mirror of
https://github.com/reactos/reactos.git
synced 2025-01-11 16:51:06 +00:00
c424146e2c
svn path=/branches/cmake-bringup/; revision=48236
228 lines
7 KiB
C
228 lines
7 KiB
C
/*
|
|
* ReactOS W32 Subsystem
|
|
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 ReactOS Team
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
/* $Id$ */
|
|
|
|
#include <win32k.h>
|
|
|
|
#define NDEBUG
|
|
#include <debug.h>
|
|
|
|
/******************************************************************
|
|
*
|
|
* *Very* simple bezier drawing code,
|
|
*
|
|
* It uses a recursive algorithm to divide the curve in a series
|
|
* of straight line segements. Not ideal but for me sufficient.
|
|
* If you are in need for something better look for some incremental
|
|
* algorithm.
|
|
*
|
|
* 7 July 1998 Rein Klazes
|
|
*/
|
|
|
|
/*
|
|
* some macro definitions for bezier drawing
|
|
*
|
|
* to avoid trucation errors the coordinates are
|
|
* shifted upwards. When used in drawing they are
|
|
* shifted down again, including correct rounding
|
|
* and avoiding floating point arithmatic
|
|
* 4 bits should allow 27 bits coordinates which I saw
|
|
* somewere in the win32 doc's
|
|
*
|
|
*/
|
|
|
|
#define BEZIERSHIFTBITS 4
|
|
#define BEZIERSHIFTUP(x) ((x)<<BEZIERSHIFTBITS)
|
|
#define BEZIERPIXEL BEZIERSHIFTUP(1)
|
|
#define BEZIERSHIFTDOWN(x) (((x)+(1<<(BEZIERSHIFTBITS-1)))>>BEZIERSHIFTBITS)
|
|
/* maximum depth of recursion */
|
|
#define BEZIERMAXDEPTH 8
|
|
|
|
/* size of array to store points on */
|
|
/* enough for one curve */
|
|
#define BEZIER_INITBUFSIZE (150)
|
|
|
|
/* calculate Bezier average, in this case the middle
|
|
* correctly rounded...
|
|
* */
|
|
|
|
#define BEZIERMIDDLE(Mid, P1, P2) \
|
|
(Mid).x=((P1).x+(P2).x + 1) >> 1;\
|
|
(Mid).y=((P1).y+(P2).y + 1) >> 1;
|
|
|
|
/**********************************************************
|
|
* BezierCheck helper function to check
|
|
* that recursion can be terminated
|
|
* Points[0] and Points[3] are begin and endpoint
|
|
* Points[1] and Points[2] are control points
|
|
* level is the recursion depth
|
|
* returns true if the recusion can be terminated
|
|
*/
|
|
static BOOL FASTCALL BezierCheck( int level, POINT *Points)
|
|
{
|
|
INT dx, dy;
|
|
|
|
dx=Points[3].x-Points[0].x;
|
|
dy=Points[3].y-Points[0].y;
|
|
if ( abs(dy) <= abs(dx) ) /* shallow line */
|
|
{
|
|
/* check that control points are between begin and end */
|
|
if ( Points[1].x < Points[0].x )
|
|
{
|
|
if ( Points[1].x < Points[3].x )
|
|
return FALSE;
|
|
}
|
|
else if ( Points[1].x > Points[3].x )
|
|
return FALSE;
|
|
if ( Points[2].x < Points[0].x)
|
|
{
|
|
if ( Points[2].x < Points[3].x )
|
|
return FALSE;
|
|
}
|
|
else if ( Points[2].x > Points[3].x )
|
|
return FALSE;
|
|
dx = BEZIERSHIFTDOWN(dx);
|
|
if ( !dx )
|
|
return TRUE;
|
|
if ( abs(Points[1].y-Points[0].y-(dy/dx)*
|
|
BEZIERSHIFTDOWN(Points[1].x-Points[0].x)) > BEZIERPIXEL ||
|
|
abs(Points[2].y-Points[0].y-(dy/dx)*
|
|
BEZIERSHIFTDOWN(Points[2].x-Points[0].x)) > BEZIERPIXEL
|
|
)
|
|
return FALSE;
|
|
else
|
|
return TRUE;
|
|
}
|
|
else
|
|
{ /* steep line */
|
|
/* check that control points are between begin and end */
|
|
if(Points[1].y < Points[0].y)
|
|
{
|
|
if(Points[1].y < Points[3].y)
|
|
return FALSE;
|
|
}
|
|
else if(Points[1].y > Points[3].y)
|
|
return FALSE;
|
|
if ( Points[2].y < Points[0].y )
|
|
{
|
|
if ( Points[2].y < Points[3].y )
|
|
return FALSE;
|
|
}
|
|
else if ( Points[2].y > Points[3].y )
|
|
return FALSE;
|
|
dy = BEZIERSHIFTDOWN(dy);
|
|
if ( !dy )
|
|
return TRUE;
|
|
if ( abs(Points[1].x-Points[0].x-(dx/dy)*
|
|
BEZIERSHIFTDOWN(Points[1].y-Points[0].y)) > BEZIERPIXEL ||
|
|
abs(Points[2].x-Points[0].x-(dx/dy)*
|
|
BEZIERSHIFTDOWN(Points[2].y-Points[0].y)) > BEZIERPIXEL
|
|
)
|
|
return FALSE;
|
|
else
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
/* Helper for GDI_Bezier.
|
|
* Just handles one Bezier, so Points should point to four POINTs
|
|
*/
|
|
static void APIENTRY GDI_InternalBezier( POINT *Points, POINT **PtsOut, INT *dwOut,
|
|
INT *nPtsOut, INT level )
|
|
{
|
|
if(*nPtsOut == *dwOut) {
|
|
*dwOut *= 2;
|
|
*PtsOut = ExAllocatePoolWithTag(PagedPool, *dwOut * sizeof(POINT), TAG_BEZIER);
|
|
}
|
|
|
|
if(!level || BezierCheck(level, Points)) {
|
|
if(*nPtsOut == 0) {
|
|
(*PtsOut)[0].x = BEZIERSHIFTDOWN(Points[0].x);
|
|
(*PtsOut)[0].y = BEZIERSHIFTDOWN(Points[0].y);
|
|
*nPtsOut = 1;
|
|
}
|
|
(*PtsOut)[*nPtsOut].x = BEZIERSHIFTDOWN(Points[3].x);
|
|
(*PtsOut)[*nPtsOut].y = BEZIERSHIFTDOWN(Points[3].y);
|
|
(*nPtsOut) ++;
|
|
} else {
|
|
POINT Points2[4]; /* for the second recursive call */
|
|
Points2[3]=Points[3];
|
|
BEZIERMIDDLE(Points2[2], Points[2], Points[3]);
|
|
BEZIERMIDDLE(Points2[0], Points[1], Points[2]);
|
|
BEZIERMIDDLE(Points2[1],Points2[0],Points2[2]);
|
|
|
|
BEZIERMIDDLE(Points[1], Points[0], Points[1]);
|
|
BEZIERMIDDLE(Points[2], Points[1], Points2[0]);
|
|
BEZIERMIDDLE(Points[3], Points[2], Points2[1]);
|
|
|
|
Points2[0]=Points[3];
|
|
|
|
/* do the two halves */
|
|
GDI_InternalBezier(Points, PtsOut, dwOut, nPtsOut, level-1);
|
|
GDI_InternalBezier(Points2, PtsOut, dwOut, nPtsOut, level-1);
|
|
}
|
|
}
|
|
|
|
/***********************************************************************
|
|
* GDI_Bezier [INTERNAL]
|
|
* Calculate line segments that approximate -what microsoft calls- a bezier
|
|
* curve.
|
|
* The routine recursively divides the curve in two parts until a straight
|
|
* line can be drawn
|
|
*
|
|
* PARAMS
|
|
*
|
|
* Points [I] Ptr to count POINTs which are the end and control points
|
|
* of the set of Bezier curves to flatten.
|
|
* count [I] Number of Points. Must be 3n+1.
|
|
* nPtsOut [O] Will contain no of points that have been produced (i.e. no. of
|
|
* lines+1).
|
|
*
|
|
* RETURNS
|
|
*
|
|
* Ptr to an array of POINTs that contain the lines that approximinate the
|
|
* Beziers. The array is allocated on the process heap and it is the caller's
|
|
* responsibility to HeapFree it. [this is not a particularly nice interface
|
|
* but since we can't know in advance how many points will generate, the
|
|
* alternative would be to call the function twice, once to determine the size
|
|
* and a second time to do the work - I decided this was too much of a pain].
|
|
*/
|
|
POINT * FASTCALL GDI_Bezier( const POINT *Points, INT count, INT *nPtsOut )
|
|
{
|
|
POINT *out;
|
|
INT Bezier, dwOut = BEZIER_INITBUFSIZE, i;
|
|
|
|
if((count - 1) % 3 != 0) {
|
|
return NULL;
|
|
}
|
|
*nPtsOut = 0;
|
|
out = ExAllocatePoolWithTag(PagedPool, dwOut * sizeof(POINT), TAG_BEZIER);
|
|
for(Bezier = 0; Bezier < (count-1)/3; Bezier++) {
|
|
POINT ptBuf[4];
|
|
memcpy(ptBuf, Points + Bezier * 3, sizeof(POINT) * 4);
|
|
for(i = 0; i < 4; i++) {
|
|
ptBuf[i].x = BEZIERSHIFTUP(ptBuf[i].x);
|
|
ptBuf[i].y = BEZIERSHIFTUP(ptBuf[i].y);
|
|
}
|
|
GDI_InternalBezier( ptBuf, &out, &dwOut, nPtsOut, BEZIERMAXDEPTH );
|
|
}
|
|
|
|
return out;
|
|
}
|
|
/* EOF */
|