mirror of
https://github.com/reactos/reactos.git
synced 2024-11-20 06:15:26 +00:00
b819608ed8
svn path=/branches/condrv_restructure/; revision=63104
381 lines
7.9 KiB
ArmAsm
381 lines
7.9 KiB
ArmAsm
/* ix87 specific implementation of pow function.
|
||
Copyright (C) 1996, 1997, 1998, 1999, 2001, 2004, 2005, 2007
|
||
Free Software Foundation, Inc.
|
||
This file is part of the GNU C Library.
|
||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
|
||
|
||
The GNU C Library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
The GNU C Library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with the GNU C Library; if not, write to the Free
|
||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||
02111-1307 USA. */
|
||
|
||
/* Reactos modifications */
|
||
#include <asm.inc>
|
||
|
||
#define ALIGNARG(log2) log2
|
||
#define ASM_TYPE_DIRECTIVE(name,typearg)
|
||
#define ASM_SIZE_DIRECTIVE(name)
|
||
#define cfi_adjust_cfa_offset(x)
|
||
|
||
PUBLIC _pow
|
||
|
||
.data
|
||
ASSUME nothing
|
||
|
||
.align ALIGNARG(4)
|
||
ASM_TYPE_DIRECTIVE(infinity,@object)
|
||
|
||
inf_zero:
|
||
infinity:
|
||
.byte 0, 0, 0, 0, 0, 0, HEX(f0), HEX(7f)
|
||
ASM_SIZE_DIRECTIVE(infinity)
|
||
ASM_TYPE_DIRECTIVE(zero,@object)
|
||
zero:
|
||
.double 0.0
|
||
ASM_SIZE_DIRECTIVE(zero)
|
||
ASM_TYPE_DIRECTIVE(minf_mzero,@object)
|
||
|
||
minf_mzero:
|
||
minfinity:
|
||
.byte 0, 0, 0, 0, 0, 0, HEX(f0), HEX(ff)
|
||
|
||
mzero:
|
||
.byte 0, 0, 0, 0, 0, 0, 0, HEX(80)
|
||
ASM_SIZE_DIRECTIVE(minf_mzero)
|
||
ASM_TYPE_DIRECTIVE(one,@object)
|
||
|
||
one:
|
||
.double 1.0
|
||
ASM_SIZE_DIRECTIVE(one)
|
||
ASM_TYPE_DIRECTIVE(limit,@object)
|
||
|
||
limit:
|
||
.double 0.29
|
||
ASM_SIZE_DIRECTIVE(limit)
|
||
ASM_TYPE_DIRECTIVE(p63,@object)
|
||
|
||
p63:
|
||
.byte 0, 0, 0, 0, 0, 0, HEX(e0), HEX(43)
|
||
ASM_SIZE_DIRECTIVE(p63)
|
||
|
||
#ifdef PIC
|
||
#define MO(op) op##@GOTOFF(%ecx)
|
||
#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
|
||
#else
|
||
#define MO(op) op
|
||
#define MOX(op,x,f) op[x*f]
|
||
#endif
|
||
|
||
.code
|
||
_pow:
|
||
fld qword ptr [esp + 12] // y
|
||
fxam
|
||
|
||
#ifdef PIC
|
||
LOAD_PIC_REG (cx)
|
||
#endif
|
||
|
||
fnstsw ax
|
||
mov dl, ah
|
||
and ah, HEX(045)
|
||
cmp ah, HEX(040) // is y == 0 ?
|
||
je L11
|
||
|
||
cmp ah, 5 // is y == <EFBFBD>inf ?
|
||
je L12
|
||
|
||
cmp ah, 1 // is y == NaN ?
|
||
je L30
|
||
|
||
fld qword ptr [esp + 4] // x : y
|
||
|
||
sub esp, 8
|
||
cfi_adjust_cfa_offset (8)
|
||
|
||
fxam
|
||
fnstsw ax
|
||
mov dh, ah
|
||
and ah, HEX(45)
|
||
cmp ah, HEX(040)
|
||
je L20 // x is <EFBFBD>0
|
||
|
||
cmp ah, 5
|
||
je L15 // x is <EFBFBD>inf
|
||
|
||
fxch st(1) // y : x
|
||
|
||
/* fistpll raises invalid exception for |y| >= 1L<<63. */
|
||
fld st // y : y : x
|
||
fabs // |y| : y : x
|
||
fcomp qword ptr ds:MO(p63) // y : x
|
||
fnstsw ax
|
||
sahf
|
||
jnc L2
|
||
|
||
/* First see whether `y' is a natural number. In this case we
|
||
can use a more precise algorithm. */
|
||
fld st // y : y : x
|
||
fistp qword ptr [esp] // y : x
|
||
fild qword ptr [esp] // int(y) : y : x
|
||
fucomp st(1) // y : x
|
||
fnstsw ax
|
||
sahf
|
||
jne L2
|
||
|
||
/* OK, we have an integer value for y. */
|
||
pop eax
|
||
cfi_adjust_cfa_offset (-4)
|
||
pop edx
|
||
cfi_adjust_cfa_offset (-4)
|
||
or edx, 0
|
||
fstp st // x
|
||
jns L4 // y >= 0, jump
|
||
fdivr qword ptr MO(one) // 1/x (now referred to as x)
|
||
neg eax
|
||
adc edx, 0
|
||
neg edx
|
||
L4: fld qword ptr MO(one) // 1 : x
|
||
fxch st(1)
|
||
|
||
L6: shrd eax, edx, 1
|
||
jnc L5
|
||
fxch st(1)
|
||
fmul st, st(1) // x : ST*x
|
||
fxch st(1)
|
||
L5: fmul st, st // x*x : ST*x
|
||
shr edx, 1
|
||
mov ecx, eax
|
||
or ecx, edx
|
||
jnz L6
|
||
fstp st // ST*x
|
||
ret
|
||
|
||
/* y is <20>NAN */
|
||
L30:
|
||
fld qword ptr [esp + 4] // x : y
|
||
fld qword ptr MO(one) // 1.0 : x : y
|
||
fucomp st(1) // x : y
|
||
fnstsw ax
|
||
sahf
|
||
je L31
|
||
fxch st(1) // y : x
|
||
L31:fstp st(1)
|
||
ret
|
||
|
||
cfi_adjust_cfa_offset (8)
|
||
.align ALIGNARG(4)
|
||
L2: /* y is a real number. */
|
||
fxch st(1) // x : y
|
||
fld qword ptr MO(one) // 1.0 : x : y
|
||
fld qword ptr MO(limit) // 0.29 : 1.0 : x : y
|
||
fld st(2) // x : 0.29 : 1.0 : x : y
|
||
fsub st, st(2) // x-1 : 0.29 : 1.0 : x : y
|
||
fabs // |x-1| : 0.29 : 1.0 : x : y
|
||
fucompp // 1.0 : x : y
|
||
fnstsw ax
|
||
fxch st(1) // x : 1.0 : y
|
||
sahf
|
||
ja L7
|
||
fsub st, st(1) // x-1 : 1.0 : y
|
||
fyl2xp1 // log2(x) : y
|
||
jmp L8
|
||
|
||
L7: fyl2x // log2(x) : y
|
||
L8: fmul st, st(1) // y*log2(x) : y
|
||
fst st(1) // y*log2(x) : y*log2(x)
|
||
frndint // int(y*log2(x)) : y*log2(x)
|
||
fsub st(1), st // int(y*log2(x)) : fract(y*log2(x))
|
||
fxch // fract(y*log2(x)) : int(y*log2(x))
|
||
f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
|
||
fadd qword ptr MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
|
||
fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
|
||
add esp, 8
|
||
cfi_adjust_cfa_offset (-8)
|
||
fstp st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
|
||
ret
|
||
|
||
|
||
// pow(x,<EFBFBD>0) = 1
|
||
.align ALIGNARG(4)
|
||
L11:fstp st(0) // pop y
|
||
fld qword ptr MO(one)
|
||
ret
|
||
|
||
// y == <EFBFBD>inf
|
||
.align ALIGNARG(4)
|
||
L12: fstp st(0) // pop y
|
||
fld qword ptr MO(one) // 1
|
||
fld qword ptr [esp + 4] // x : 1
|
||
fabs // abs(x) : 1
|
||
fucompp // < 1, == 1, or > 1
|
||
fnstsw ax
|
||
and ah, HEX(45)
|
||
cmp ah, HEX(45)
|
||
je L13 // jump if x is NaN
|
||
|
||
cmp ah, HEX(40)
|
||
je L14 // jump if |x| == 1
|
||
|
||
shl ah, 1
|
||
xor dl, ah
|
||
and edx, 2
|
||
fld qword ptr MOX(inf_zero, edx, 4)
|
||
ret
|
||
|
||
.align ALIGNARG(4)
|
||
L14:fld qword ptr MO(one)
|
||
ret
|
||
|
||
.align ALIGNARG(4)
|
||
L13:fld qword ptr [esp + 4] // load x == NaN
|
||
ret
|
||
|
||
cfi_adjust_cfa_offset (8)
|
||
.align ALIGNARG(4)
|
||
// x is <EFBFBD>inf
|
||
L15: fstp st(0) // y
|
||
test dh, 2
|
||
jz L16 // jump if x == +inf
|
||
|
||
// We must find out whether y is an odd integer.
|
||
fld st // y : y
|
||
fistp qword ptr [esp] // y
|
||
fild qword ptr [esp] // int(y) : y
|
||
fucompp // <empty>
|
||
fnstsw ax
|
||
sahf
|
||
jne L17
|
||
|
||
// OK, the value is an integer, but is the number of bits small
|
||
// enough so that all are coming from the mantissa?
|
||
pop eax
|
||
cfi_adjust_cfa_offset (-4)
|
||
pop edx
|
||
cfi_adjust_cfa_offset (-4)
|
||
and al, 1
|
||
jz L18 // jump if not odd
|
||
mov eax, edx
|
||
or edx, edx
|
||
jns L155
|
||
neg eax
|
||
L155:
|
||
cmp eax, HEX(000200000)
|
||
ja L18 // does not fit in mantissa bits
|
||
// It's an odd integer.
|
||
shr edx, 31
|
||
fld qword ptr MOX(minf_mzero, edx, 8)
|
||
ret
|
||
|
||
cfi_adjust_cfa_offset (8)
|
||
.align ALIGNARG(4)
|
||
L16:fcomp qword ptr ds:MO(zero)
|
||
add esp, 8
|
||
cfi_adjust_cfa_offset (-8)
|
||
fnstsw ax
|
||
shr eax, 5
|
||
and eax, 8
|
||
fld qword ptr MOX(inf_zero, eax, 1)
|
||
ret
|
||
|
||
cfi_adjust_cfa_offset (8)
|
||
.align ALIGNARG(4)
|
||
L17: shl edx, 30 // sign bit for y in right position
|
||
add esp, 8
|
||
cfi_adjust_cfa_offset (-8)
|
||
L18: shr edx, 31
|
||
fld qword ptr MOX(inf_zero, edx, 8)
|
||
ret
|
||
|
||
cfi_adjust_cfa_offset (8)
|
||
.align ALIGNARG(4)
|
||
// x is <EFBFBD>0
|
||
L20: fstp st(0) // y
|
||
test dl, 2
|
||
jz L21 // y > 0
|
||
|
||
// x is <EFBFBD>0 and y is < 0. We must find out whether y is an odd integer.
|
||
test dh, 2
|
||
jz L25
|
||
|
||
fld st // y : y
|
||
fistp qword ptr [esp] // y
|
||
fild qword ptr [esp] // int(y) : y
|
||
fucompp // <empty>
|
||
fnstsw ax
|
||
sahf
|
||
jne L26
|
||
|
||
// OK, the value is an integer, but is the number of bits small
|
||
// enough so that all are coming from the mantissa?
|
||
pop eax
|
||
cfi_adjust_cfa_offset (-4)
|
||
pop edx
|
||
cfi_adjust_cfa_offset (-4)
|
||
and al, 1
|
||
jz L27 // jump if not odd
|
||
cmp edx, HEX(0ffe00000)
|
||
jbe L27 // does not fit in mantissa bits
|
||
// It's an odd integer.
|
||
// Raise divide-by-zero exception and get minus infinity value.
|
||
fld qword ptr MO(one)
|
||
fdiv qword ptr MO(zero)
|
||
fchs
|
||
ret
|
||
|
||
cfi_adjust_cfa_offset (8)
|
||
L25: fstp st(0)
|
||
L26: add esp, 8
|
||
cfi_adjust_cfa_offset (-8)
|
||
L27: // Raise divide-by-zero exception and get infinity value.
|
||
fld qword ptr MO(one)
|
||
fdiv qword ptr MO(zero)
|
||
ret
|
||
|
||
cfi_adjust_cfa_offset (8)
|
||
.align ALIGNARG(4)
|
||
// x is <EFBFBD>0 and y is > 0. We must find out whether y is an odd integer.
|
||
L21:test dh, 2
|
||
jz L22
|
||
|
||
fld st // y : y
|
||
fistp qword ptr [esp] // y
|
||
fild qword ptr [esp] // int(y) : y
|
||
fucompp // <empty>
|
||
fnstsw ax
|
||
sahf
|
||
jne L23
|
||
|
||
// OK, the value is an integer, but is the number of bits small
|
||
// enough so that all are coming from the mantissa?
|
||
pop eax
|
||
cfi_adjust_cfa_offset (-4)
|
||
pop edx
|
||
cfi_adjust_cfa_offset (-4)
|
||
and al, 1
|
||
jz L24 // jump if not odd
|
||
cmp edx, HEX(0ffe00000)
|
||
jae L24 // does not fit in mantissa bits
|
||
// It's an odd integer.
|
||
fld qword ptr MO(mzero)
|
||
ret
|
||
|
||
cfi_adjust_cfa_offset (8)
|
||
L22: fstp st(0)
|
||
L23: add esp, 8 // Don't use 2 x pop
|
||
cfi_adjust_cfa_offset (-8)
|
||
L24: fld qword ptr MO(zero)
|
||
ret
|
||
|
||
END
|
||
|
||
|