapGrid2v2; \
} \
else { \
V = (J) * dv + ctx->Eval.MapGrid2v1;\
}
switch (mode) {
case GL_POINT:
gl_Begin( ctx, GL_POINTS );
for (j=j1;j<=j2;j++) {
J_TO_V( j, v );
for (i=i1;i<=i2;i++) {
I_TO_U( i, u );
gl_EvalCoord2f( ctx, u, v );
}
}
gl_End(ctx);
break;
case GL_LINE:
for (j=j1;j<=j2;j++) {
J_TO_V( j, v );
gl_Begin( ctx, GL_LINE_STRIP );
for (i=i1;i<=i2;i++) {
I_TO_U( i, u );
gl_EvalCoord2f( ctx, u, v );
}
gl_End(ctx);
}
for (i=i1;i<=i2;i++) {
I_TO_U( i, u );
gl_Begin( ctx, GL_LINE_STRIP );
for (j=j1;j<=j2;j++) {
J_TO_V( j, v );
gl_EvalCoord2f( ctx, u, v );
}
gl_End(ctx);
}
break;
case GL_FILL:
for (j=j1;j<j2;j++) {
/* NOTE: a quad strip can't be used because the four */
/* can't be guaranteed to be coplanar! */
gl_Begin( ctx, GL_TRIANGLE_STRIP );
J_TO_V( j, v1 );
J_TO_V( j+1, v2 );
for (i=i1;i<=i2;i++) {
I_TO_U( i, u );
gl_EvalCoord2f( ctx, u, v1 );
gl_EvalCoord2f( ctx, u, v2 );
}
gl_End(ctx);
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh2(mode)" );
return;
}
#undef I_TO_U
#undef J_TO_V
}