mirror of
https://github.com/reactos/reactos.git
synced 2025-01-11 16:51:06 +00:00
c424146e2c
svn path=/branches/cmake-bringup/; revision=48236
244 lines
6.6 KiB
C
244 lines
6.6 KiB
C
/*
|
|
* Copyright (C) 2001 Nikos Mavroyanopoulos
|
|
* Copyright (C) 2004 Hans Leidekker
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
/*
|
|
* This code implements the MD4 message-digest algorithm.
|
|
* It is based on code in the public domain written by Colin
|
|
* Plumb in 1993. The algorithm is due to Ron Rivest.
|
|
*
|
|
* Equivalent code is available from RSA Data Security, Inc.
|
|
* This code has been tested against that, and is equivalent,
|
|
* except that you don't need to include two pages of legalese
|
|
* with every copy.
|
|
*
|
|
* To compute the message digest of a chunk of bytes, declare an
|
|
* MD4_CTX structure, pass it to MD4Init, call MD4Update as
|
|
* needed on buffers full of bytes, and then call MD4Final, which
|
|
* will fill a supplied 16-byte array with the digest.
|
|
*/
|
|
|
|
#include <advapi32.h>
|
|
#include "crypt.h"
|
|
|
|
|
|
/* The three core functions */
|
|
|
|
#define rotl32(x,n) (((x) << ((unsigned int)(n))) | ((x) >> (32 - (unsigned int)(n))))
|
|
|
|
#define F( x, y, z ) (((x) & (y)) | ((~x) & (z)))
|
|
#define G( x, y, z ) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
|
|
#define H( x, y, z ) ((x) ^ (y) ^ (z))
|
|
|
|
#define FF( a, b, c, d, x, s ) { \
|
|
(a) += F( (b), (c), (d) ) + (x); \
|
|
(a) = rotl32( (a), (s) ); \
|
|
}
|
|
#define GG( a, b, c, d, x, s ) { \
|
|
(a) += G( (b), (c), (d) ) + (x) + (unsigned int)0x5a827999; \
|
|
(a) = rotl32( (a), (s) ); \
|
|
}
|
|
#define HH( a, b, c, d, x, s ) { \
|
|
(a) += H( (b), (c), (d) ) + (x) + (unsigned int)0x6ed9eba1; \
|
|
(a) = rotl32( (a), (s) ); \
|
|
}
|
|
|
|
/*
|
|
* The core of the MD4 algorithm
|
|
*/
|
|
static void MD4Transform( unsigned int buf[4], const unsigned int in[16] )
|
|
{
|
|
register unsigned int a, b, c, d;
|
|
|
|
a = buf[0];
|
|
b = buf[1];
|
|
c = buf[2];
|
|
d = buf[3];
|
|
|
|
FF( a, b, c, d, in[0], 3 );
|
|
FF( d, a, b, c, in[1], 7 );
|
|
FF( c, d, a, b, in[2], 11 );
|
|
FF( b, c, d, a, in[3], 19 );
|
|
FF( a, b, c, d, in[4], 3 );
|
|
FF( d, a, b, c, in[5], 7 );
|
|
FF( c, d, a, b, in[6], 11 );
|
|
FF( b, c, d, a, in[7], 19 );
|
|
FF( a, b, c, d, in[8], 3 );
|
|
FF( d, a, b, c, in[9], 7 );
|
|
FF( c, d, a, b, in[10], 11 );
|
|
FF( b, c, d, a, in[11], 19 );
|
|
FF( a, b, c, d, in[12], 3 );
|
|
FF( d, a, b, c, in[13], 7 );
|
|
FF( c, d, a, b, in[14], 11 );
|
|
FF( b, c, d, a, in[15], 19 );
|
|
|
|
GG( a, b, c, d, in[0], 3 );
|
|
GG( d, a, b, c, in[4], 5 );
|
|
GG( c, d, a, b, in[8], 9 );
|
|
GG( b, c, d, a, in[12], 13 );
|
|
GG( a, b, c, d, in[1], 3 );
|
|
GG( d, a, b, c, in[5], 5 );
|
|
GG( c, d, a, b, in[9], 9 );
|
|
GG( b, c, d, a, in[13], 13 );
|
|
GG( a, b, c, d, in[2], 3 );
|
|
GG( d, a, b, c, in[6], 5 );
|
|
GG( c, d, a, b, in[10], 9 );
|
|
GG( b, c, d, a, in[14], 13 );
|
|
GG( a, b, c, d, in[3], 3 );
|
|
GG( d, a, b, c, in[7], 5 );
|
|
GG( c, d, a, b, in[11], 9 );
|
|
GG( b, c, d, a, in[15], 13 );
|
|
|
|
HH( a, b, c, d, in[0], 3 );
|
|
HH( d, a, b, c, in[8], 9 );
|
|
HH( c, d, a, b, in[4], 11 );
|
|
HH( b, c, d, a, in[12], 15 );
|
|
HH( a, b, c, d, in[2], 3 );
|
|
HH( d, a, b, c, in[10], 9 );
|
|
HH( c, d, a, b, in[6], 11 );
|
|
HH( b, c, d, a, in[14], 15 );
|
|
HH( a, b, c, d, in[1], 3 );
|
|
HH( d, a, b, c, in[9], 9 );
|
|
HH( c, d, a, b, in[5], 11 );
|
|
HH( b, c, d, a, in[13], 15 );
|
|
HH( a, b, c, d, in[3], 3 );
|
|
HH( d, a, b, c, in[11], 9 );
|
|
HH( c, d, a, b, in[7], 11 );
|
|
HH( b, c, d, a, in[15], 15 );
|
|
|
|
buf[0] += a;
|
|
buf[1] += b;
|
|
buf[2] += c;
|
|
buf[3] += d;
|
|
}
|
|
|
|
/*
|
|
* Start MD4 accumulation. Set bit count to 0 and buffer to mysterious
|
|
* initialization constants.
|
|
*/
|
|
VOID WINAPI MD4Init( MD4_CTX *ctx )
|
|
{
|
|
ctx->buf[0] = 0x67452301;
|
|
ctx->buf[1] = 0xefcdab89;
|
|
ctx->buf[2] = 0x98badcfe;
|
|
ctx->buf[3] = 0x10325476;
|
|
|
|
ctx->i[0] = ctx->i[1] = 0;
|
|
}
|
|
|
|
/*
|
|
* Update context to reflect the concatenation of another buffer full
|
|
* of bytes.
|
|
*/
|
|
VOID WINAPI MD4Update( MD4_CTX *ctx, const unsigned char *buf, unsigned int len )
|
|
{
|
|
register unsigned int t;
|
|
|
|
/* Update bitcount */
|
|
t = ctx->i[0];
|
|
|
|
if ((ctx->i[0] = t + (len << 3)) < t)
|
|
ctx->i[1]++; /* Carry from low to high */
|
|
|
|
ctx->i[1] += len >> 29;
|
|
t = (t >> 3) & 0x3f;
|
|
|
|
/* Handle any leading odd-sized chunks */
|
|
if (t)
|
|
{
|
|
unsigned char *p = (unsigned char *)ctx->in + t;
|
|
t = 64 - t;
|
|
|
|
if (len < t)
|
|
{
|
|
memcpy( p, buf, len );
|
|
return;
|
|
}
|
|
|
|
memcpy( p, buf, t );
|
|
byteReverse( ctx->in, 16 );
|
|
|
|
MD4Transform( ctx->buf, (unsigned int *)ctx->in );
|
|
|
|
buf += t;
|
|
len -= t;
|
|
}
|
|
|
|
/* Process data in 64-byte chunks */
|
|
while (len >= 64)
|
|
{
|
|
memcpy( ctx->in, buf, 64 );
|
|
byteReverse( ctx->in, 16 );
|
|
|
|
MD4Transform( ctx->buf, (unsigned int *)ctx->in );
|
|
|
|
buf += 64;
|
|
len -= 64;
|
|
}
|
|
|
|
/* Handle any remaining bytes of data. */
|
|
memcpy( ctx->in, buf, len );
|
|
}
|
|
|
|
/*
|
|
* Final wrapup - pad to 64-byte boundary with the bit pattern
|
|
* 1 0* (64-bit count of bits processed, MSB-first)
|
|
*/
|
|
VOID WINAPI MD4Final( MD4_CTX *ctx )
|
|
{
|
|
unsigned int count;
|
|
unsigned char *p;
|
|
|
|
/* Compute number of bytes mod 64 */
|
|
count = (ctx->i[0] >> 3) & 0x3F;
|
|
|
|
/* Set the first char of padding to 0x80. This is safe since there is
|
|
always at least one byte free */
|
|
p = ctx->in + count;
|
|
*p++ = 0x80;
|
|
|
|
/* Bytes of padding needed to make 64 bytes */
|
|
count = 64 - 1 - count;
|
|
|
|
/* Pad out to 56 mod 64 */
|
|
if (count < 8)
|
|
{
|
|
/* Two lots of padding: Pad the first block to 64 bytes */
|
|
memset( p, 0, count );
|
|
byteReverse( ctx->in, 16 );
|
|
MD4Transform( ctx->buf, (unsigned int *)ctx->in );
|
|
|
|
/* Now fill the next block with 56 bytes */
|
|
memset( ctx->in, 0, 56 );
|
|
}
|
|
else
|
|
{
|
|
/* Pad block to 56 bytes */
|
|
memset( p, 0, count - 8 );
|
|
}
|
|
|
|
byteReverse( ctx->in, 14 );
|
|
|
|
/* Append length in bits and transform */
|
|
((unsigned int *)ctx->in)[14] = ctx->i[0];
|
|
((unsigned int *)ctx->in)[15] = ctx->i[1];
|
|
|
|
MD4Transform( ctx->buf, (unsigned int *)ctx->in );
|
|
byteReverse( (unsigned char *)ctx->buf, 4 );
|
|
memcpy( ctx->digest, ctx->buf, 16 );
|
|
}
|