reactos/reactos/subsys/win32k/objects/path.c
Gé van Geldorp 213461d136 RoundRect() implementation by Royce3
svn path=/trunk/; revision=6026
2003-09-09 15:49:59 +00:00

1124 lines
26 KiB
C

/*
* ReactOS W32 Subsystem
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 ReactOS Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* $Id: path.c,v 1.16 2003/09/09 15:49:59 gvg Exp $ */
#undef WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <ddk/ntddk.h>
#include <win32k/brush.h>
#include <win32k/dc.h>
#include <win32k/path.h>
#include <win32k/math.h>
#include <win32k/float.h>
#include <win32k/coord.h>
#include <win32k/line.h>
#define _WIN32K_PATH_INTERNAL
#include <include/object.h>
#include <include/path.h>
#include <math.h>
#include <float.h>
#define NDEBUG
#include <win32k/debug1.h>
#define NUM_ENTRIES_INITIAL 16 /* Initial size of points / flags arrays */
#define GROW_FACTOR_NUMER 2 /* Numerator of grow factor for the array */
#define GROW_FACTOR_DENOM 1 /* Denominator of grow factor */
BOOL
STDCALL
NtGdiAbortPath(HDC hDC)
{
UNIMPLEMENTED;
}
BOOL
STDCALL
NtGdiBeginPath(HDC hDC)
{
UNIMPLEMENTED;
}
BOOL
FASTCALL
IntCloseFigure ( PDC dc )
{
UNIMPLEMENTED;
return FALSE;
}
BOOL
STDCALL
NtGdiCloseFigure ( HDC hDC )
{
PDC dc = DC_LockDc ( hDC );
BOOL ret = FALSE; // default to failure
if ( dc )
{
ret = IntCloseFigure ( dc );
DC_UnlockDc ( hDC );
}
return ret;
}
BOOL
STDCALL
NtGdiEndPath(HDC hDC)
{
UNIMPLEMENTED;
}
BOOL
STDCALL
NtGdiFillPath(HDC hDC)
{
UNIMPLEMENTED;
}
BOOL
STDCALL
NtGdiFlattenPath(HDC hDC)
{
UNIMPLEMENTED;
}
BOOL
STDCALL
NtGdiGetMiterLimit(HDC hDC,
PFLOAT Limit)
{
UNIMPLEMENTED;
}
INT
STDCALL
NtGdiGetPath(HDC hDC,
LPPOINT Points,
LPBYTE Types,
INT nSize)
{
UNIMPLEMENTED;
}
HRGN
STDCALL
NtGdiPathToRegion(HDC hDC)
{
UNIMPLEMENTED;
}
BOOL
STDCALL
NtGdiSetMiterLimit(HDC hDC,
FLOAT NewLimit,
PFLOAT OldLimit)
{
UNIMPLEMENTED;
}
BOOL
STDCALL
NtGdiStrokeAndFillPath(HDC hDC)
{
UNIMPLEMENTED;
}
BOOL
STDCALL
NtGdiStrokePath(HDC hDC)
{
UNIMPLEMENTED;
}
BOOL
STDCALL
NtGdiWidenPath(HDC hDC)
{
UNIMPLEMENTED;
}
/***********************************************************************
* Exported functions
*/
/* PATH_InitGdiPath
*
* Initializes the GdiPath structure.
*/
VOID
FASTCALL
PATH_InitGdiPath ( GdiPath *pPath )
{
assert(pPath!=NULL);
pPath->state=PATH_Null;
pPath->pPoints=NULL;
pPath->pFlags=NULL;
pPath->numEntriesUsed=0;
pPath->numEntriesAllocated=0;
}
/* PATH_DestroyGdiPath
*
* Destroys a GdiPath structure (frees the memory in the arrays).
*/
VOID
FASTCALL
PATH_DestroyGdiPath ( GdiPath *pPath )
{
assert(pPath!=NULL);
ExFreePool(pPath->pPoints);
ExFreePool(pPath->pFlags);
}
/* PATH_AssignGdiPath
*
* Copies the GdiPath structure "pPathSrc" to "pPathDest". A deep copy is
* performed, i.e. the contents of the pPoints and pFlags arrays are copied,
* not just the pointers. Since this means that the arrays in pPathDest may
* need to be resized, pPathDest should have been initialized using
* PATH_InitGdiPath (in C++, this function would be an assignment operator,
* not a copy constructor).
* Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_AssignGdiPath ( GdiPath *pPathDest, const GdiPath *pPathSrc )
{
assert(pPathDest!=NULL && pPathSrc!=NULL);
/* Make sure destination arrays are big enough */
if ( !PATH_ReserveEntries(pPathDest, pPathSrc->numEntriesUsed) )
return FALSE;
/* Perform the copy operation */
memcpy(pPathDest->pPoints, pPathSrc->pPoints,
sizeof(POINT)*pPathSrc->numEntriesUsed);
memcpy(pPathDest->pFlags, pPathSrc->pFlags,
sizeof(BYTE)*pPathSrc->numEntriesUsed);
pPathDest->state=pPathSrc->state;
pPathDest->numEntriesUsed=pPathSrc->numEntriesUsed;
pPathDest->newStroke=pPathSrc->newStroke;
return TRUE;
}
/* PATH_MoveTo
*
* Should be called when a MoveTo is performed on a DC that has an
* open path. This starts a new stroke. Returns TRUE if successful, else
* FALSE.
*/
BOOL
FASTCALL
PATH_MoveTo ( PDC dc )
{
GdiPath *pPath;
/* Get pointer to path */
PATH_GetPathFromDC ( dc, &pPath );
/* Check that path is open */
if ( pPath->state != PATH_Open )
/* FIXME: Do we have to call SetLastError? */
return FALSE;
/* Start a new stroke */
pPath->newStroke = TRUE;
return TRUE;
}
/* PATH_LineTo
*
* Should be called when a LineTo is performed on a DC that has an
* open path. This adds a PT_LINETO entry to the path (and possibly
* a PT_MOVETO entry, if this is the first LineTo in a stroke).
* Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_LineTo ( PDC dc, INT x, INT y )
{
GdiPath *pPath;
POINT point, pointCurPos;
/* Get pointer to path */
PATH_GetPathFromDC ( dc, &pPath );
/* Check that path is open */
if ( pPath->state != PATH_Open )
return FALSE;
/* Convert point to device coordinates */
point.x=x;
point.y=y;
CoordLPtoDP ( dc, &point );
/* Add a PT_MOVETO if necessary */
if ( pPath->newStroke )
{
pPath->newStroke = FALSE;
IntGetCurrentPositionEx ( dc, &pointCurPos );
CoordLPtoDP ( dc, &pointCurPos );
if ( !PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO) )
return FALSE;
}
/* Add a PT_LINETO entry */
return PATH_AddEntry(pPath, &point, PT_LINETO);
}
/* PATH_Rectangle
*
* Should be called when a call to Rectangle is performed on a DC that has
* an open path. Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_Rectangle ( PDC dc, INT x1, INT y1, INT x2, INT y2 )
{
GdiPath *pPath;
POINT corners[2], pointTemp;
INT temp;
/* Get pointer to path */
PATH_GetPathFromDC ( dc, &pPath );
/* Check that path is open */
if ( pPath->state != PATH_Open )
return FALSE;
/* Convert points to device coordinates */
corners[0].x=x1;
corners[0].y=y1;
corners[1].x=x2;
corners[1].y=y2;
IntLPtoDP ( dc, corners, 2 );
/* Make sure first corner is top left and second corner is bottom right */
if ( corners[0].x > corners[1].x )
{
temp=corners[0].x;
corners[0].x=corners[1].x;
corners[1].x=temp;
}
if ( corners[0].y > corners[1].y )
{
temp=corners[0].y;
corners[0].y=corners[1].y;
corners[1].y=temp;
}
/* In GM_COMPATIBLE, don't include bottom and right edges */
if ( IntGetGraphicsMode(dc) == GM_COMPATIBLE )
{
corners[1].x--;
corners[1].y--;
}
/* Close any previous figure */
if ( !IntCloseFigure ( dc ) )
{
/* The NtGdiCloseFigure call shouldn't have failed */
assert(FALSE);
return FALSE;
}
/* Add four points to the path */
pointTemp.x=corners[1].x;
pointTemp.y=corners[0].y;
if ( !PATH_AddEntry(pPath, &pointTemp, PT_MOVETO) )
return FALSE;
if ( !PATH_AddEntry(pPath, corners, PT_LINETO) )
return FALSE;
pointTemp.x=corners[0].x;
pointTemp.y=corners[1].y;
if ( !PATH_AddEntry(pPath, &pointTemp, PT_LINETO) )
return FALSE;
if ( !PATH_AddEntry(pPath, corners+1, PT_LINETO) )
return FALSE;
/* Close the rectangle figure */
if ( !IntCloseFigure ( dc ) )
{
/* The IntCloseFigure call shouldn't have failed */
assert(FALSE);
return FALSE;
}
return TRUE;
}
BOOL
FASTCALL
PATH_RoundRect (PDC dc, INT x1, INT y1, INT x2, INT y2, INT xradius, INT yradius)
{
UNIMPLEMENTED;
return FALSE;
}
/* PATH_Ellipse
*
* Should be called when a call to Ellipse is performed on a DC that has
* an open path. This adds four Bezier splines representing the ellipse
* to the path. Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_Ellipse ( PDC dc, INT x1, INT y1, INT x2, INT y2 )
{
/* TODO: This should probably be revised to call PATH_AngleArc */
/* (once it exists) */
return PATH_Arc ( dc, x1, y1, x2, y2, x1, (y1+y2)/2, x1, (y1+y2)/2 );
}
/* PATH_Arc
*
* Should be called when a call to Arc is performed on a DC that has
* an open path. This adds up to five Bezier splines representing the arc
* to the path. Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_Arc ( PDC dc, INT x1, INT y1, INT x2, INT y2,
INT xStart, INT yStart, INT xEnd, INT yEnd)
{
GdiPath *pPath;
DC *pDC;
double angleStart, angleEnd, angleStartQuadrant, angleEndQuadrant=0.0;
/* Initialize angleEndQuadrant to silence gcc's warning */
double x, y;
FLOAT_POINT corners[2], pointStart, pointEnd;
BOOL start, end;
INT temp;
BOOL clockwise;
/* FIXME: This function should check for all possible error returns */
/* FIXME: Do we have to respect newStroke? */
ASSERT ( dc );
clockwise = ( IntGetArcDirection(dc) == AD_CLOCKWISE );
/* Get pointer to path */
PATH_GetPathFromDC ( dc, &pPath );
/* Check that path is open */
if ( pPath->state != PATH_Open )
return FALSE;
/* FIXME: Do we have to close the current figure? */
/* Check for zero height / width */
/* FIXME: Only in GM_COMPATIBLE? */
if ( x1==x2 || y1==y2 )
return TRUE;
/* Convert points to device coordinates */
corners[0].x=(FLOAT)x1;
corners[0].y=(FLOAT)y1;
corners[1].x=(FLOAT)x2;
corners[1].y=(FLOAT)y2;
pointStart.x=(FLOAT)xStart;
pointStart.y=(FLOAT)yStart;
pointEnd.x=(FLOAT)xEnd;
pointEnd.y=(FLOAT)yEnd;
INTERNAL_LPTODP_FLOAT(pDC, corners);
INTERNAL_LPTODP_FLOAT(pDC, corners+1);
INTERNAL_LPTODP_FLOAT(pDC, &pointStart);
INTERNAL_LPTODP_FLOAT(pDC, &pointEnd);
/* Make sure first corner is top left and second corner is bottom right */
if ( corners[0].x > corners[1].x )
{
temp=corners[0].x;
corners[0].x=corners[1].x;
corners[1].x=temp;
}
if ( corners[0].y > corners[1].y )
{
temp=corners[0].y;
corners[0].y=corners[1].y;
corners[1].y=temp;
}
/* Compute start and end angle */
PATH_NormalizePoint(corners, &pointStart, &x, &y);
angleStart=atan2(y, x);
PATH_NormalizePoint(corners, &pointEnd, &x, &y);
angleEnd=atan2(y, x);
/* Make sure the end angle is "on the right side" of the start angle */
if ( clockwise )
{
if ( angleEnd <= angleStart )
{
angleEnd+=2*M_PI;
assert(angleEnd>=angleStart);
}
}
else
{
if(angleEnd>=angleStart)
{
angleEnd-=2*M_PI;
assert(angleEnd<=angleStart);
}
}
/* In GM_COMPATIBLE, don't include bottom and right edges */
if ( IntGetGraphicsMode(dc) == GM_COMPATIBLE )
{
corners[1].x--;
corners[1].y--;
}
/* Add the arc to the path with one Bezier spline per quadrant that the
* arc spans */
start=TRUE;
end=FALSE;
do
{
/* Determine the start and end angles for this quadrant */
if(start)
{
angleStartQuadrant=angleStart;
if ( clockwise )
angleEndQuadrant=(floor(angleStart/M_PI_2)+1.0)*M_PI_2;
else
angleEndQuadrant=(ceil(angleStart/M_PI_2)-1.0)*M_PI_2;
}
else
{
angleStartQuadrant=angleEndQuadrant;
if ( clockwise )
angleEndQuadrant+=M_PI_2;
else
angleEndQuadrant-=M_PI_2;
}
/* Have we reached the last part of the arc? */
if ( (clockwise && angleEnd<angleEndQuadrant)
|| (!clockwise && angleEnd>angleEndQuadrant)
)
{
/* Adjust the end angle for this quadrant */
angleEndQuadrant = angleEnd;
end = TRUE;
}
/* Add the Bezier spline to the path */
PATH_DoArcPart ( pPath, corners, angleStartQuadrant, angleEndQuadrant, start );
start = FALSE;
} while(!end);
return TRUE;
}
BOOL
FASTCALL
PATH_PolyBezierTo ( PDC dc, const POINT *pts, DWORD cbPoints )
{
GdiPath *pPath;
POINT pt;
ULONG i;
ASSERT ( dc );
ASSERT ( pts );
ASSERT ( cbPoints );
PATH_GetPathFromDC ( dc, &pPath );
/* Check that path is open */
if ( pPath->state != PATH_Open )
return FALSE;
/* Add a PT_MOVETO if necessary */
if ( pPath->newStroke )
{
pPath->newStroke=FALSE;
IntGetCurrentPositionEx ( dc, &pt );
CoordLPtoDP ( dc, &pt );
if ( !PATH_AddEntry(pPath, &pt, PT_MOVETO) )
return FALSE;
}
for(i = 0; i < cbPoints; i++)
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
PATH_AddEntry(pPath, &pt, PT_BEZIERTO);
}
return TRUE;
}
BOOL
FASTCALL
PATH_PolyBezier ( PDC dc, const POINT *pts, DWORD cbPoints )
{
GdiPath *pPath;
POINT pt;
ULONG i;
ASSERT ( dc );
ASSERT ( pts );
ASSERT ( cbPoints );
PATH_GetPathFromDC ( dc, &pPath );
/* Check that path is open */
if ( pPath->state != PATH_Open )
return FALSE;
for ( i = 0; i < cbPoints; i++ )
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
PATH_AddEntry ( pPath, &pt, (i == 0) ? PT_MOVETO : PT_BEZIERTO );
}
return TRUE;
}
BOOL
FASTCALL
PATH_Polyline ( PDC dc, const POINT *pts, DWORD cbPoints )
{
GdiPath *pPath;
POINT pt;
ULONG i;
ASSERT ( dc );
ASSERT ( pts );
ASSERT ( cbPoints );
PATH_GetPathFromDC ( dc, &pPath );
/* Check that path is open */
if ( pPath->state != PATH_Open )
return FALSE;
for ( i = 0; i < cbPoints; i++ )
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_LINETO);
}
return TRUE;
}
BOOL
FASTCALL
PATH_PolylineTo ( PDC dc, const POINT *pts, DWORD cbPoints )
{
GdiPath *pPath;
POINT pt;
ULONG i;
ASSERT ( dc );
ASSERT ( pts );
ASSERT ( cbPoints );
PATH_GetPathFromDC ( dc, &pPath );
/* Check that path is open */
if ( pPath->state != PATH_Open )
return FALSE;
/* Add a PT_MOVETO if necessary */
if ( pPath->newStroke )
{
pPath->newStroke = FALSE;
IntGetCurrentPositionEx ( dc, &pt );
CoordLPtoDP ( dc, &pt );
if ( !PATH_AddEntry(pPath, &pt, PT_MOVETO) )
return FALSE;
}
for(i = 0; i < cbPoints; i++)
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
PATH_AddEntry(pPath, &pt, PT_LINETO);
}
return TRUE;
}
BOOL
FASTCALL
PATH_Polygon ( PDC dc, const POINT *pts, DWORD cbPoints )
{
GdiPath *pPath;
POINT pt;
ULONG i;
ASSERT ( dc );
ASSERT ( pts );
PATH_GetPathFromDC ( dc, &pPath );
/* Check that path is open */
if ( pPath->state != PATH_Open )
return FALSE;
for(i = 0; i < cbPoints; i++)
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO :
((i == cbPoints-1) ? PT_LINETO | PT_CLOSEFIGURE :
PT_LINETO));
}
return TRUE;
}
BOOL
FASTCALL
PATH_PolyPolygon ( PDC dc, const POINT* pts, const INT* counts, UINT polygons )
{
GdiPath *pPath;
POINT pt, startpt;
ULONG poly, point, i;
ASSERT ( dc );
ASSERT ( pts );
ASSERT ( counts );
ASSERT ( polygons );
PATH_GetPathFromDC ( dc, &pPath );
/* Check that path is open */
if ( pPath->state != PATH_Open );
return FALSE;
for(i = 0, poly = 0; poly < polygons; poly++)
{
for(point = 0; point < (ULONG) counts[poly]; point++, i++)
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
if(point == 0) startpt = pt;
PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO);
}
/* win98 adds an extra line to close the figure for some reason */
PATH_AddEntry(pPath, &startpt, PT_LINETO | PT_CLOSEFIGURE);
}
return TRUE;
}
BOOL
FASTCALL
PATH_PolyPolyline ( PDC dc, const POINT* pts, const DWORD* counts, DWORD polylines )
{
GdiPath *pPath;
POINT pt;
ULONG poly, point, i;
ASSERT ( dc );
ASSERT ( pts );
ASSERT ( counts );
ASSERT ( polylines );
PATH_GetPathFromDC ( dc, &pPath );
/* Check that path is open */
if ( pPath->state != PATH_Open )
return FALSE;
for(i = 0, poly = 0; poly < polylines; poly++)
{
for(point = 0; point < counts[poly]; point++, i++)
{
pt = pts[i];
CoordLPtoDP ( dc, &pt );
PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO);
}
}
return TRUE;
}
/***********************************************************************
* Internal functions
*/
/* PATH_AddFlatBezier
*
*/
BOOL
FASTCALL
PATH_AddFlatBezier ( GdiPath *pPath, POINT *pt, BOOL closed )
{
POINT *pts;
INT no, i;
pts = GDI_Bezier( pt, 4, &no );
if ( !pts ) return FALSE;
for(i = 1; i < no; i++)
PATH_AddEntry(pPath, &pts[i], (i == no-1 && closed) ? PT_LINETO | PT_CLOSEFIGURE : PT_LINETO);
ExFreePool(pts);
return TRUE;
}
/* PATH_FlattenPath
*
* Replaces Beziers with line segments
*
*/
BOOL
FASTCALL
PATH_FlattenPath(GdiPath *pPath)
{
GdiPath newPath;
INT srcpt;
memset(&newPath, 0, sizeof(newPath));
newPath.state = PATH_Open;
for(srcpt = 0; srcpt < pPath->numEntriesUsed; srcpt++) {
switch(pPath->pFlags[srcpt] & ~PT_CLOSEFIGURE) {
case PT_MOVETO:
case PT_LINETO:
PATH_AddEntry(&newPath, &pPath->pPoints[srcpt], pPath->pFlags[srcpt]);
break;
case PT_BEZIERTO:
PATH_AddFlatBezier(&newPath, &pPath->pPoints[srcpt-1], pPath->pFlags[srcpt+2] & PT_CLOSEFIGURE);
srcpt += 2;
break;
}
}
newPath.state = PATH_Closed;
PATH_AssignGdiPath(pPath, &newPath);
PATH_EmptyPath(&newPath);
return TRUE;
}
/* PATH_PathToRegion
*
* Creates a region from the specified path using the specified polygon
* filling mode. The path is left unchanged. A handle to the region that
* was created is stored in *pHrgn. If successful, TRUE is returned; if an
* error occurs, SetLastError is called with the appropriate value and
* FALSE is returned.
*/
#if 0
// FIXME - don't reenable this function until you deal with the
// const pPath being given to PATH_FlattenPath() - which is
// expecting a non-const*. Since this function isn't being called
// at the moment, I'm commenting it out until the issue needs to
// be addressed.
BOOL
FASTCALL
PATH_PathToRegion ( const GdiPath *pPath, INT nPolyFillMode, HRGN *pHrgn )
{
int numStrokes, iStroke, i;
INT *pNumPointsInStroke;
HRGN hrgn;
assert ( pPath!=NULL );
assert ( pHrgn!=NULL );
PATH_FlattenPath ( pPath );
/* FIXME: What happens when number of points is zero? */
/* First pass: Find out how many strokes there are in the path */
/* FIXME: We could eliminate this with some bookkeeping in GdiPath */
numStrokes=0;
for(i=0; i<pPath->numEntriesUsed; i++)
if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO)
numStrokes++;
/* Allocate memory for number-of-points-in-stroke array */
pNumPointsInStroke=(int *)ExAllocatePool(NonPagedPool, sizeof(int) * numStrokes);
if(!pNumPointsInStroke)
{
// SetLastError(ERROR_NOT_ENOUGH_MEMORY);
return FALSE;
}
/* Second pass: remember number of points in each polygon */
iStroke=-1; /* Will get incremented to 0 at beginning of first stroke */
for(i=0; i<pPath->numEntriesUsed; i++)
{
/* Is this the beginning of a new stroke? */
if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO)
{
iStroke++;
pNumPointsInStroke[iStroke]=0;
}
pNumPointsInStroke[iStroke]++;
}
/* Create a region from the strokes */
/* hrgn=CreatePolyPolygonRgn(pPath->pPoints, pNumPointsInStroke,
numStrokes, nPolyFillMode); FIXME: reinclude when region code implemented */
if(hrgn==(HRGN)0)
{
// SetLastError(ERROR_NOT_ENOUGH_MEMORY);
return FALSE;
}
/* Free memory for number-of-points-in-stroke array */
ExFreePool(pNumPointsInStroke);
/* Success! */
*pHrgn=hrgn;
return TRUE;
}
#endif
/* PATH_EmptyPath
*
* Removes all entries from the path and sets the path state to PATH_Null.
*/
VOID
FASTCALL
PATH_EmptyPath ( GdiPath *pPath )
{
assert(pPath!=NULL);
pPath->state=PATH_Null;
pPath->numEntriesUsed=0;
}
/* PATH_AddEntry
*
* Adds an entry to the path. For "flags", pass either PT_MOVETO, PT_LINETO
* or PT_BEZIERTO, optionally ORed with PT_CLOSEFIGURE. Returns TRUE if
* successful, FALSE otherwise (e.g. if not enough memory was available).
*/
BOOL
FASTCALL
PATH_AddEntry ( GdiPath *pPath, const POINT *pPoint, BYTE flags )
{
assert(pPath!=NULL);
/* FIXME: If newStroke is true, perhaps we want to check that we're
* getting a PT_MOVETO
*/
/* Check that path is open */
if ( pPath->state != PATH_Open )
return FALSE;
/* Reserve enough memory for an extra path entry */
if ( !PATH_ReserveEntries(pPath, pPath->numEntriesUsed+1) )
return FALSE;
/* Store information in path entry */
pPath->pPoints[pPath->numEntriesUsed]=*pPoint;
pPath->pFlags[pPath->numEntriesUsed]=flags;
/* If this is PT_CLOSEFIGURE, we have to start a new stroke next time */
if((flags & PT_CLOSEFIGURE) == PT_CLOSEFIGURE)
pPath->newStroke=TRUE;
/* Increment entry count */
pPath->numEntriesUsed++;
return TRUE;
}
/* PATH_ReserveEntries
*
* Ensures that at least "numEntries" entries (for points and flags) have
* been allocated; allocates larger arrays and copies the existing entries
* to those arrays, if necessary. Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_ReserveEntries ( GdiPath *pPath, INT numEntries )
{
INT numEntriesToAllocate;
POINT *pPointsNew;
BYTE *pFlagsNew;
assert(pPath!=NULL);
assert(numEntries>=0);
/* Do we have to allocate more memory? */
if(numEntries > pPath->numEntriesAllocated)
{
/* Find number of entries to allocate. We let the size of the array
* grow exponentially, since that will guarantee linear time
* complexity. */
if(pPath->numEntriesAllocated)
{
numEntriesToAllocate=pPath->numEntriesAllocated;
while(numEntriesToAllocate<numEntries)
numEntriesToAllocate=numEntriesToAllocate*GROW_FACTOR_NUMER/GROW_FACTOR_DENOM;
} else
numEntriesToAllocate=numEntries;
/* Allocate new arrays */
pPointsNew=(POINT *)ExAllocatePool(NonPagedPool, numEntriesToAllocate * sizeof(POINT));
if(!pPointsNew)
return FALSE;
pFlagsNew=(BYTE *)ExAllocatePool(NonPagedPool, numEntriesToAllocate * sizeof(BYTE));
if(!pFlagsNew)
{
ExFreePool(pPointsNew);
return FALSE;
}
/* Copy old arrays to new arrays and discard old arrays */
if(pPath->pPoints)
{
assert(pPath->pFlags);
memcpy(pPointsNew, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed);
memcpy(pFlagsNew, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed);
ExFreePool(pPath->pPoints);
ExFreePool(pPath->pFlags);
}
pPath->pPoints=pPointsNew;
pPath->pFlags=pFlagsNew;
pPath->numEntriesAllocated=numEntriesToAllocate;
}
return TRUE;
}
/* PATH_GetPathFromDC
*
* Retrieves a pointer to the GdiPath structure contained in an HDC and
* places it in *ppPath. TRUE is returned if successful, FALSE otherwise.
*/
VOID
FASTCALL
PATH_GetPathFromDC ( PDC dc, GdiPath **ppPath )
{
ASSERT ( dc );
ASSERT ( ppPath );
*ppPath = &dc->w.path;
}
/* PATH_DoArcPart
*
* Creates a Bezier spline that corresponds to part of an arc and appends the
* corresponding points to the path. The start and end angles are passed in
* "angleStart" and "angleEnd"; these angles should span a quarter circle
* at most. If "addMoveTo" is true, a PT_MOVETO entry for the first control
* point is added to the path; otherwise, it is assumed that the current
* position is equal to the first control point.
*/
BOOL
FASTCALL
PATH_DoArcPart ( GdiPath *pPath, FLOAT_POINT corners[],
double angleStart, double angleEnd, BOOL addMoveTo )
{
double halfAngle, a;
double xNorm[4], yNorm[4];
POINT point;
int i;
assert(fabs(angleEnd-angleStart)<=M_PI_2);
/* FIXME: Is there an easier way of computing this? */
/* Compute control points */
halfAngle=(angleEnd-angleStart)/2.0;
if(fabs(halfAngle)>1e-8)
{
a=4.0/3.0*(1-cos(halfAngle))/sin(halfAngle);
xNorm[0]=cos(angleStart);
yNorm[0]=sin(angleStart);
xNorm[1]=xNorm[0] - a*yNorm[0];
yNorm[1]=yNorm[0] + a*xNorm[0];
xNorm[3]=cos(angleEnd);
yNorm[3]=sin(angleEnd);
xNorm[2]=xNorm[3] + a*yNorm[3];
yNorm[2]=yNorm[3] - a*xNorm[3];
} else
for(i=0; i<4; i++)
{
xNorm[i]=cos(angleStart);
yNorm[i]=sin(angleStart);
}
/* Add starting point to path if desired */
if(addMoveTo)
{
PATH_ScaleNormalizedPoint(corners, xNorm[0], yNorm[0], &point);
if(!PATH_AddEntry(pPath, &point, PT_MOVETO))
return FALSE;
}
/* Add remaining control points */
for(i=1; i<4; i++)
{
PATH_ScaleNormalizedPoint(corners, xNorm[i], yNorm[i], &point);
if(!PATH_AddEntry(pPath, &point, PT_BEZIERTO))
return FALSE;
}
return TRUE;
}
/* PATH_ScaleNormalizedPoint
*
* Scales a normalized point (x, y) with respect to the box whose corners are
* passed in "corners". The point is stored in "*pPoint". The normalized
* coordinates (-1.0, -1.0) correspond to corners[0], the coordinates
* (1.0, 1.0) correspond to corners[1].
*/
VOID
FASTCALL
PATH_ScaleNormalizedPoint ( FLOAT_POINT corners[], double x,
double y, POINT *pPoint )
{
ASSERT ( corners );
ASSERT ( pPoint );
pPoint->x=GDI_ROUND( (double)corners[0].x + (double)(corners[1].x-corners[0].x)*0.5*(x+1.0) );
pPoint->y=GDI_ROUND( (double)corners[0].y + (double)(corners[1].y-corners[0].y)*0.5*(y+1.0) );
}
/* PATH_NormalizePoint
*
* Normalizes a point with respect to the box whose corners are passed in
* corners. The normalized coordinates are stored in *pX and *pY.
*/
VOID
FASTCALL
PATH_NormalizePoint ( FLOAT_POINT corners[],
const FLOAT_POINT *pPoint,
double *pX, double *pY)
{
ASSERT ( corners );
ASSERT ( pPoint );
ASSERT ( pX );
ASSERT ( pY );
*pX=(double)(pPoint->x-corners[0].x)/(double)(corners[1].x-corners[0].x) * 2.0 - 1.0;
*pY=(double)(pPoint->y-corners[0].y)/(double)(corners[1].y-corners[0].y) * 2.0 - 1.0;
}
/* EOF */