reactos/dll/win32/dbghelp/storage.c

424 lines
12 KiB
C

/*
* Various storage structures (pool allocation, vector, hash table)
*
* Copyright (C) 1993, Eric Youngdale.
* 2004, Eric Pouech
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "dbghelp_private.h"
#ifdef USE_STATS
#include <math.h>
#endif
WINE_DEFAULT_DEBUG_CHANNEL(dbghelp);
struct pool_arena
{
struct list entry;
char *current;
char *end;
};
void pool_init(struct pool* a, size_t arena_size)
{
list_init( &a->arena_list );
list_init( &a->arena_full );
a->arena_size = arena_size;
}
void pool_destroy(struct pool* pool)
{
struct pool_arena* arena;
struct pool_arena* next;
#ifdef USE_STATS
size_t alloc, used, num;
alloc = used = num = 0;
LIST_FOR_EACH_ENTRY( arena, &pool->arena_list, struct pool_arena, entry )
{
alloc += arena->end - (char *)arena;
used += arena->current - (char*)arena;
num++;
}
LIST_FOR_EACH_ENTRY( arena, &pool->arena_full, struct pool_arena, entry )
{
alloc += arena->end - (char *)arena;
used += arena->current - (char*)arena;
num++;
}
if (alloc == 0) alloc = 1; /* avoid division by zero */
FIXME("STATS: pool %p has allocated %u kbytes, used %u kbytes in %u arenas, non-allocation ratio: %.2f%%\n",
pool, (unsigned)(alloc >> 10), (unsigned)(used >> 10), (unsigned)num,
100.0 - (float)used / (float)alloc * 100.0);
#endif
LIST_FOR_EACH_ENTRY_SAFE( arena, next, &pool->arena_list, struct pool_arena, entry )
{
list_remove( &arena->entry );
HeapFree(GetProcessHeap(), 0, arena);
}
LIST_FOR_EACH_ENTRY_SAFE( arena, next, &pool->arena_full, struct pool_arena, entry )
{
list_remove( &arena->entry );
HeapFree(GetProcessHeap(), 0, arena);
}
}
void* pool_alloc(struct pool* pool, size_t len)
{
struct pool_arena* arena;
void* ret;
size_t size;
len = (len + 3) & ~3; /* round up size on DWORD boundary */
LIST_FOR_EACH_ENTRY( arena, &pool->arena_list, struct pool_arena, entry )
{
if (arena->end - arena->current >= len)
{
ret = arena->current;
arena->current += len;
if (arena->current + 16 >= arena->end)
{
list_remove( &arena->entry );
list_add_tail( &pool->arena_full, &arena->entry );
}
return ret;
}
}
size = max( pool->arena_size, len );
arena = HeapAlloc(GetProcessHeap(), 0, size + sizeof(struct pool_arena));
if (!arena) return NULL;
ret = arena + 1;
arena->current = (char*)ret + len;
arena->end = (char*)ret + size;
if (arena->current + 16 >= arena->end)
list_add_tail( &pool->arena_full, &arena->entry );
else
list_add_head( &pool->arena_list, &arena->entry );
return ret;
}
char* pool_strdup(struct pool* pool, const char* str)
{
char* ret;
if ((ret = pool_alloc(pool, strlen(str) + 1))) strcpy(ret, str);
return ret;
}
void vector_init(struct vector* v, unsigned esz, unsigned bucket_sz)
{
v->buckets = NULL;
/* align size on DWORD boundaries */
v->elt_size = (esz + 3) & ~3;
switch (bucket_sz)
{
case 2: v->shift = 1; break;
case 4: v->shift = 2; break;
case 8: v->shift = 3; break;
case 16: v->shift = 4; break;
case 32: v->shift = 5; break;
case 64: v->shift = 6; break;
case 128: v->shift = 7; break;
case 256: v->shift = 8; break;
case 512: v->shift = 9; break;
case 1024: v->shift = 10; break;
default: assert(0);
}
v->num_buckets = 0;
v->buckets_allocated = 0;
v->num_elts = 0;
}
unsigned vector_length(const struct vector* v)
{
return v->num_elts;
}
void* vector_at(const struct vector* v, unsigned pos)
{
unsigned o;
if (pos >= v->num_elts) return NULL;
o = pos & ((1 << v->shift) - 1);
return (char*)v->buckets[pos >> v->shift] + o * v->elt_size;
}
void* vector_add(struct vector* v, struct pool* pool)
{
unsigned ncurr = v->num_elts++;
/* check that we don't wrap around */
assert(v->num_elts > ncurr);
if (ncurr == (v->num_buckets << v->shift))
{
if(v->num_buckets == v->buckets_allocated)
{
/* Double the bucket cache, so it scales well with big vectors.*/
unsigned new_reserved;
void* new;
new_reserved = 2*v->buckets_allocated;
if(new_reserved == 0) new_reserved = 1;
/* Don't even try to resize memory.
Pool datastructure is very inefficient with reallocs. */
new = pool_alloc(pool, new_reserved * sizeof(void*));
memcpy(new, v->buckets, v->buckets_allocated * sizeof(void*));
v->buckets = new;
v->buckets_allocated = new_reserved;
}
v->buckets[v->num_buckets] = pool_alloc(pool, v->elt_size << v->shift);
return v->buckets[v->num_buckets++];
}
return vector_at(v, ncurr);
}
/* We construct the sparse array as two vectors (of equal size)
* The first vector (key2index) is the lookup table between the key and
* an index in the second vector (elements)
* When inserting an element, it's always appended in second vector (and
* never moved in memory later on), only the first vector is reordered
*/
struct key2index
{
unsigned long key;
unsigned index;
};
void sparse_array_init(struct sparse_array* sa, unsigned elt_sz, unsigned bucket_sz)
{
vector_init(&sa->key2index, sizeof(struct key2index), bucket_sz);
vector_init(&sa->elements, elt_sz, bucket_sz);
}
/******************************************************************
* sparse_array_lookup
*
* Returns the first index which key is >= at passed key
*/
static struct key2index* sparse_array_lookup(const struct sparse_array* sa,
unsigned long key, unsigned* idx)
{
struct key2index* pk2i;
unsigned low, high;
if (!sa->elements.num_elts)
{
*idx = 0;
return NULL;
}
high = sa->elements.num_elts;
pk2i = vector_at(&sa->key2index, high - 1);
if (pk2i->key < key)
{
*idx = high;
return NULL;
}
if (pk2i->key == key)
{
*idx = high - 1;
return pk2i;
}
low = 0;
pk2i = vector_at(&sa->key2index, low);
if (pk2i->key >= key)
{
*idx = 0;
return pk2i;
}
/* now we have: sa(lowest key) < key < sa(highest key) */
while (low < high)
{
*idx = (low + high) / 2;
pk2i = vector_at(&sa->key2index, *idx);
if (pk2i->key > key) high = *idx;
else if (pk2i->key < key) low = *idx + 1;
else return pk2i;
}
/* binary search could return exact item, we search for highest one
* below the key
*/
if (pk2i->key < key)
pk2i = vector_at(&sa->key2index, ++(*idx));
return pk2i;
}
void* sparse_array_find(const struct sparse_array* sa, unsigned long key)
{
unsigned idx;
struct key2index* pk2i;
if ((pk2i = sparse_array_lookup(sa, key, &idx)) && pk2i->key == key)
return vector_at(&sa->elements, pk2i->index);
return NULL;
}
void* sparse_array_add(struct sparse_array* sa, unsigned long key,
struct pool* pool)
{
unsigned idx, i;
struct key2index* pk2i;
struct key2index* to;
pk2i = sparse_array_lookup(sa, key, &idx);
if (pk2i && pk2i->key == key)
{
FIXME("re-adding an existing key\n");
return NULL;
}
to = vector_add(&sa->key2index, pool);
if (pk2i)
{
/* we need to shift vector's content... */
/* let's do it brute force... (FIXME) */
assert(sa->key2index.num_elts >= 2);
for (i = sa->key2index.num_elts - 1; i > idx; i--)
{
pk2i = vector_at(&sa->key2index, i - 1);
*to = *pk2i;
to = pk2i;
}
}
to->key = key;
to->index = sa->elements.num_elts;
return vector_add(&sa->elements, pool);
}
unsigned sparse_array_length(const struct sparse_array* sa)
{
return sa->elements.num_elts;
}
static unsigned hash_table_hash(const char* name, unsigned num_buckets)
{
unsigned hash = 0;
while (*name)
{
hash += *name++;
hash += (hash << 10);
hash ^= (hash >> 6);
}
hash += (hash << 3);
hash ^= (hash >> 11);
hash += (hash << 15);
return hash % num_buckets;
}
void hash_table_init(struct pool* pool, struct hash_table* ht, unsigned num_buckets)
{
ht->num_elts = 0;
ht->num_buckets = num_buckets;
ht->pool = pool;
ht->buckets = NULL;
}
void hash_table_destroy(struct hash_table* ht)
{
#if defined(USE_STATS)
int i;
unsigned len;
unsigned min = 0xffffffff, max = 0, sq = 0;
struct hash_table_elt* elt;
double mean, variance;
for (i = 0; i < ht->num_buckets; i++)
{
for (len = 0, elt = ht->buckets[i]; elt; elt = elt->next) len++;
if (len < min) min = len;
if (len > max) max = len;
sq += len * len;
}
mean = (double)ht->num_elts / ht->num_buckets;
variance = (double)sq / ht->num_buckets - mean * mean;
FIXME("STATS: elts[num:%-4u size:%u mean:%f] buckets[min:%-4u variance:%+f max:%-4u]\n",
ht->num_elts, ht->num_buckets, mean, min, variance, max);
for (i = 0; i < ht->num_buckets; i++)
{
for (len = 0, elt = ht->buckets[i]; elt; elt = elt->next) len++;
if (len == max)
{
FIXME("Longest bucket:\n");
for (elt = ht->buckets[i]; elt; elt = elt->next)
FIXME("\t%s\n", elt->name);
break;
}
}
#endif
}
void hash_table_add(struct hash_table* ht, struct hash_table_elt* elt)
{
unsigned hash = hash_table_hash(elt->name, ht->num_buckets);
if (!ht->buckets)
{
ht->buckets = pool_alloc(ht->pool, ht->num_buckets * sizeof(struct hash_table_bucket));
assert(ht->buckets);
memset(ht->buckets, 0, ht->num_buckets * sizeof(struct hash_table_bucket));
}
/* in some cases, we need to get back the symbols of same name in the order
* in which they've been inserted. So insert new elements at the end of the list.
*/
if (!ht->buckets[hash].first)
{
ht->buckets[hash].first = elt;
}
else
{
ht->buckets[hash].last->next = elt;
}
ht->buckets[hash].last = elt;
elt->next = NULL;
ht->num_elts++;
}
void hash_table_iter_init(const struct hash_table* ht,
struct hash_table_iter* hti, const char* name)
{
hti->ht = ht;
if (name)
{
hti->last = hash_table_hash(name, ht->num_buckets);
hti->index = hti->last - 1;
}
else
{
hti->last = ht->num_buckets - 1;
hti->index = -1;
}
hti->element = NULL;
}
void* hash_table_iter_up(struct hash_table_iter* hti)
{
if (!hti->ht->buckets) return NULL;
if (hti->element) hti->element = hti->element->next;
while (!hti->element && hti->index < hti->last)
hti->element = hti->ht->buckets[++hti->index].first;
return hti->element;
}