mirror of
https://github.com/reactos/reactos.git
synced 2024-11-01 12:26:32 +00:00
602 lines
14 KiB
C
602 lines
14 KiB
C
/*
|
|
* Taken from https://github.com/swenson/sort
|
|
* Revision: 05fd77bfec049ce8b7c408c4d3dd2d51ee061a15
|
|
* Removed all code unrelated to Timsort and made minor adjustments for
|
|
* cross-platform compatibility.
|
|
*/
|
|
|
|
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2010-2017 Christopher Swenson.
|
|
* Copyright (c) 2012 Vojtech Fried.
|
|
* Copyright (c) 2012 Google Inc. All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#ifdef HAVE_STDINT_H
|
|
#include <stdint.h>
|
|
#elif defined(_WIN32)
|
|
typedef unsigned __int64 uint64_t;
|
|
#endif
|
|
|
|
#ifndef SORT_NAME
|
|
#error "Must declare SORT_NAME"
|
|
#endif
|
|
|
|
#ifndef SORT_TYPE
|
|
#error "Must declare SORT_TYPE"
|
|
#endif
|
|
|
|
#ifndef SORT_CMP
|
|
#define SORT_CMP(x, y) ((x) < (y) ? -1 : ((x) == (y) ? 0 : 1))
|
|
#endif
|
|
|
|
#ifndef TIM_SORT_STACK_SIZE
|
|
#define TIM_SORT_STACK_SIZE 128
|
|
#endif
|
|
|
|
#define SORT_SWAP(x,y) {SORT_TYPE __SORT_SWAP_t = (x); (x) = (y); (y) = __SORT_SWAP_t;}
|
|
|
|
|
|
/* Common, type-agnostic functions and constants that we don't want to declare twice. */
|
|
#ifndef SORT_COMMON_H
|
|
#define SORT_COMMON_H
|
|
|
|
#ifndef MAX
|
|
#define MAX(x,y) (((x) > (y) ? (x) : (y)))
|
|
#endif
|
|
|
|
#ifndef MIN
|
|
#define MIN(x,y) (((x) < (y) ? (x) : (y)))
|
|
#endif
|
|
|
|
static int compute_minrun(const uint64_t);
|
|
|
|
#ifndef CLZ
|
|
#if defined(__GNUC__) && ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ > 3))
|
|
#define CLZ __builtin_clzll
|
|
#else
|
|
|
|
static int clzll(uint64_t);
|
|
|
|
/* adapted from Hacker's Delight */
|
|
static int clzll(uint64_t x) {
|
|
int n;
|
|
|
|
if (x == 0) {
|
|
return 64;
|
|
}
|
|
|
|
n = 0;
|
|
|
|
if (x <= 0x00000000FFFFFFFFL) {
|
|
n = n + 32;
|
|
x = x << 32;
|
|
}
|
|
|
|
if (x <= 0x0000FFFFFFFFFFFFL) {
|
|
n = n + 16;
|
|
x = x << 16;
|
|
}
|
|
|
|
if (x <= 0x00FFFFFFFFFFFFFFL) {
|
|
n = n + 8;
|
|
x = x << 8;
|
|
}
|
|
|
|
if (x <= 0x0FFFFFFFFFFFFFFFL) {
|
|
n = n + 4;
|
|
x = x << 4;
|
|
}
|
|
|
|
if (x <= 0x3FFFFFFFFFFFFFFFL) {
|
|
n = n + 2;
|
|
x = x << 2;
|
|
}
|
|
|
|
if (x <= 0x7FFFFFFFFFFFFFFFL) {
|
|
n = n + 1;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
#define CLZ clzll
|
|
#endif
|
|
#endif
|
|
|
|
static __inline int compute_minrun(const uint64_t size) {
|
|
const int top_bit = 64 - CLZ(size);
|
|
const int shift = MAX(top_bit, 6) - 6;
|
|
const int minrun = size >> shift;
|
|
const uint64_t mask = (1ULL << shift) - 1;
|
|
|
|
if (mask & size) {
|
|
return minrun + 1;
|
|
}
|
|
|
|
return minrun;
|
|
}
|
|
|
|
#endif /* SORT_COMMON_H */
|
|
|
|
#define SORT_CONCAT(x, y) x ## _ ## y
|
|
#define SORT_MAKE_STR1(x, y) SORT_CONCAT(x,y)
|
|
#define SORT_MAKE_STR(x) SORT_MAKE_STR1(SORT_NAME,x)
|
|
|
|
#define BINARY_INSERTION_FIND SORT_MAKE_STR(binary_insertion_find)
|
|
#define BINARY_INSERTION_SORT_START SORT_MAKE_STR(binary_insertion_sort_start)
|
|
#define BINARY_INSERTION_SORT SORT_MAKE_STR(binary_insertion_sort)
|
|
#define REVERSE_ELEMENTS SORT_MAKE_STR(reverse_elements)
|
|
#define COUNT_RUN SORT_MAKE_STR(count_run)
|
|
#define CHECK_INVARIANT SORT_MAKE_STR(check_invariant)
|
|
#define TIM_SORT SORT_MAKE_STR(tim_sort)
|
|
#define TIM_SORT_RESIZE SORT_MAKE_STR(tim_sort_resize)
|
|
#define TIM_SORT_MERGE SORT_MAKE_STR(tim_sort_merge)
|
|
#define TIM_SORT_COLLAPSE SORT_MAKE_STR(tim_sort_collapse)
|
|
|
|
#ifndef MAX
|
|
#define MAX(x,y) (((x) > (y) ? (x) : (y)))
|
|
#endif
|
|
#ifndef MIN
|
|
#define MIN(x,y) (((x) < (y) ? (x) : (y)))
|
|
#endif
|
|
|
|
typedef struct {
|
|
size_t start;
|
|
size_t length;
|
|
} TIM_SORT_RUN_T;
|
|
|
|
|
|
void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size);
|
|
void TIM_SORT(SORT_TYPE *dst, const size_t size);
|
|
|
|
|
|
/* Function used to do a binary search for binary insertion sort */
|
|
static __inline size_t BINARY_INSERTION_FIND(SORT_TYPE *dst, const SORT_TYPE x,
|
|
const size_t size) {
|
|
size_t l, c, r;
|
|
SORT_TYPE cx;
|
|
l = 0;
|
|
r = size - 1;
|
|
c = r >> 1;
|
|
|
|
/* check for out of bounds at the beginning. */
|
|
if (SORT_CMP(x, dst[0]) < 0) {
|
|
return 0;
|
|
} else if (SORT_CMP(x, dst[r]) > 0) {
|
|
return r;
|
|
}
|
|
|
|
cx = dst[c];
|
|
|
|
while (1) {
|
|
const int val = SORT_CMP(x, cx);
|
|
|
|
if (val < 0) {
|
|
if (c - l <= 1) {
|
|
return c;
|
|
}
|
|
|
|
r = c;
|
|
} else { /* allow = for stability. The binary search favors the right. */
|
|
if (r - c <= 1) {
|
|
return c + 1;
|
|
}
|
|
|
|
l = c;
|
|
}
|
|
|
|
c = l + ((r - l) >> 1);
|
|
cx = dst[c];
|
|
}
|
|
}
|
|
|
|
/* Binary insertion sort, but knowing that the first "start" entries are sorted. Used in timsort. */
|
|
static void BINARY_INSERTION_SORT_START(SORT_TYPE *dst, const size_t start, const size_t size) {
|
|
size_t i;
|
|
|
|
for (i = start; i < size; i++) {
|
|
size_t j;
|
|
SORT_TYPE x;
|
|
size_t location;
|
|
|
|
/* If this entry is already correct, just move along */
|
|
if (SORT_CMP(dst[i - 1], dst[i]) <= 0) {
|
|
continue;
|
|
}
|
|
|
|
/* Else we need to find the right place, shift everything over, and squeeze in */
|
|
x = dst[i];
|
|
location = BINARY_INSERTION_FIND(dst, x, i);
|
|
|
|
for (j = i - 1; j >= location; j--) {
|
|
dst[j + 1] = dst[j];
|
|
|
|
if (j == 0) { /* check edge case because j is unsigned */
|
|
break;
|
|
}
|
|
}
|
|
|
|
dst[location] = x;
|
|
}
|
|
}
|
|
|
|
/* Binary insertion sort */
|
|
void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size) {
|
|
/* don't bother sorting an array of size <= 1 */
|
|
if (size <= 1) {
|
|
return;
|
|
}
|
|
|
|
BINARY_INSERTION_SORT_START(dst, 1, size);
|
|
}
|
|
|
|
/* timsort implementation, based on timsort.txt */
|
|
|
|
static __inline void REVERSE_ELEMENTS(SORT_TYPE *dst, size_t start, size_t end) {
|
|
while (1) {
|
|
if (start >= end) {
|
|
return;
|
|
}
|
|
|
|
SORT_SWAP(dst[start], dst[end]);
|
|
start++;
|
|
end--;
|
|
}
|
|
}
|
|
|
|
static size_t COUNT_RUN(SORT_TYPE *dst, const size_t start, const size_t size) {
|
|
size_t curr;
|
|
|
|
if (size - start == 1) {
|
|
return 1;
|
|
}
|
|
|
|
if (start >= size - 2) {
|
|
if (SORT_CMP(dst[size - 2], dst[size - 1]) > 0) {
|
|
SORT_SWAP(dst[size - 2], dst[size - 1]);
|
|
}
|
|
|
|
return 2;
|
|
}
|
|
|
|
curr = start + 2;
|
|
|
|
if (SORT_CMP(dst[start], dst[start + 1]) <= 0) {
|
|
/* increasing run */
|
|
while (1) {
|
|
if (curr == size - 1) {
|
|
break;
|
|
}
|
|
|
|
if (SORT_CMP(dst[curr - 1], dst[curr]) > 0) {
|
|
break;
|
|
}
|
|
|
|
curr++;
|
|
}
|
|
|
|
return curr - start;
|
|
} else {
|
|
/* decreasing run */
|
|
while (1) {
|
|
if (curr == size - 1) {
|
|
break;
|
|
}
|
|
|
|
if (SORT_CMP(dst[curr - 1], dst[curr]) <= 0) {
|
|
break;
|
|
}
|
|
|
|
curr++;
|
|
}
|
|
|
|
/* reverse in-place */
|
|
REVERSE_ELEMENTS(dst, start, curr - 1);
|
|
return curr - start;
|
|
}
|
|
}
|
|
|
|
static int CHECK_INVARIANT(TIM_SORT_RUN_T *stack, const int stack_curr) {
|
|
size_t A, B, C;
|
|
|
|
if (stack_curr < 2) {
|
|
return 1;
|
|
}
|
|
|
|
if (stack_curr == 2) {
|
|
const size_t A1 = stack[stack_curr - 2].length;
|
|
const size_t B1 = stack[stack_curr - 1].length;
|
|
|
|
if (A1 <= B1) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
A = stack[stack_curr - 3].length;
|
|
B = stack[stack_curr - 2].length;
|
|
C = stack[stack_curr - 1].length;
|
|
|
|
if ((A <= B + C) || (B <= C)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
typedef struct {
|
|
size_t alloc;
|
|
SORT_TYPE *storage;
|
|
} TEMP_STORAGE_T;
|
|
|
|
static void TIM_SORT_RESIZE(TEMP_STORAGE_T *store, const size_t new_size) {
|
|
if (store->alloc < new_size) {
|
|
SORT_TYPE *tempstore = (SORT_TYPE *)realloc(store->storage, new_size * sizeof(SORT_TYPE));
|
|
|
|
if (tempstore == NULL) {
|
|
fprintf(stderr, "Error allocating temporary storage for tim sort: need %lu bytes",
|
|
(unsigned long)(sizeof(SORT_TYPE) * new_size));
|
|
exit(1);
|
|
}
|
|
|
|
store->storage = tempstore;
|
|
store->alloc = new_size;
|
|
}
|
|
}
|
|
|
|
static void TIM_SORT_MERGE(SORT_TYPE *dst, const TIM_SORT_RUN_T *stack, const int stack_curr,
|
|
TEMP_STORAGE_T *store) {
|
|
const size_t A = stack[stack_curr - 2].length;
|
|
const size_t B = stack[stack_curr - 1].length;
|
|
const size_t curr = stack[stack_curr - 2].start;
|
|
SORT_TYPE *storage;
|
|
size_t i, j, k;
|
|
TIM_SORT_RESIZE(store, MIN(A, B));
|
|
storage = store->storage;
|
|
|
|
/* left merge */
|
|
if (A < B) {
|
|
memcpy(storage, &dst[curr], A * sizeof(SORT_TYPE));
|
|
i = 0;
|
|
j = curr + A;
|
|
|
|
for (k = curr; k < curr + A + B; k++) {
|
|
if ((i < A) && (j < curr + A + B)) {
|
|
if (SORT_CMP(storage[i], dst[j]) <= 0) {
|
|
dst[k] = storage[i++];
|
|
} else {
|
|
dst[k] = dst[j++];
|
|
}
|
|
} else if (i < A) {
|
|
dst[k] = storage[i++];
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
/* right merge */
|
|
memcpy(storage, &dst[curr + A], B * sizeof(SORT_TYPE));
|
|
i = B;
|
|
j = curr + A;
|
|
k = curr + A + B;
|
|
|
|
while (k > curr) {
|
|
k--;
|
|
if ((i > 0) && (j > curr)) {
|
|
if (SORT_CMP(dst[j - 1], storage[i - 1]) > 0) {
|
|
dst[k] = dst[--j];
|
|
} else {
|
|
dst[k] = storage[--i];
|
|
}
|
|
} else if (i > 0) {
|
|
dst[k] = storage[--i];
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int TIM_SORT_COLLAPSE(SORT_TYPE *dst, TIM_SORT_RUN_T *stack, int stack_curr,
|
|
TEMP_STORAGE_T *store, const size_t size) {
|
|
while (1) {
|
|
size_t A, B, C, D;
|
|
int ABC, BCD, CD;
|
|
|
|
/* if the stack only has one thing on it, we are done with the collapse */
|
|
if (stack_curr <= 1) {
|
|
break;
|
|
}
|
|
|
|
/* if this is the last merge, just do it */
|
|
if ((stack_curr == 2) && (stack[0].length + stack[1].length == size)) {
|
|
TIM_SORT_MERGE(dst, stack, stack_curr, store);
|
|
stack[0].length += stack[1].length;
|
|
stack_curr--;
|
|
break;
|
|
}
|
|
/* check if the invariant is off for a stack of 2 elements */
|
|
else if ((stack_curr == 2) && (stack[0].length <= stack[1].length)) {
|
|
TIM_SORT_MERGE(dst, stack, stack_curr, store);
|
|
stack[0].length += stack[1].length;
|
|
stack_curr--;
|
|
break;
|
|
} else if (stack_curr == 2) {
|
|
break;
|
|
}
|
|
|
|
B = stack[stack_curr - 3].length;
|
|
C = stack[stack_curr - 2].length;
|
|
D = stack[stack_curr - 1].length;
|
|
|
|
if (stack_curr >= 4) {
|
|
A = stack[stack_curr - 4].length;
|
|
ABC = (A <= B + C);
|
|
} else {
|
|
ABC = 0;
|
|
}
|
|
|
|
BCD = (B <= C + D) || ABC;
|
|
CD = (C <= D);
|
|
|
|
/* Both invariants are good */
|
|
if (!BCD && !CD) {
|
|
break;
|
|
}
|
|
|
|
/* left merge */
|
|
if (BCD && !CD) {
|
|
TIM_SORT_MERGE(dst, stack, stack_curr - 1, store);
|
|
stack[stack_curr - 3].length += stack[stack_curr - 2].length;
|
|
stack[stack_curr - 2] = stack[stack_curr - 1];
|
|
stack_curr--;
|
|
} else {
|
|
/* right merge */
|
|
TIM_SORT_MERGE(dst, stack, stack_curr, store);
|
|
stack[stack_curr - 2].length += stack[stack_curr - 1].length;
|
|
stack_curr--;
|
|
}
|
|
}
|
|
|
|
return stack_curr;
|
|
}
|
|
|
|
static __inline int PUSH_NEXT(SORT_TYPE *dst,
|
|
const size_t size,
|
|
TEMP_STORAGE_T *store,
|
|
const size_t minrun,
|
|
TIM_SORT_RUN_T *run_stack,
|
|
size_t *stack_curr,
|
|
size_t *curr) {
|
|
size_t len = COUNT_RUN(dst, *curr, size);
|
|
size_t run = minrun;
|
|
|
|
if (run > size - *curr) {
|
|
run = size - *curr;
|
|
}
|
|
|
|
if (run > len) {
|
|
BINARY_INSERTION_SORT_START(&dst[*curr], len, run);
|
|
len = run;
|
|
}
|
|
|
|
run_stack[*stack_curr].start = *curr;
|
|
run_stack[*stack_curr].length = len;
|
|
(*stack_curr)++;
|
|
*curr += len;
|
|
|
|
if (*curr == size) {
|
|
/* finish up */
|
|
while (*stack_curr > 1) {
|
|
TIM_SORT_MERGE(dst, run_stack, *stack_curr, store);
|
|
run_stack[*stack_curr - 2].length += run_stack[*stack_curr - 1].length;
|
|
(*stack_curr)--;
|
|
}
|
|
|
|
if (store->storage != NULL) {
|
|
free(store->storage);
|
|
store->storage = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void TIM_SORT(SORT_TYPE *dst, const size_t size) {
|
|
size_t minrun;
|
|
TEMP_STORAGE_T _store, *store;
|
|
TIM_SORT_RUN_T run_stack[TIM_SORT_STACK_SIZE];
|
|
size_t stack_curr = 0;
|
|
size_t curr = 0;
|
|
|
|
/* don't bother sorting an array of size 1 */
|
|
if (size <= 1) {
|
|
return;
|
|
}
|
|
|
|
if (size < 64) {
|
|
BINARY_INSERTION_SORT(dst, size);
|
|
return;
|
|
}
|
|
|
|
/* compute the minimum run length */
|
|
minrun = compute_minrun(size);
|
|
/* temporary storage for merges */
|
|
store = &_store;
|
|
store->alloc = 0;
|
|
store->storage = NULL;
|
|
|
|
if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
|
|
return;
|
|
}
|
|
|
|
if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
|
|
return;
|
|
}
|
|
|
|
if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
|
|
return;
|
|
}
|
|
|
|
while (1) {
|
|
if (!CHECK_INVARIANT(run_stack, stack_curr)) {
|
|
stack_curr = TIM_SORT_COLLAPSE(dst, run_stack, stack_curr, store, size);
|
|
continue;
|
|
}
|
|
|
|
if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef SORT_CONCAT
|
|
#undef SORT_MAKE_STR1
|
|
#undef SORT_MAKE_STR
|
|
#undef SORT_NAME
|
|
#undef SORT_TYPE
|
|
#undef SORT_CMP
|
|
#undef TEMP_STORAGE_T
|
|
#undef TIM_SORT_RUN_T
|
|
#undef PUSH_NEXT
|
|
#undef SORT_SWAP
|
|
#undef SORT_CONCAT
|
|
#undef SORT_MAKE_STR1
|
|
#undef SORT_MAKE_STR
|
|
#undef BINARY_INSERTION_FIND
|
|
#undef BINARY_INSERTION_SORT_START
|
|
#undef BINARY_INSERTION_SORT
|
|
#undef REVERSE_ELEMENTS
|
|
#undef COUNT_RUN
|
|
#undef TIM_SORT
|
|
#undef TIM_SORT_RESIZE
|
|
#undef TIM_SORT_COLLAPSE
|
|
#undef TIM_SORT_RUN_T
|
|
#undef TEMP_STORAGE_T
|