reactos/drivers/storage/class/classpnp/obsolete.c
2021-06-11 15:33:08 +03:00

1139 lines
31 KiB
C

/*++
Copyright (C) Microsoft Corporation, 1991 - 2010
Module Name:
obsolete.c
Abstract:
THESE ARE EXPORTED CLASSPNP FUNCTIONS (and their subroutines)
WHICH ARE NOW OBSOLETE.
BUT WE NEED TO KEEP THEM AROUND FOR LEGACY REASONS.
Environment:
kernel mode only
Notes:
Revision History:
--*/
#include "classp.h"
#include "debug.h"
#ifdef DEBUG_USE_WPP
#include "obsolete.tmh"
#endif
PIRP ClassRemoveCScanList(IN PCSCAN_LIST List);
VOID ClasspInitializeCScanList(IN PCSCAN_LIST List);
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, ClassDeleteSrbLookasideList)
#pragma alloc_text(PAGE, ClassInitializeSrbLookasideList)
#pragma alloc_text(PAGE, ClasspInitializeCScanList)
#endif
typedef struct _CSCAN_LIST_ENTRY {
LIST_ENTRY Entry;
ULONGLONG BlockNumber;
} CSCAN_LIST_ENTRY, *PCSCAN_LIST_ENTRY;
/*
* ClassSplitRequest
*
* This is a legacy exported function.
* It is called by storage miniport driver that have their own
* StartIo routine when the transfer size is too large for the hardware.
* We map it to our new read/write handler.
*/
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassSplitRequest(_In_ PDEVICE_OBJECT Fdo, _In_ PIRP Irp, _In_ ULONG MaximumBytes)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
if (MaximumBytes > fdoData->HwMaxXferLen) {
TracePrint((TRACE_LEVEL_ERROR, TRACE_FLAG_RW, "ClassSplitRequest - driver requesting split to size that "
"hardware is unable to handle!\n"));
}
if (MaximumBytes < fdoData->HwMaxXferLen){
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_RW, "ClassSplitRequest - driver requesting smaller HwMaxXferLen "
"than required"));
fdoData->HwMaxXferLen = MAX(MaximumBytes, PAGE_SIZE);
}
ServiceTransferRequest(Fdo, Irp, FALSE);
}
/*++////////////////////////////////////////////////////////////////////////////
ClassIoCompleteAssociated()
Routine Description:
This routine executes when the port driver has completed a request.
It looks at the SRB status in the completing SRB and if not success
it checks for valid request sense buffer information. If valid, the
info is used to update status with more precise message of type of
error. This routine deallocates the SRB. This routine is used for
requests which were build by split request. After it has processed
the request it decrements the Irp count in the master Irp. If the
count goes to zero then the master Irp is completed.
Arguments:
Fdo - Supplies the functional device object which represents the target.
Irp - Supplies the Irp which has completed.
Context - Supplies a pointer to the SRB.
Return Value:
NT status
--*/
NTSTATUS
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassIoCompleteAssociated(
IN PDEVICE_OBJECT Fdo,
IN PIRP Irp,
IN PVOID Context
)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExtension = Fdo->DeviceExtension;
PIO_STACK_LOCATION irpStack = IoGetCurrentIrpStackLocation(Irp);
PSCSI_REQUEST_BLOCK srb = Context;
PIRP originalIrp = Irp->AssociatedIrp.MasterIrp;
LONG irpCount;
NTSTATUS status;
BOOLEAN retry;
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_GENERAL, "ClassIoCompleteAssociated is OBSOLETE !"));
//
// Check SRB status for success of completing request.
//
if (SRB_STATUS(srb->SrbStatus) != SRB_STATUS_SUCCESS) {
LONGLONG retryInterval;
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_GENERAL, "ClassIoCompleteAssociated: IRP %p, SRB %p", Irp, srb));
//
// Release the queue if it is frozen.
//
if (srb->SrbStatus & SRB_STATUS_QUEUE_FROZEN) {
ClassReleaseQueue(Fdo);
}
retry = InterpretSenseInfoWithoutHistory(
Fdo,
Irp,
srb,
irpStack->MajorFunction,
irpStack->MajorFunction == IRP_MJ_DEVICE_CONTROL ?
irpStack->Parameters.DeviceIoControl.IoControlCode :
0,
MAXIMUM_RETRIES -
((ULONG)(ULONG_PTR)irpStack->Parameters.Others.Argument4),
&status,
&retryInterval);
//
// If the status is verified required and the this request
// should bypass verify required then retry the request.
//
if (irpStack->Flags & SL_OVERRIDE_VERIFY_VOLUME &&
status == STATUS_VERIFY_REQUIRED) {
status = STATUS_IO_DEVICE_ERROR;
retry = TRUE;
}
#ifndef __REACTOS__
#pragma warning(suppress:4213) // okay to cast Arg4 as a ulong for this use case
if (retry && ((ULONG)(ULONG_PTR)irpStack->Parameters.Others.Argument4)--) {
#else
if (retry && (*(ULONG *)&irpStack->Parameters.Others.Argument4)--) {
#endif
//
// Retry request. If the class driver has supplied a StartIo,
// call it directly for retries.
//
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_GENERAL, "Retry request %p\n", Irp));
if (PORT_ALLOCATED_SENSE(fdoExtension, srb)) {
FREE_PORT_ALLOCATED_SENSE_BUFFER(fdoExtension, srb);
}
RetryRequest(Fdo, Irp, srb, TRUE, retryInterval);
return STATUS_MORE_PROCESSING_REQUIRED;
}
} else {
//
// Set status for successful request.
//
status = STATUS_SUCCESS;
} // end if (SRB_STATUS(srb->SrbStatus) ...
//
// Return SRB to list.
//
if (PORT_ALLOCATED_SENSE(fdoExtension, srb)) {
FREE_PORT_ALLOCATED_SENSE_BUFFER(fdoExtension, srb);
}
ClassFreeOrReuseSrb(fdoExtension, srb);
//
// Set status in completing IRP.
//
Irp->IoStatus.Status = status;
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_GENERAL, "ClassIoCompleteAssociated: Partial xfer IRP %p\n", Irp));
//
// Get next stack location. This original request is unused
// except to keep track of the completing partial IRPs so the
// stack location is valid.
//
irpStack = IoGetNextIrpStackLocation(originalIrp);
//
// Update status only if error so that if any partial transfer
// completes with error, then the original IRP will return with
// error. If any of the asynchronous partial transfer IRPs fail,
// with an error then the original IRP will return 0 bytes transfered.
// This is an optimization for successful transfers.
//
if (!NT_SUCCESS(status)) {
originalIrp->IoStatus.Status = status;
originalIrp->IoStatus.Information = 0;
//
// Set the hard error if necessary.
//
if (IoIsErrorUserInduced(status) &&
(originalIrp->Tail.Overlay.Thread != NULL)) {
//
// Store DeviceObject for filesystem.
//
IoSetHardErrorOrVerifyDevice(originalIrp, Fdo);
}
}
//
// Decrement and get the count of remaining IRPs.
//
irpCount = InterlockedDecrement(
(PLONG)&irpStack->Parameters.Others.Argument1);
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_GENERAL, "ClassIoCompleteAssociated: Partial IRPs left %d\n",
irpCount));
//
// Ensure that the irpCount doesn't go negative. This was happening once
// because classpnp would get confused if it ran out of resources when
// splitting the request.
//
NT_ASSERT(irpCount >= 0);
if (irpCount == 0) {
//
// All partial IRPs have completed.
//
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_GENERAL,
"ClassIoCompleteAssociated: All partial IRPs complete %p\n",
originalIrp));
if (fdoExtension->CommonExtension.DriverExtension->InitData.ClassStartIo) {
//
// Acquire a separate copy of the remove lock so the debugging code
// works okay and we don't have to hold up the completion of this
// irp until after we start the next packet(s).
//
KIRQL oldIrql;
UCHAR uniqueAddress = 0;
ClassAcquireRemoveLock(Fdo, (PIRP)&uniqueAddress);
ClassReleaseRemoveLock(Fdo, originalIrp);
ClassCompleteRequest(Fdo, originalIrp, IO_DISK_INCREMENT);
KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);
IoStartNextPacket(Fdo, TRUE); // yes, some IO is now cancellable
KeLowerIrql(oldIrql);
ClassReleaseRemoveLock(Fdo, (PIRP)&uniqueAddress);
} else {
//
// just complete this request
//
ClassReleaseRemoveLock(Fdo, originalIrp);
ClassCompleteRequest(Fdo, originalIrp, IO_DISK_INCREMENT);
}
}
//
// Deallocate IRP and indicate the I/O system should not attempt any more
// processing.
//
IoFreeIrp(Irp);
return STATUS_MORE_PROCESSING_REQUIRED;
} // end ClassIoCompleteAssociated()
/*++////////////////////////////////////////////////////////////////////////////
RetryRequest()
Routine Description:
This is a wrapper around the delayed retry DPC routine, RetryRequestDPC.
This reinitalizes the necessary fields, queues the request, and sets
a timer to call the DPC if someone hasn't already done so.
Arguments:
DeviceObject - Supplies the device object associated with this request.
Irp - Supplies the request to be retried.
Srb - Supplies a Pointer to the SCSI request block to be retied.
Assocaiated - Indicates this is an assocatied Irp created by split request.
TimeDelta100ns - How long, in 100ns units, before retrying the request.
Return Value:
None
--*/
VOID
RetryRequest(
PDEVICE_OBJECT DeviceObject,
PIRP Irp,
PSCSI_REQUEST_BLOCK Srb,
BOOLEAN Associated,
LONGLONG TimeDelta100ns
)
{
PIO_STACK_LOCATION currentIrpStack = IoGetCurrentIrpStackLocation(Irp);
PIO_STACK_LOCATION nextIrpStack = IoGetNextIrpStackLocation(Irp);
ULONG transferByteCount;
ULONG dataTransferLength;
PSTORAGE_REQUEST_BLOCK_HEADER srbHeader = (PSTORAGE_REQUEST_BLOCK_HEADER)Srb;
// This function is obsolete but is still used by some of our class drivers.
// TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_GENERAL, "RetryRequest is OBSOLETE !"));
//
// Determine the transfer count of the request. If this is a read or a
// write then the transfer count is in the Irp stack. Otherwise assume
// the MDL contains the correct length. If there is no MDL then the
// transfer length must be zero.
//
dataTransferLength = SrbGetDataTransferLength(srbHeader);
if (currentIrpStack->MajorFunction == IRP_MJ_READ ||
currentIrpStack->MajorFunction == IRP_MJ_WRITE) {
_Analysis_assume_(currentIrpStack->Parameters.Read.Length <= dataTransferLength);
transferByteCount = currentIrpStack->Parameters.Read.Length;
} else if (Irp->MdlAddress != NULL) {
//
// Note this assumes that only read and write requests are spilt and
// other request do not need to be. If the data buffer address in
// the MDL and the SRB don't match then transfer length is most
// likely incorrect.
//
NT_ASSERT(SrbGetDataBuffer(srbHeader) == MmGetMdlVirtualAddress(Irp->MdlAddress));
_Analysis_assume_(Irp->MdlAddress->ByteCount <= dataTransferLength);
transferByteCount = Irp->MdlAddress->ByteCount;
} else {
transferByteCount = 0;
}
//
// this is a safety net. this should not normally be hit, since we are
// not guaranteed to be an fdoExtension
//
NT_ASSERT(!TEST_FLAG(SrbGetSrbFlags(srbHeader), SRB_FLAGS_FREE_SENSE_BUFFER));
//
// Reset byte count of transfer in SRB Extension.
//
SrbSetDataTransferLength(srbHeader, transferByteCount);
//
// Zero SRB statuses.
//
srbHeader->SrbStatus = 0;
SrbSetScsiStatus(srbHeader, 0);
//
// If this is the last retry, then disable all the special flags.
//
if ( 0 == (ULONG)(ULONG_PTR)currentIrpStack->Parameters.Others.Argument4 ) {
//
// Set the no disconnect flag, disable synchronous data transfers and
// disable tagged queuing. This fixes some errors.
// NOTE: Cannot clear these flags, just add to them
//
SrbSetSrbFlags(srbHeader,
SRB_FLAGS_DISABLE_DISCONNECT | SRB_FLAGS_DISABLE_SYNCH_TRANSFER);
SrbClearSrbFlags(srbHeader, SRB_FLAGS_QUEUE_ACTION_ENABLE);
SrbSetQueueTag(srbHeader, SP_UNTAGGED);
}
//
// Set up major SCSI function.
//
nextIrpStack->MajorFunction = IRP_MJ_SCSI;
//
// Save SRB address in next stack for port driver.
//
nextIrpStack->Parameters.Scsi.Srb = Srb;
if (Associated){
IoSetCompletionRoutine(Irp, ClassIoCompleteAssociated, Srb, TRUE, TRUE, TRUE);
}
else {
IoSetCompletionRoutine(Irp, ClassIoComplete, Srb, TRUE, TRUE, TRUE);
}
ClassRetryRequest(DeviceObject, Irp, TimeDelta100ns);
return;
} // end RetryRequest()
/*++
ClassBuildRequest()
Routine Description:
This routine allocates an SRB for the specified request then calls
ClasspBuildRequestEx to create a SCSI operation to read or write the device.
If no SRB is available then the request will be queued to be issued later
when requests are available. Drivers which do not want the queueing
behavior should allocate the SRB themselves and call ClasspBuildRequestEx
to issue it.
Arguments:
Fdo - Supplies the functional device object associated with this request.
Irp - Supplies the request to be retried.
Note:
If the IRP is for a disk transfer, the byteoffset field
will already have been adjusted to make it relative to
the beginning of the disk.
Return Value:
NT Status
--*/
NTSTATUS
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassBuildRequest(
_In_ PDEVICE_OBJECT Fdo,
_In_ PIRP Irp
)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExtension = Fdo->DeviceExtension;
PSCSI_REQUEST_BLOCK srb;
// This function is obsolete, but still called by CDROM.SYS .
// TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_GENERAL, "ClassBuildRequest is OBSOLETE !"));
//
// Allocate an Srb.
//
srb = ClasspAllocateSrb(fdoExtension);
if (srb == NULL) {
return STATUS_INSUFFICIENT_RESOURCES;
}
ClasspBuildRequestEx(fdoExtension, Irp, srb);
return STATUS_SUCCESS;
} // end ClassBuildRequest()
VOID
#ifdef _MSC_VER
#pragma prefast(suppress:28194) // Srb may not be aliased if it is NULL
#endif
ClasspBuildRequestEx(
_In_ PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
_In_ PIRP Irp,
_In_ __drv_aliasesMem PSCSI_REQUEST_BLOCK Srb
)
/*++
ClasspBuildRequestEx()
Routine Description:
This routine allocates and builds an Srb for a read or write request.
The block address and length are supplied by the Irp. The retry count
is stored in the current stack for use by ClassIoComplete which
processes these requests when they complete. The Irp is ready to be
passed to the port driver when this routine returns.
Arguments:
FdoExtension - Supplies the device extension associated with this request.
Irp - Supplies the request to be issued.
Srb - Supplies an SRB to be used for the request.
Note:
If the IRP is for a disk transfer, the byteoffset field
will already have been adjusted to make it relative to
the beginning of the disk.
Return Value:
NT Status
--*/
{
PIO_STACK_LOCATION currentIrpStack = IoGetCurrentIrpStackLocation(Irp);
PIO_STACK_LOCATION nextIrpStack = IoGetNextIrpStackLocation(Irp);
LARGE_INTEGER startingOffset = currentIrpStack->Parameters.Read.ByteOffset;
PCDB cdb;
ULONG logicalBlockAddress;
USHORT transferBlocks;
NTSTATUS status;
PSTORAGE_REQUEST_BLOCK_HEADER srbHeader = (PSTORAGE_REQUEST_BLOCK_HEADER)Srb;
// This function is obsolete, but still called by CDROM.SYS .
// TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_GENERAL, "ClasspBuildRequestEx is OBSOLETE !"));
if (Srb == NULL) {
NT_ASSERT(FALSE);
return;
}
//
// Calculate relative sector address.
//
logicalBlockAddress =
(ULONG)(Int64ShrlMod32(startingOffset.QuadPart,
FdoExtension->SectorShift));
//
// Prepare the SRB.
// NOTE - for extended SRB, size used is based on allocation in ClasspAllocateSrb.
//
if (FdoExtension->AdapterDescriptor->SrbType == SRB_TYPE_STORAGE_REQUEST_BLOCK) {
status = InitializeStorageRequestBlock((PSTORAGE_REQUEST_BLOCK)Srb,
STORAGE_ADDRESS_TYPE_BTL8,
CLASS_SRBEX_SCSI_CDB16_BUFFER_SIZE,
1,
SrbExDataTypeScsiCdb16);
if (!NT_SUCCESS(status)) {
NT_ASSERT(FALSE);
return;
}
((PSTORAGE_REQUEST_BLOCK)Srb)->SrbFunction = SRB_FUNCTION_EXECUTE_SCSI;
} else {
RtlZeroMemory(Srb, sizeof(SCSI_REQUEST_BLOCK));
//
// Write length to SRB.
//
Srb->Length = sizeof(SCSI_REQUEST_BLOCK);
Srb->Function = SRB_FUNCTION_EXECUTE_SCSI;
}
//
// Set up IRP Address.
//
SrbSetOriginalRequest(srbHeader, Irp);
//
// Set up data buffer
//
SrbSetDataBuffer(srbHeader,
MmGetMdlVirtualAddress(Irp->MdlAddress));
//
// Save byte count of transfer in SRB Extension.
//
SrbSetDataTransferLength(srbHeader,
currentIrpStack->Parameters.Read.Length);
//
// Initialize the queue actions field.
//
SrbSetRequestAttribute(srbHeader, SRB_SIMPLE_TAG_REQUEST);
//
// Queue sort key is Relative Block Address.
//
SrbSetQueueSortKey(srbHeader, logicalBlockAddress);
//
// Indicate auto request sense by specifying buffer and size.
//
SrbSetSenseInfoBuffer(srbHeader, FdoExtension->SenseData);
SrbSetSenseInfoBufferLength(srbHeader, GET_FDO_EXTENSON_SENSE_DATA_LENGTH(FdoExtension));
//
// Set timeout value of one unit per 64k bytes of data.
//
SrbSetTimeOutValue(srbHeader,
((SrbGetDataTransferLength(srbHeader) + 0xFFFF) >> 16) *
FdoExtension->TimeOutValue);
//
// Indicate that 10-byte CDB's will be used.
//
SrbSetCdbLength(srbHeader, 10);
//
// Fill in CDB fields.
//
cdb = SrbGetCdb(srbHeader);
NT_ASSERT(cdb != NULL);
transferBlocks = (USHORT)(currentIrpStack->Parameters.Read.Length >>
FdoExtension->SectorShift);
//
// Move little endian values into CDB in big endian format.
//
cdb->CDB10.LogicalBlockByte0 = ((PFOUR_BYTE)&logicalBlockAddress)->Byte3;
cdb->CDB10.LogicalBlockByte1 = ((PFOUR_BYTE)&logicalBlockAddress)->Byte2;
cdb->CDB10.LogicalBlockByte2 = ((PFOUR_BYTE)&logicalBlockAddress)->Byte1;
cdb->CDB10.LogicalBlockByte3 = ((PFOUR_BYTE)&logicalBlockAddress)->Byte0;
cdb->CDB10.TransferBlocksMsb = ((PFOUR_BYTE)&transferBlocks)->Byte1;
cdb->CDB10.TransferBlocksLsb = ((PFOUR_BYTE)&transferBlocks)->Byte0;
//
// Set transfer direction flag and Cdb command.
//
if (currentIrpStack->MajorFunction == IRP_MJ_READ) {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_RW, "ClassBuildRequest: Read Command\n"));
SrbSetSrbFlags(srbHeader, SRB_FLAGS_DATA_IN);
cdb->CDB10.OperationCode = SCSIOP_READ;
} else {
TracePrint((TRACE_LEVEL_INFORMATION, TRACE_FLAG_RW, "ClassBuildRequest: Write Command\n"));
SrbSetSrbFlags(srbHeader, SRB_FLAGS_DATA_OUT);
cdb->CDB10.OperationCode = SCSIOP_WRITE;
}
//
// If this is not a write-through request, then allow caching.
//
if (!(currentIrpStack->Flags & SL_WRITE_THROUGH)) {
SrbSetSrbFlags(srbHeader, SRB_FLAGS_ADAPTER_CACHE_ENABLE);
} else {
//
// If write caching is enable then force media access in the
// cdb.
//
cdb->CDB10.ForceUnitAccess = FdoExtension->CdbForceUnitAccess;
}
if (TEST_FLAG(Irp->Flags, (IRP_PAGING_IO | IRP_SYNCHRONOUS_PAGING_IO))) {
SrbSetSrbFlags(srbHeader, SRB_CLASS_FLAGS_PAGING);
}
//
// OR in the default flags from the device object.
//
SrbSetSrbFlags(srbHeader, FdoExtension->SrbFlags);
//
// Set up major SCSI function.
//
nextIrpStack->MajorFunction = IRP_MJ_SCSI;
//
// Save SRB address in next stack for port driver.
//
nextIrpStack->Parameters.Scsi.Srb = Srb;
//
// Save retry count in current IRP stack.
//
currentIrpStack->Parameters.Others.Argument4 = (PVOID)MAXIMUM_RETRIES;
//
// Set up IoCompletion routine address.
//
IoSetCompletionRoutine(Irp, ClassIoComplete, Srb, TRUE, TRUE, TRUE);
}
VOID ClasspInsertCScanList(IN PLIST_ENTRY ListHead, IN PCSCAN_LIST_ENTRY Entry)
{
PCSCAN_LIST_ENTRY t;
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_GENERAL, "ClasspInsertCScanList is OBSOLETE !"));
//
// Iterate through the list. Insert this entry in the sorted list in
// order (after other requests for the same block). At each stop if
// blockNumber(Entry) >= blockNumber(t) then move on.
//
for(t = (PCSCAN_LIST_ENTRY) ListHead->Flink;
t != (PCSCAN_LIST_ENTRY) ListHead;
t = (PCSCAN_LIST_ENTRY) t->Entry.Flink) {
if(Entry->BlockNumber < t->BlockNumber) {
//
// Set the pointers in entry to the right location.
//
Entry->Entry.Flink = &(t->Entry);
Entry->Entry.Blink = t->Entry.Blink;
//
// Set the pointers in the surrounding elements to refer to us.
//
t->Entry.Blink->Flink = &(Entry->Entry);
t->Entry.Blink = &(Entry->Entry);
return;
}
}
//
// Insert this entry at the tail of the list. If the list was empty this
// will also be the head of the list.
//
InsertTailList(ListHead, &(Entry->Entry));
}
VOID ClassInsertCScanList(IN PCSCAN_LIST List, IN PIRP Irp, IN ULONGLONG BlockNumber, IN BOOLEAN LowPriority)
/*++
Routine Description:
This routine inserts an entry into the CScan list based on it's block number
and priority. It is assumed that the caller is providing synchronization
to the access of the list.
Low priority requests are always scheduled to run on the next sweep across
the disk. Normal priority requests will be inserted into the current or
next sweep based on the standard C-SCAN algorithm.
Arguments:
List - the list to insert into
Irp - the irp to be inserted.
BlockNumber - the block number for this request.
LowPriority - indicates that the request is lower priority and should be
done on the next sweep across the disk.
Return Value:
none
--*/
{
PCSCAN_LIST_ENTRY entry = (PCSCAN_LIST_ENTRY)Irp->Tail.Overlay.DriverContext;
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_GENERAL, "ClassInsertCScanList is OBSOLETE !"));
//
// Set the block number in the entry. We need this to keep the list sorted.
//
entry->BlockNumber = BlockNumber;
//
// If it's a normal priority request and further down the disk than our
// current position then insert this entry into the current sweep.
//
if((LowPriority != TRUE) && (BlockNumber > List->BlockNumber)) {
ClasspInsertCScanList(&(List->CurrentSweep), entry);
} else {
ClasspInsertCScanList(&(List->NextSweep), entry);
}
return;
}
VOID ClassFreeOrReuseSrb( IN PFUNCTIONAL_DEVICE_EXTENSION FdoExtension,
IN __drv_freesMem(mem) PSCSI_REQUEST_BLOCK Srb)
/*++
Routine Description:
This routine will attempt to reuse the provided SRB to start a blocked
read/write request.
If there is no need to reuse the request it will be returned
to the SRB lookaside list.
Arguments:
Fdo - the device extension
Srb - the SRB which is to be reused or freed.
Return Value:
none.
--*/
{
PCOMMON_DEVICE_EXTENSION commonExt = &FdoExtension->CommonExtension;
// This function is obsolete, but still called by DISK.SYS .
// TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_GENERAL, "ClassFreeOrReuseSrb is OBSOLETE !"));
//
// safety net. this should never occur. if it does, it's a potential
// memory leak.
//
NT_ASSERT(!TEST_FLAG(SrbGetSrbFlags(Srb), SRB_FLAGS_FREE_SENSE_BUFFER));
if (commonExt->IsSrbLookasideListInitialized){
/*
* Put the SRB back in our lookaside list.
*
* Note: Some class drivers use ClassIoComplete
* to complete SRBs that they themselves allocated.
* So we may be putting a "foreign" SRB
* (e.g. with a different pool tag) into our lookaside list.
*/
ClasspFreeSrb(FdoExtension, Srb);
}
else {
TracePrint((TRACE_LEVEL_ERROR, TRACE_FLAG_GENERAL,"ClassFreeOrReuseSrb: someone is trying to use an uninitialized SrbLookasideList !!!"));
FREE_POOL(Srb);
}
}
/*++////////////////////////////////////////////////////////////////////////////
ClassDeleteSrbLookasideList()
Routine Description:
This routine deletes a lookaside listhead for srbs, and should be called
only during the final removal.
If called at other times, the caller is responsible for
synchronization and removal issues.
Arguments:
CommonExtension - Pointer to the CommonExtension containing the listhead.
Return Value:
None
--*/
_IRQL_requires_max_(PASSIVE_LEVEL)
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassDeleteSrbLookasideList(_Inout_ PCOMMON_DEVICE_EXTENSION CommonExtension)
{
PAGED_CODE();
// This function is obsolete, but is still called by some of our code.
// TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_GENERAL, "ClassDeleteSrbLookasideList is OBSOLETE !"));
if (CommonExtension->IsSrbLookasideListInitialized){
CommonExtension->IsSrbLookasideListInitialized = FALSE;
ExDeleteNPagedLookasideList(&CommonExtension->SrbLookasideList);
}
else {
TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_GENERAL, "ClassDeleteSrbLookasideList: attempt to delete uninitialized or freed srblookasidelist"));
}
}
/*++////////////////////////////////////////////////////////////////////////////
ClassInitializeSrbLookasideList()
Routine Description:
This routine sets up a lookaside listhead for srbs, and should be called
only from the ClassInitDevice() routine to prevent race conditions.
If called from other locations, the caller is responsible for
synchronization and removal issues.
Arguments:
CommonExtension - Pointer to the CommonExtension containing the listhead.
NumberElements - Supplies the maximum depth of the lookaside list.
Note:
The Windows 2000 version of classpnp did not return any status value from
this call.
--*/
_IRQL_requires_max_(PASSIVE_LEVEL)
VOID
NTAPI /* ReactOS Change: GCC Does not support STDCALL by default */
ClassInitializeSrbLookasideList( _Inout_ PCOMMON_DEVICE_EXTENSION CommonExtension,
_In_ ULONG NumberElements)
{
size_t sizeNeeded;
PFUNCTIONAL_DEVICE_EXTENSION fdo;
PAGED_CODE();
// This function is obsolete, but still called by DISK.SYS .
// TracePrint((TRACE_LEVEL_WARNING, TRACE_FLAG_GENERAL, "ClassInitializeSrbLookasideList is OBSOLETE !"));
NT_ASSERT(!CommonExtension->IsSrbLookasideListInitialized);
if (!CommonExtension->IsSrbLookasideListInitialized){
if (CommonExtension->IsFdo == TRUE) {
fdo = (PFUNCTIONAL_DEVICE_EXTENSION)CommonExtension;
//
// Check FDO extension on the SRB type supported
//
if (fdo->AdapterDescriptor->SrbType == SRB_TYPE_STORAGE_REQUEST_BLOCK) {
//
// It's 16 byte CDBs for now. Need to change when classpnp uses >16
// byte CDBs or support new address types.
//
sizeNeeded = CLASS_SRBEX_SCSI_CDB16_BUFFER_SIZE;
} else {
sizeNeeded = sizeof(SCSI_REQUEST_BLOCK);
}
} else {
//
// For PDO, use the max of old and new SRB as can't guarantee we can get
// corresponding FDO to determine SRB support.
//
sizeNeeded = max(sizeof(SCSI_REQUEST_BLOCK), CLASS_SRBEX_SCSI_CDB16_BUFFER_SIZE);
}
ExInitializeNPagedLookasideList(&CommonExtension->SrbLookasideList,
NULL,
NULL,
POOL_NX_ALLOCATION,
sizeNeeded,
'$scS',
(USHORT)NumberElements);
CommonExtension->IsSrbLookasideListInitialized = TRUE;
}
}
VOID ClasspInitializeCScanList(IN PCSCAN_LIST List)
{
PAGED_CODE();
RtlZeroMemory(List, sizeof(CSCAN_LIST));
InitializeListHead(&(List->CurrentSweep));
InitializeListHead(&(List->NextSweep));
}
VOID ClasspStartNextSweep(PCSCAN_LIST List)
{
NT_ASSERT(IsListEmpty(&(List->CurrentSweep)) == TRUE);
//
// If the next sweep is empty then there's nothing to do.
//
if(IsListEmpty(&(List->NextSweep))) {
return;
}
//
// Copy the next sweep list head into the current sweep list head.
//
List->CurrentSweep = List->NextSweep;
//
// Unlink the next sweep list from the list head now that we have a copy
// of it.
//
InitializeListHead(&(List->NextSweep));
//
// Update the next sweep list to point back to the current sweep list head.
//
List->CurrentSweep.Flink->Blink = &(List->CurrentSweep);
List->CurrentSweep.Blink->Flink = &(List->CurrentSweep);
return;
}
PIRP ClassRemoveCScanList(IN PCSCAN_LIST List)
{
PCSCAN_LIST_ENTRY entry;
//
// If the current sweep is empty then promote the next sweep.
//
if(IsListEmpty(&(List->CurrentSweep))) {
ClasspStartNextSweep(List);
}
//
// If the current sweep is still empty then we're done.
//
if(IsListEmpty(&(List->CurrentSweep))) {
return NULL;
}
//
// Remove the head entry from the current sweep. Record it's block number
// so that nothing before it on the disk gets into the current sweep.
//
entry = (PCSCAN_LIST_ENTRY) RemoveHeadList(&(List->CurrentSweep));
List->BlockNumber = entry->BlockNumber;
return CONTAINING_RECORD(entry, IRP, Tail.Overlay.DriverContext);
}