reactos/modules/rostests/kmtests/ntos_ke/KeEvent.c
2019-06-06 17:33:59 +02:00

399 lines
15 KiB
C

/*
* PROJECT: ReactOS kernel-mode tests
* LICENSE: GPLv2+ - See COPYING in the top level directory
* PURPOSE: Kernel-Mode Test Suite Event test
* PROGRAMMER: Thomas Faber <thomas.faber@reactos.org>
*/
#include <kmt_test.h>
#define CheckEvent(Event, ExpectedType, State, ExpectedWaitNext, \
Irql, ThreadList, ThreadCount) do \
{ \
INT TheIndex; \
PLIST_ENTRY TheEntry; \
PKTHREAD TheThread; \
ok_eq_uint((Event)->Header.Type, ExpectedType); \
ok_eq_uint((Event)->Header.Hand, sizeof *(Event) / sizeof(ULONG)); \
ok_eq_hex((Event)->Header.Lock & 0xFF00FF00L, 0x55005500L); \
ok_eq_long((Event)->Header.SignalState, State); \
TheEntry = (Event)->Header.WaitListHead.Flink; \
for (TheIndex = 0; TheIndex < (ThreadCount); ++TheIndex) \
{ \
TheThread = CONTAINING_RECORD(TheEntry, KTHREAD, \
WaitBlock[0].WaitListEntry); \
ok_eq_pointer(TheThread, (ThreadList)[TheIndex]); \
ok_eq_pointer(TheEntry->Flink->Blink, TheEntry); \
TheEntry = TheEntry->Flink; \
} \
ok_eq_pointer(TheEntry, &(Event)->Header.WaitListHead); \
ok_eq_pointer(TheEntry->Flink->Blink, TheEntry); \
ok_eq_long(KeReadStateEvent(Event), State); \
ok_eq_bool(Thread->WaitNext, ExpectedWaitNext); \
ok_irql(Irql); \
} while (0)
static
VOID
TestEventFunctional(
IN PKEVENT Event,
IN EVENT_TYPE Type,
IN KIRQL OriginalIrql)
{
LONG State;
PKTHREAD Thread = KeGetCurrentThread();
memset(Event, 0x55, sizeof *Event);
KeInitializeEvent(Event, Type, FALSE);
CheckEvent(Event, Type, 0L, FALSE, OriginalIrql, (PVOID *)NULL, 0);
memset(Event, 0x55, sizeof *Event);
KeInitializeEvent(Event, Type, TRUE);
CheckEvent(Event, Type, 1L, FALSE, OriginalIrql, (PVOID *)NULL, 0);
Event->Header.SignalState = 0x12345678L;
CheckEvent(Event, Type, 0x12345678L, FALSE, OriginalIrql, (PVOID *)NULL, 0);
State = KePulseEvent(Event, 0, FALSE);
CheckEvent(Event, Type, 0L, FALSE, OriginalIrql, (PVOID *)NULL, 0);
ok_eq_long(State, 0x12345678L);
Event->Header.SignalState = 0x12345678L;
KeClearEvent(Event);
CheckEvent(Event, Type, 0L, FALSE, OriginalIrql, (PVOID *)NULL, 0);
State = KeSetEvent(Event, 0, FALSE);
CheckEvent(Event, Type, 1L, FALSE, OriginalIrql, (PVOID *)NULL, 0);
ok_eq_long(State, 0L);
State = KeResetEvent(Event);
CheckEvent(Event, Type, 0L, FALSE, OriginalIrql, (PVOID *)NULL, 0);
ok_eq_long(State, 1L);
Event->Header.SignalState = 0x23456789L;
State = KeSetEvent(Event, 0, FALSE);
CheckEvent(Event, Type, 1L, FALSE, OriginalIrql, (PVOID *)NULL, 0);
ok_eq_long(State, 0x23456789L);
Event->Header.SignalState = 0x3456789AL;
State = KeResetEvent(Event);
CheckEvent(Event, Type, 0L, FALSE, OriginalIrql, (PVOID *)NULL, 0);
ok_eq_long(State, 0x3456789AL);
/* Irql is raised to DISPATCH_LEVEL here, which kills checked build,
* a spinlock is acquired and never released, which kills MP build */
if ((OriginalIrql <= DISPATCH_LEVEL || !KmtIsCheckedBuild) &&
!KmtIsMultiProcessorBuild)
{
Event->Header.SignalState = 0x456789ABL;
State = KeSetEvent(Event, 0, TRUE);
CheckEvent(Event, Type, 1L, TRUE, DISPATCH_LEVEL, (PVOID *)NULL, 0);
ok_eq_long(State, 0x456789ABL);
ok_eq_uint(Thread->WaitIrql, OriginalIrql);
/* repair the "damage" */
Thread->WaitNext = FALSE;
KmtSetIrql(OriginalIrql);
Event->Header.SignalState = 0x56789ABCL;
State = KePulseEvent(Event, 0, TRUE);
CheckEvent(Event, Type, 0L, TRUE, DISPATCH_LEVEL, (PVOID *)NULL, 0);
ok_eq_long(State, 0x56789ABCL);
ok_eq_uint(Thread->WaitIrql, OriginalIrql);
/* repair the "damage" */
Thread->WaitNext = FALSE;
KmtSetIrql(OriginalIrql);
}
ok_irql(OriginalIrql);
KmtSetIrql(OriginalIrql);
}
typedef struct
{
HANDLE Handle;
PKTHREAD Thread;
PKEVENT Event;
volatile BOOLEAN Signal;
} THREAD_DATA, *PTHREAD_DATA;
static
VOID
NTAPI
WaitForEventThread(
IN OUT PVOID Context)
{
NTSTATUS Status;
PTHREAD_DATA ThreadData = Context;
ok_irql(PASSIVE_LEVEL);
ThreadData->Signal = TRUE;
Status = KeWaitForSingleObject(ThreadData->Event, Executive, KernelMode, FALSE, NULL);
ok_eq_hex(Status, STATUS_SUCCESS);
ok_irql(PASSIVE_LEVEL);
}
typedef LONG (NTAPI *PSET_EVENT_FUNCTION)(PRKEVENT, KPRIORITY, BOOLEAN);
static
VOID
TestEventConcurrent(
IN PKEVENT Event,
IN EVENT_TYPE Type,
IN KIRQL OriginalIrql,
PSET_EVENT_FUNCTION SetEvent,
KPRIORITY PriorityIncrement,
LONG ExpectedState,
BOOLEAN SatisfiesAll)
{
NTSTATUS Status;
THREAD_DATA Threads[5];
const INT ThreadCount = sizeof Threads / sizeof Threads[0];
KPRIORITY Priority;
LARGE_INTEGER LongTimeout, ShortTimeout;
INT i;
KWAIT_BLOCK WaitBlock[RTL_NUMBER_OF(Threads)];
PVOID ThreadObjects[RTL_NUMBER_OF(Threads)];
LONG State;
PKTHREAD Thread = KeGetCurrentThread();
OBJECT_ATTRIBUTES ObjectAttributes;
LongTimeout.QuadPart = -100 * MILLISECOND;
ShortTimeout.QuadPart = -1 * MILLISECOND;
KeInitializeEvent(Event, Type, FALSE);
for (i = 0; i < ThreadCount; ++i)
{
Threads[i].Event = Event;
Threads[i].Signal = FALSE;
InitializeObjectAttributes(&ObjectAttributes,
NULL,
OBJ_KERNEL_HANDLE,
NULL,
NULL);
Status = PsCreateSystemThread(&Threads[i].Handle, GENERIC_ALL, &ObjectAttributes, NULL, NULL, WaitForEventThread, &Threads[i]);
ok_eq_hex(Status, STATUS_SUCCESS);
Status = ObReferenceObjectByHandle(Threads[i].Handle, SYNCHRONIZE, *PsThreadType, KernelMode, (PVOID *)&Threads[i].Thread, NULL);
ok_eq_hex(Status, STATUS_SUCCESS);
ThreadObjects[i] = Threads[i].Thread;
Priority = KeQueryPriorityThread(Threads[i].Thread);
ok_eq_long(Priority, 8L);
while (!Threads[i].Signal)
{
Status = KeDelayExecutionThread(KernelMode, FALSE, &ShortTimeout);
if (Status != STATUS_SUCCESS)
{
ok_eq_hex(Status, STATUS_SUCCESS);
}
}
CheckEvent(Event, Type, 0L, FALSE, OriginalIrql, ThreadObjects, i + 1);
}
/* the threads shouldn't wake up on their own */
Status = KeDelayExecutionThread(KernelMode, FALSE, &ShortTimeout);
ok_eq_hex(Status, STATUS_SUCCESS);
for (i = 0; i < ThreadCount; ++i)
{
CheckEvent(Event, Type, 0L, FALSE, OriginalIrql, ThreadObjects + i, ThreadCount - i);
State = SetEvent(Event, PriorityIncrement + i, FALSE);
ok_eq_long(State, 0L);
CheckEvent(Event, Type, ExpectedState, FALSE, OriginalIrql, ThreadObjects + i + 1, SatisfiesAll ? 0 : ThreadCount - i - 1);
Status = KeWaitForMultipleObjects(ThreadCount, ThreadObjects, SatisfiesAll ? WaitAll : WaitAny, Executive, KernelMode, FALSE, &LongTimeout, WaitBlock);
ok_eq_hex(Status, STATUS_WAIT_0 + i);
if (SatisfiesAll)
{
for (; i < ThreadCount; ++i)
{
Priority = KeQueryPriorityThread(Threads[i].Thread);
ok_eq_long(Priority, max(min(8L + PriorityIncrement, 15L), 8L));
}
break;
}
Priority = KeQueryPriorityThread(Threads[i].Thread);
ok_eq_long(Priority, max(min(8L + PriorityIncrement + i, 15L), 8L));
/* replace the thread with the current thread - which will never signal */
if (!skip((Status & 0x3F) < ThreadCount, "Index out of bounds\n"))
ThreadObjects[Status & 0x3F] = Thread;
Status = KeWaitForMultipleObjects(ThreadCount, ThreadObjects, WaitAny, Executive, KernelMode, FALSE, &ShortTimeout, WaitBlock);
ok_eq_hex(Status, STATUS_TIMEOUT);
}
for (i = 0; i < ThreadCount; ++i)
{
ObDereferenceObject(Threads[i].Thread);
Status = ZwClose(Threads[i].Handle);
ok_eq_hex(Status, STATUS_SUCCESS);
}
}
#define NUM_SCHED_TESTS 1000
typedef struct
{
KEVENT Event;
KEVENT WaitEvent;
ULONG Counter;
KPRIORITY PriorityIncrement;
ULONG CounterValues[NUM_SCHED_TESTS];
} COUNT_THREAD_DATA, *PCOUNT_THREAD_DATA;
static
VOID
NTAPI
CountThread(
IN OUT PVOID Context)
{
PCOUNT_THREAD_DATA ThreadData = Context;
PKEVENT Event = &ThreadData->Event;
volatile ULONG *Counter = &ThreadData->Counter;
ULONG *CounterValue = ThreadData->CounterValues;
KPRIORITY Priority;
Priority = KeQueryPriorityThread(KeGetCurrentThread());
ok_eq_long(Priority, 8L);
while (CounterValue < &ThreadData->CounterValues[NUM_SCHED_TESTS])
{
KeSetEvent(&ThreadData->WaitEvent, IO_NO_INCREMENT, TRUE);
KeWaitForSingleObject(Event, Executive, KernelMode, FALSE, NULL);
*CounterValue++ = *Counter;
}
Priority = KeQueryPriorityThread(KeGetCurrentThread());
ok_eq_long(Priority, 8L + min(ThreadData->PriorityIncrement, 7));
}
static
VOID
NTAPI
TestEventScheduling(
_In_ PVOID Context)
{
PCOUNT_THREAD_DATA ThreadData;
PKTHREAD Thread;
NTSTATUS Status;
LONG PreviousState;
ULONG i;
volatile ULONG *Counter;
KPRIORITY PriorityIncrement;
KPRIORITY Priority;
UNREFERENCED_PARAMETER(Context);
ThreadData = ExAllocatePoolWithTag(PagedPool, sizeof(*ThreadData), 'CEmK');
if (skip(ThreadData != NULL, "Out of memory\n"))
{
return;
}
KeInitializeEvent(&ThreadData->Event, SynchronizationEvent, FALSE);
KeInitializeEvent(&ThreadData->WaitEvent, SynchronizationEvent, FALSE);
Counter = &ThreadData->Counter;
for (PriorityIncrement = 0; PriorityIncrement <= 8; PriorityIncrement++)
{
ThreadData->PriorityIncrement = PriorityIncrement;
ThreadData->Counter = 0;
RtlFillMemory(ThreadData->CounterValues,
sizeof(ThreadData->CounterValues),
0xFE);
Thread = KmtStartThread(CountThread, ThreadData);
Priority = KeQueryPriorityThread(KeGetCurrentThread());
ok(Priority == 8, "[%lu] Priority = %lu\n", PriorityIncrement, Priority);
for (i = 1; i <= NUM_SCHED_TESTS; i++)
{
Status = KeWaitForSingleObject(&ThreadData->WaitEvent, Executive, KernelMode, FALSE, NULL);
ok_eq_hex(Status, STATUS_SUCCESS);
PreviousState = KeSetEvent(&ThreadData->Event, PriorityIncrement, FALSE);
*Counter = i;
ok_eq_long(PreviousState, 0L);
}
Priority = KeQueryPriorityThread(KeGetCurrentThread());
ok(Priority == 8, "[%lu] Priority = %lu\n", PriorityIncrement, Priority);
KmtFinishThread(Thread, NULL);
if (PriorityIncrement == 0)
{
/* Both threads have the same priority, so either can win the race */
ok(ThreadData->CounterValues[0] == 0 || ThreadData->CounterValues[0] == 1,
"[%lu] Counter 0 = %lu\n",
PriorityIncrement, ThreadData->CounterValues[0]);
}
else
{
/* CountThread has the higher priority, it will always win */
ok(ThreadData->CounterValues[0] == 0,
"[%lu] Counter 0 = %lu\n",
PriorityIncrement, ThreadData->CounterValues[0]);
}
for (i = 1; i < NUM_SCHED_TESTS; i++)
{
if (PriorityIncrement == 0)
{
ok(ThreadData->CounterValues[i] == i ||
ThreadData->CounterValues[i] == i + 1,
"[%lu] Counter %lu = %lu, expected %lu or %lu\n",
PriorityIncrement, i,
ThreadData->CounterValues[i], i, i + 1);
}
else
{
ok(ThreadData->CounterValues[i] == ThreadData->CounterValues[i - 1] + 1,
"[%lu] Counter %lu = %lu, expected %lu\n",
PriorityIncrement, i,
ThreadData->CounterValues[i], ThreadData->CounterValues[i - 1] + 1);
}
}
}
ExFreePoolWithTag(ThreadData, 'CEmK');
}
START_TEST(KeEvent)
{
PKTHREAD Thread;
KEVENT Event;
KIRQL Irql;
KIRQL Irqls[] = { PASSIVE_LEVEL, APC_LEVEL, DISPATCH_LEVEL };
ULONG i;
KPRIORITY PriorityIncrement;
for (i = 0; i < RTL_NUMBER_OF(Irqls); ++i)
{
KeRaiseIrql(Irqls[i], &Irql);
TestEventFunctional(&Event, NotificationEvent, Irqls[i]);
TestEventFunctional(&Event, SynchronizationEvent, Irqls[i]);
KeLowerIrql(Irql);
}
for (i = 0; i < RTL_NUMBER_OF(Irqls); ++i)
{
/* creating threads above DISPATCH_LEVEL... nope */
if (Irqls[i] >= DISPATCH_LEVEL)
continue;
KeRaiseIrql(Irqls[i], &Irql);
trace("IRQL: %u\n", Irqls[i]);
for (PriorityIncrement = -1; PriorityIncrement <= 8; ++PriorityIncrement)
{
if (PriorityIncrement < 0 && KmtIsCheckedBuild)
continue;
trace("PriorityIncrement: %ld\n", PriorityIncrement);
trace("-> Checking KeSetEvent, NotificationEvent\n");
TestEventConcurrent(&Event, NotificationEvent, Irqls[i], KeSetEvent, PriorityIncrement, 1, TRUE);
trace("-> Checking KeSetEvent, SynchronizationEvent\n");
TestEventConcurrent(&Event, SynchronizationEvent, Irqls[i], KeSetEvent, PriorityIncrement, 0, FALSE);
trace("-> Checking KePulseEvent, NotificationEvent\n");
TestEventConcurrent(&Event, NotificationEvent, Irqls[i], KePulseEvent, PriorityIncrement, 0, TRUE);
trace("-> Checking KePulseEvent, SynchronizationEvent\n");
TestEventConcurrent(&Event, SynchronizationEvent, Irqls[i], KePulseEvent, PriorityIncrement, 0, FALSE);
}
KeLowerIrql(Irql);
}
ok_irql(PASSIVE_LEVEL);
KmtSetIrql(PASSIVE_LEVEL);
Thread = KmtStartThread(TestEventScheduling, NULL);
KmtFinishThread(Thread, NULL);
}