reactos/ntoskrnl/include/internal/i386/mm.h
Timo Kreuzer 3021c2d571 [NTOS:MM] Pass page fault code to MmAccessFault
Note: before we had a BOOLEAN parameter called StoreInstruction, but in reality it was not specifying whether the fault was from a store store instruction, but whether it was an access violation rather than a page-not-present fault. On x86 without PAE there are only 2 kinds of access violations: (1) Access of a kernel mode page from user mode, which is handled early and (2) access of a read-only (or COW) page with a writing instruction. Therefore we could get away with this, even though it relied on the wrong assumption that a fault, which was not a page-not-present-fault, was automatically a write access. This commit only changes one thing: we pass the full fault-code to MmAccessFault and handle the rest from there in exactly the same way as before. More changes are coming to make things clear.
2018-01-06 18:20:24 +01:00

168 lines
6.9 KiB
C

/*
* kernel internal memory management definitions for x86
*/
#pragma once
#ifdef _PAE_
#define _MI_PAGING_LEVELS 3
#else
#define _MI_PAGING_LEVELS 2
#endif
/* Memory layout base addresses */
#define MI_USER_PROBE_ADDRESS (PVOID)0x7FFF0000
#define MI_DEFAULT_SYSTEM_RANGE_START (PVOID)0x80000000
#ifndef PAE
#define HYPER_SPACE 0xC0400000
#define HYPER_SPACE_END 0xC07FFFFF
#else
#define HYPER_SPACE 0xC0800000
#define HYPER_SPACE_END 0xC0BFFFFF
#endif
#define MI_SYSTEM_CACHE_WS_START (PVOID)0xC0C00000
#define MI_PAGED_POOL_START (PVOID)0xE1000000
#define MI_NONPAGED_POOL_END (PVOID)0xFFBE0000
#define MI_DEBUG_MAPPING (PVOID)0xFFBFF000
#define MI_HIGHEST_SYSTEM_ADDRESS (PVOID)0xFFFFFFFF
/* FIXME: These are different for PAE */
#define PTE_BASE 0xC0000000
#define PDE_BASE 0xC0300000
#define PDE_TOP 0xC0300FFF
#define PTE_TOP 0xC03FFFFF
#define PTE_PER_PAGE 0x400
#define PDE_PER_PAGE 0x400
#define PPE_PER_PAGE 1
/* Misc address definitions */
#define MI_SYSTEM_PTE_BASE (PVOID)MiAddressToPte(NULL)
#define MM_HIGHEST_VAD_ADDRESS \
(PVOID)((ULONG_PTR)MM_HIGHEST_USER_ADDRESS - (16 * PAGE_SIZE))
#define MI_MAPPING_RANGE_START (ULONG)HYPER_SPACE
#define MI_MAPPING_RANGE_END (MI_MAPPING_RANGE_START + \
MI_HYPERSPACE_PTES * PAGE_SIZE)
#define MI_DUMMY_PTE (PMMPTE)((ULONG_PTR)MI_MAPPING_RANGE_END + \
PAGE_SIZE)
#define MI_VAD_BITMAP (PMMPTE)((ULONG_PTR)MI_DUMMY_PTE + \
PAGE_SIZE)
#define MI_WORKING_SET_LIST (PMMPTE)((ULONG_PTR)MI_VAD_BITMAP + \
PAGE_SIZE)
/* Memory sizes */
#define MI_MIN_PAGES_FOR_NONPAGED_POOL_TUNING ((255 * _1MB) >> PAGE_SHIFT)
#define MI_MIN_PAGES_FOR_SYSPTE_TUNING ((19 * _1MB) >> PAGE_SHIFT)
#define MI_MIN_PAGES_FOR_SYSPTE_BOOST ((32 * _1MB) >> PAGE_SHIFT)
#define MI_MIN_PAGES_FOR_SYSPTE_BOOST_BOOST ((256 * _1MB) >> PAGE_SHIFT)
#define MI_MIN_INIT_PAGED_POOLSIZE (32 * _1MB)
#define MI_MAX_INIT_NONPAGED_POOL_SIZE (128 * _1MB)
#define MI_MAX_NONPAGED_POOL_SIZE (128 * _1MB)
#define MI_SYSTEM_VIEW_SIZE (32 * _1MB)
#define MI_SESSION_VIEW_SIZE (48 * _1MB)
#define MI_SESSION_POOL_SIZE (16 * _1MB)
#define MI_SESSION_IMAGE_SIZE (8 * _1MB)
#define MI_SESSION_WORKING_SET_SIZE (4 * _1MB)
#define MI_SESSION_SIZE (MI_SESSION_VIEW_SIZE + \
MI_SESSION_POOL_SIZE + \
MI_SESSION_IMAGE_SIZE + \
MI_SESSION_WORKING_SET_SIZE)
#define MI_MIN_ALLOCATION_FRAGMENT (4 * _1KB)
#define MI_ALLOCATION_FRAGMENT (64 * _1KB)
#define MI_MAX_ALLOCATION_FRAGMENT (2 * _1MB)
/* Misc constants */
#define MM_PTE_SOFTWARE_PROTECTION_BITS 5
#define MI_MIN_SECONDARY_COLORS 8
#define MI_SECONDARY_COLORS 64
#define MI_MAX_SECONDARY_COLORS 1024
#define MI_MAX_FREE_PAGE_LISTS 4
#define MI_HYPERSPACE_PTES (256 - 1)
#define MI_ZERO_PTES (32)
#define MI_MAX_ZERO_BITS 21
#define SESSION_POOL_LOOKASIDES 26
/* MMPTE related defines */
#define MM_EMPTY_PTE_LIST ((ULONG)0xFFFFF)
#define MM_EMPTY_LIST ((ULONG_PTR)-1)
/* Easy accessing PFN in PTE */
#define PFN_FROM_PTE(v) ((v)->u.Hard.PageFrameNumber)
/* Macros for portable PTE modification */
#define MI_MAKE_DIRTY_PAGE(x) ((x)->u.Hard.Dirty = 1)
#define MI_MAKE_CLEAN_PAGE(x) ((x)->u.Hard.Dirty = 0)
#define MI_MAKE_ACCESSED_PAGE(x) ((x)->u.Hard.Accessed = 1)
#define MI_PAGE_DISABLE_CACHE(x) ((x)->u.Hard.CacheDisable = 1)
#define MI_PAGE_WRITE_THROUGH(x) ((x)->u.Hard.WriteThrough = 1)
#define MI_PAGE_WRITE_COMBINED(x) ((x)->u.Hard.WriteThrough = 0)
#define MI_IS_PAGE_LARGE(x) ((x)->u.Hard.LargePage == 1)
#if !defined(CONFIG_SMP)
#define MI_IS_PAGE_WRITEABLE(x) ((x)->u.Hard.Write == 1)
#else
#define MI_IS_PAGE_WRITEABLE(x) ((x)->u.Hard.Writable == 1)
#endif
#define MI_IS_PAGE_COPY_ON_WRITE(x)((x)->u.Hard.CopyOnWrite == 1)
#define MI_IS_PAGE_DIRTY(x) ((x)->u.Hard.Dirty == 1)
#define MI_MAKE_OWNER_PAGE(x) ((x)->u.Hard.Owner = 1)
#if !defined(CONFIG_SMP)
#define MI_MAKE_WRITE_PAGE(x) ((x)->u.Hard.Write = 1)
#else
#define MI_MAKE_WRITE_PAGE(x) ((x)->u.Hard.Writable = 1)
#endif
/* Macros to identify the page fault reason from the error code */
#define MI_IS_NOT_PRESENT_FAULT(FaultCode) !BooleanFlagOn(FaultCode, 0x1)
/* On x86, these two are the same */
#define MI_WRITE_VALID_PPE MI_WRITE_VALID_PTE
/* Convert an address to a corresponding PTE */
#define MiAddressToPte(x) \
((PMMPTE)(((((ULONG)(x)) >> 12) << 2) + PTE_BASE))
/* Convert an address to a corresponding PDE */
#define MiAddressToPde(x) \
((PMMPDE)(((((ULONG)(x)) >> 22) << 2) + PDE_BASE))
/* Convert an address to a corresponding PTE offset/index */
#define MiAddressToPteOffset(x) \
((((ULONG)(x)) << 10) >> 22)
/* Convert an address to a corresponding PDE offset/index */
#define MiAddressToPdeOffset(x) \
(((ULONG)(x)) / (1024 * PAGE_SIZE))
#define MiGetPdeOffset MiAddressToPdeOffset
/* Convert a PTE/PDE into a corresponding address */
#define MiPteToAddress(_Pte) ((PVOID)((ULONG)(_Pte) << 10))
#define MiPdeToAddress(_Pde) ((PVOID)((ULONG)(_Pde) << 20))
/* Translate between P*Es */
#define MiPdeToPte(_Pde) ((PMMPTE)MiPteToAddress(_Pde))
#define MiPteToPde(_Pte) ((PMMPDE)MiAddressToPte(_Pte))
/* Check P*E boundaries */
#define MiIsPteOnPdeBoundary(PointerPte) \
((((ULONG_PTR)PointerPte) & (PAGE_SIZE - 1)) == 0)
//
// Decodes a Prototype PTE into the underlying PTE
//
#define MiProtoPteToPte(x) \
(PMMPTE)((ULONG_PTR)MmPagedPoolStart + \
(((x)->u.Proto.ProtoAddressHigh << 9) | (x)->u.Proto.ProtoAddressLow << 2))
//
// Decodes a Prototype PTE into the underlying PTE
//
#define MiSubsectionPteToSubsection(x) \
((x)->u.Subsect.WhichPool == PagedPool) ? \
(PMMPTE)((ULONG_PTR)MmSubsectionBase + \
(((x)->u.Subsect.SubsectionAddressHigh << 7) | \
(x)->u.Subsect.SubsectionAddressLow << 3)) : \
(PMMPTE)((ULONG_PTR)MmNonPagedPoolEnd - \
(((x)->u.Subsect.SubsectionAddressHigh << 7) | \
(x)->u.Subsect.SubsectionAddressLow << 3))