mirror of
https://github.com/reactos/reactos.git
synced 2024-10-30 11:35:58 +00:00
88c9e7c6e8
svn path=/branches/reactos-yarotows/; revision=47117
2655 lines
70 KiB
C
2655 lines
70 KiB
C
/*
|
|
* Graphics paths (BeginPath, EndPath etc.)
|
|
*
|
|
* Copyright 1997, 1998 Martin Boehme
|
|
* 1999 Huw D M Davies
|
|
* Copyright 2005 Dmitry Timoshkov
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
/*
|
|
*
|
|
* Addaped for the use in ReactOS.
|
|
*
|
|
*/
|
|
/*
|
|
* PROJECT: ReactOS win32 kernel mode subsystem
|
|
* LICENSE: GPL - See COPYING in the top level directory
|
|
* FILE: subsystems/win32/win32k/objects/path.c
|
|
* PURPOSE: Path support
|
|
* PROGRAMMER:
|
|
*/
|
|
|
|
#include <win32k.h>
|
|
#include "math.h"
|
|
|
|
#define NDEBUG
|
|
#include <debug.h>
|
|
|
|
#define NUM_ENTRIES_INITIAL 16 /* Initial size of points / flags arrays */
|
|
#define GROW_FACTOR_NUMER 2 /* Numerator of grow factor for the array */
|
|
#define GROW_FACTOR_DENOM 1 /* Denominator of grow factor */
|
|
|
|
BOOL FASTCALL PATH_AddEntry (PPATH pPath, const POINT *pPoint, BYTE flags);
|
|
BOOL FASTCALL PATH_AddFlatBezier (PPATH pPath, POINT *pt, BOOL closed);
|
|
BOOL FASTCALL PATH_DoArcPart (PPATH pPath, FLOAT_POINT corners[], double angleStart, double angleEnd, BYTE startEntryType);
|
|
BOOL FASTCALL PATH_FillPath( PDC dc, PPATH pPath );
|
|
BOOL FASTCALL PATH_FlattenPath (PPATH pPath);
|
|
VOID FASTCALL PATH_NormalizePoint (FLOAT_POINT corners[], const FLOAT_POINT *pPoint, double *pX, double *pY);
|
|
|
|
BOOL FASTCALL PATH_ReserveEntries (PPATH pPath, INT numEntries);
|
|
VOID FASTCALL PATH_ScaleNormalizedPoint (FLOAT_POINT corners[], double x, double y, POINT *pPoint);
|
|
BOOL FASTCALL PATH_StrokePath(DC *dc, PPATH pPath);
|
|
BOOL PATH_CheckCorners(DC *dc, POINT corners[], INT x1, INT y1, INT x2, INT y2);
|
|
|
|
VOID FASTCALL IntGetCurrentPositionEx(PDC dc, LPPOINT pt);
|
|
|
|
/***********************************************************************
|
|
* Internal functions
|
|
*/
|
|
|
|
BOOL
|
|
FASTCALL
|
|
PATH_Delete(HPATH hPath)
|
|
{
|
|
PPATH pPath;
|
|
if (!hPath) return FALSE;
|
|
pPath = PATH_LockPath( hPath );
|
|
if (!pPath) return FALSE;
|
|
PATH_DestroyGdiPath( pPath );
|
|
PATH_UnlockPath( pPath );
|
|
PATH_FreeExtPathByHandle(hPath);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
VOID
|
|
FASTCALL
|
|
IntGdiCloseFigure(PPATH pPath)
|
|
{
|
|
ASSERT(pPath->state == PATH_Open);
|
|
|
|
// FIXME: Shouldn't we draw a line to the beginning of the figure?
|
|
// Set PT_CLOSEFIGURE on the last entry and start a new stroke
|
|
if(pPath->numEntriesUsed)
|
|
{
|
|
pPath->pFlags[pPath->numEntriesUsed-1]|=PT_CLOSEFIGURE;
|
|
pPath->newStroke=TRUE;
|
|
}
|
|
}
|
|
|
|
/* PATH_FillPath
|
|
*
|
|
*
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_FillPath( PDC dc, PPATH pPath )
|
|
{
|
|
INT mapMode, graphicsMode;
|
|
SIZE ptViewportExt, ptWindowExt;
|
|
POINTL ptViewportOrg, ptWindowOrg;
|
|
XFORM xform;
|
|
HRGN hrgn;
|
|
PDC_ATTR pdcattr = dc->pdcattr;
|
|
|
|
if( pPath->state != PATH_Closed )
|
|
{
|
|
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
|
|
return FALSE;
|
|
}
|
|
|
|
if( PATH_PathToRegion( pPath, pdcattr->jFillMode, &hrgn ))
|
|
{
|
|
/* Since PaintRgn interprets the region as being in logical coordinates
|
|
* but the points we store for the path are already in device
|
|
* coordinates, we have to set the mapping mode to MM_TEXT temporarily.
|
|
* Using SaveDC to save information about the mapping mode / world
|
|
* transform would be easier but would require more overhead, especially
|
|
* now that SaveDC saves the current path.
|
|
*/
|
|
|
|
/* Save the information about the old mapping mode */
|
|
mapMode = pdcattr->iMapMode;
|
|
ptViewportExt = pdcattr->szlViewportExt;
|
|
ptViewportOrg = pdcattr->ptlViewportOrg;
|
|
ptWindowExt = pdcattr->szlWindowExt;
|
|
ptWindowOrg = pdcattr->ptlWindowOrg;
|
|
|
|
/* Save world transform
|
|
* NB: The Windows documentation on world transforms would lead one to
|
|
* believe that this has to be done only in GM_ADVANCED; however, my
|
|
* tests show that resetting the graphics mode to GM_COMPATIBLE does
|
|
* not reset the world transform.
|
|
*/
|
|
MatrixS2XForm(&xform, &dc->dclevel.mxWorldToPage);
|
|
|
|
/* Set MM_TEXT */
|
|
// IntGdiSetMapMode( dc, MM_TEXT );
|
|
// pdcattr->ptlViewportOrg.x = 0;
|
|
// pdcattr->ptlViewportOrg.y = 0;
|
|
// pdcattr->ptlWindowOrg.x = 0;
|
|
// pdcattr->ptlWindowOrg.y = 0;
|
|
|
|
graphicsMode = pdcattr->iGraphicsMode;
|
|
// pdcattr->iGraphicsMode = GM_ADVANCED;
|
|
// IntGdiModifyWorldTransform( dc, &xform, MWT_IDENTITY );
|
|
// pdcattr->iGraphicsMode = graphicsMode;
|
|
|
|
/* Paint the region */
|
|
IntGdiPaintRgn( dc, hrgn );
|
|
GreDeleteObject( hrgn );
|
|
/* Restore the old mapping mode */
|
|
// IntGdiSetMapMode( dc, mapMode );
|
|
// pdcattr->szlViewportExt = ptViewportExt;
|
|
// pdcattr->ptlViewportOrg = ptViewportOrg;
|
|
// pdcattr->szlWindowExt = ptWindowExt;
|
|
// pdcattr->ptlWindowOrg = ptWindowOrg;
|
|
|
|
/* Go to GM_ADVANCED temporarily to restore the world transform */
|
|
graphicsMode = pdcattr->iGraphicsMode;
|
|
// pdcattr->iGraphicsMode = GM_ADVANCED;
|
|
// IntGdiModifyWorldTransform( dc, &xform, MWT_MAX+1 );
|
|
// pdcattr->iGraphicsMode = graphicsMode;
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/* PATH_InitGdiPath
|
|
*
|
|
* Initializes the GdiPath structure.
|
|
*/
|
|
VOID
|
|
FASTCALL
|
|
PATH_InitGdiPath ( PPATH pPath )
|
|
{
|
|
ASSERT(pPath!=NULL);
|
|
|
|
pPath->state=PATH_Null;
|
|
pPath->pPoints=NULL;
|
|
pPath->pFlags=NULL;
|
|
pPath->numEntriesUsed=0;
|
|
pPath->numEntriesAllocated=0;
|
|
}
|
|
|
|
/* PATH_DestroyGdiPath
|
|
*
|
|
* Destroys a GdiPath structure (frees the memory in the arrays).
|
|
*/
|
|
VOID
|
|
FASTCALL
|
|
PATH_DestroyGdiPath ( PPATH pPath )
|
|
{
|
|
ASSERT(pPath!=NULL);
|
|
|
|
if (pPath->pPoints) ExFreePoolWithTag(pPath->pPoints, TAG_PATH);
|
|
if (pPath->pFlags) ExFreePoolWithTag(pPath->pFlags, TAG_PATH);
|
|
}
|
|
|
|
/* PATH_AssignGdiPath
|
|
*
|
|
* Copies the GdiPath structure "pPathSrc" to "pPathDest". A deep copy is
|
|
* performed, i.e. the contents of the pPoints and pFlags arrays are copied,
|
|
* not just the pointers. Since this means that the arrays in pPathDest may
|
|
* need to be resized, pPathDest should have been initialized using
|
|
* PATH_InitGdiPath (in C++, this function would be an assignment operator,
|
|
* not a copy constructor).
|
|
* Returns TRUE if successful, else FALSE.
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_AssignGdiPath ( PPATH pPathDest, const PPATH pPathSrc )
|
|
{
|
|
ASSERT(pPathDest!=NULL && pPathSrc!=NULL);
|
|
|
|
/* Make sure destination arrays are big enough */
|
|
if ( !PATH_ReserveEntries(pPathDest, pPathSrc->numEntriesUsed) )
|
|
return FALSE;
|
|
|
|
/* Perform the copy operation */
|
|
memcpy(pPathDest->pPoints, pPathSrc->pPoints,
|
|
sizeof(POINT)*pPathSrc->numEntriesUsed);
|
|
memcpy(pPathDest->pFlags, pPathSrc->pFlags,
|
|
sizeof(BYTE)*pPathSrc->numEntriesUsed);
|
|
|
|
pPathDest->state=pPathSrc->state;
|
|
pPathDest->numEntriesUsed=pPathSrc->numEntriesUsed;
|
|
pPathDest->newStroke=pPathSrc->newStroke;
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_MoveTo
|
|
*
|
|
* Should be called when a MoveTo is performed on a DC that has an
|
|
* open path. This starts a new stroke. Returns TRUE if successful, else
|
|
* FALSE.
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_MoveTo ( PDC dc )
|
|
{
|
|
PPATH pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
/* Check that path is open */
|
|
if ( pPath->state != PATH_Open )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
/* FIXME: Do we have to call SetLastError? */
|
|
return FALSE;
|
|
}
|
|
/* Start a new stroke */
|
|
pPath->newStroke = TRUE;
|
|
PATH_UnlockPath( pPath );
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_LineTo
|
|
*
|
|
* Should be called when a LineTo is performed on a DC that has an
|
|
* open path. This adds a PT_LINETO entry to the path (and possibly
|
|
* a PT_MOVETO entry, if this is the first LineTo in a stroke).
|
|
* Returns TRUE if successful, else FALSE.
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_LineTo ( PDC dc, INT x, INT y )
|
|
{
|
|
BOOL Ret;
|
|
PPATH pPath;
|
|
POINT point, pointCurPos;
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
/* Check that path is open */
|
|
if ( pPath->state != PATH_Open )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
/* Convert point to device coordinates */
|
|
point.x=x;
|
|
point.y=y;
|
|
CoordLPtoDP ( dc, &point );
|
|
|
|
/* Add a PT_MOVETO if necessary */
|
|
if ( pPath->newStroke )
|
|
{
|
|
pPath->newStroke = FALSE;
|
|
IntGetCurrentPositionEx ( dc, &pointCurPos );
|
|
CoordLPtoDP ( dc, &pointCurPos );
|
|
if ( !PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO) )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/* Add a PT_LINETO entry */
|
|
Ret = PATH_AddEntry(pPath, &point, PT_LINETO);
|
|
PATH_UnlockPath( pPath );
|
|
return Ret;
|
|
}
|
|
|
|
/* PATH_Rectangle
|
|
*
|
|
* Should be called when a call to Rectangle is performed on a DC that has
|
|
* an open path. Returns TRUE if successful, else FALSE.
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_Rectangle ( PDC dc, INT x1, INT y1, INT x2, INT y2 )
|
|
{
|
|
PPATH pPath;
|
|
POINT corners[2], pointTemp;
|
|
INT temp;
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
/* Check that path is open */
|
|
if ( pPath->state != PATH_Open )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
/* Convert points to device coordinates */
|
|
corners[0].x=x1;
|
|
corners[0].y=y1;
|
|
corners[1].x=x2;
|
|
corners[1].y=y2;
|
|
IntLPtoDP ( dc, corners, 2 );
|
|
|
|
/* Make sure first corner is top left and second corner is bottom right */
|
|
if ( corners[0].x > corners[1].x )
|
|
{
|
|
temp=corners[0].x;
|
|
corners[0].x=corners[1].x;
|
|
corners[1].x=temp;
|
|
}
|
|
if ( corners[0].y > corners[1].y )
|
|
{
|
|
temp=corners[0].y;
|
|
corners[0].y=corners[1].y;
|
|
corners[1].y=temp;
|
|
}
|
|
|
|
/* In GM_COMPATIBLE, don't include bottom and right edges */
|
|
if (dc->pdcattr->iGraphicsMode == GM_COMPATIBLE)
|
|
{
|
|
corners[1].x--;
|
|
corners[1].y--;
|
|
}
|
|
|
|
/* Close any previous figure */
|
|
IntGdiCloseFigure(pPath);
|
|
|
|
/* Add four points to the path */
|
|
pointTemp.x=corners[1].x;
|
|
pointTemp.y=corners[0].y;
|
|
if ( !PATH_AddEntry(pPath, &pointTemp, PT_MOVETO) )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
if ( !PATH_AddEntry(pPath, corners, PT_LINETO) )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
pointTemp.x=corners[0].x;
|
|
pointTemp.y=corners[1].y;
|
|
if ( !PATH_AddEntry(pPath, &pointTemp, PT_LINETO) )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
if ( !PATH_AddEntry(pPath, corners+1, PT_LINETO) )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
/* Close the rectangle figure */
|
|
IntGdiCloseFigure(pPath) ;
|
|
PATH_UnlockPath( pPath );
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_RoundRect
|
|
*
|
|
* Should be called when a call to RoundRect is performed on a DC that has
|
|
* an open path. Returns TRUE if successful, else FALSE.
|
|
*
|
|
* FIXME: it adds the same entries to the path as windows does, but there
|
|
* is an error in the bezier drawing code so that there are small pixel-size
|
|
* gaps when the resulting path is drawn by StrokePath()
|
|
*/
|
|
BOOL FASTCALL PATH_RoundRect(DC *dc, INT x1, INT y1, INT x2, INT y2, INT ell_width, INT ell_height)
|
|
{
|
|
PPATH pPath;
|
|
POINT corners[2], pointTemp;
|
|
FLOAT_POINT ellCorners[2];
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
if(!PATH_CheckCorners(dc,corners,x1,y1,x2,y2))
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
/* Add points to the roundrect path */
|
|
ellCorners[0].x = corners[1].x-ell_width;
|
|
ellCorners[0].y = corners[0].y;
|
|
ellCorners[1].x = corners[1].x;
|
|
ellCorners[1].y = corners[0].y+ell_height;
|
|
if(!PATH_DoArcPart(pPath, ellCorners, 0, -M_PI_2, PT_MOVETO))
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
pointTemp.x = corners[0].x+ell_width/2;
|
|
pointTemp.y = corners[0].y;
|
|
if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
ellCorners[0].x = corners[0].x;
|
|
ellCorners[1].x = corners[0].x+ell_width;
|
|
if(!PATH_DoArcPart(pPath, ellCorners, -M_PI_2, -M_PI, FALSE))
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
pointTemp.x = corners[0].x;
|
|
pointTemp.y = corners[1].y-ell_height/2;
|
|
if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
ellCorners[0].y = corners[1].y-ell_height;
|
|
ellCorners[1].y = corners[1].y;
|
|
if(!PATH_DoArcPart(pPath, ellCorners, M_PI, M_PI_2, FALSE))
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
pointTemp.x = corners[1].x-ell_width/2;
|
|
pointTemp.y = corners[1].y;
|
|
if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
ellCorners[0].x = corners[1].x-ell_width;
|
|
ellCorners[1].x = corners[1].x;
|
|
if(!PATH_DoArcPart(pPath, ellCorners, M_PI_2, 0, FALSE))
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
IntGdiCloseFigure(pPath);
|
|
PATH_UnlockPath( pPath );
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_Ellipse
|
|
*
|
|
* Should be called when a call to Ellipse is performed on a DC that has
|
|
* an open path. This adds four Bezier splines representing the ellipse
|
|
* to the path. Returns TRUE if successful, else FALSE.
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_Ellipse ( PDC dc, INT x1, INT y1, INT x2, INT y2 )
|
|
{
|
|
PPATH pPath;
|
|
/* TODO: This should probably be revised to call PATH_AngleArc */
|
|
/* (once it exists) */
|
|
BOOL Ret = PATH_Arc ( dc, x1, y1, x2, y2, x1, (y1+y2)/2, x1, (y1+y2)/2, GdiTypeArc );
|
|
if (Ret)
|
|
{
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
IntGdiCloseFigure(pPath);
|
|
PATH_UnlockPath( pPath );
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
/* PATH_Arc
|
|
*
|
|
* Should be called when a call to Arc is performed on a DC that has
|
|
* an open path. This adds up to five Bezier splines representing the arc
|
|
* to the path. When 'lines' is 1, we add 1 extra line to get a chord,
|
|
* when 'lines' is 2, we add 2 extra lines to get a pie, and when 'lines' is
|
|
* -1 we add 1 extra line from the current DC position to the starting position
|
|
* of the arc before drawing the arc itself (arcto). Returns TRUE if successful,
|
|
* else FALSE.
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_Arc ( PDC dc, INT x1, INT y1, INT x2, INT y2,
|
|
INT xStart, INT yStart, INT xEnd, INT yEnd, INT lines)
|
|
{
|
|
double angleStart, angleEnd, angleStartQuadrant, angleEndQuadrant=0.0;
|
|
/* Initialize angleEndQuadrant to silence gcc's warning */
|
|
double x, y;
|
|
FLOAT_POINT corners[2], pointStart, pointEnd;
|
|
POINT centre, pointCurPos;
|
|
BOOL start, end, Ret = TRUE;
|
|
INT temp;
|
|
BOOL clockwise;
|
|
PPATH pPath;
|
|
|
|
/* FIXME: This function should check for all possible error returns */
|
|
/* FIXME: Do we have to respect newStroke? */
|
|
|
|
ASSERT ( dc );
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
clockwise = ((dc->dclevel.flPath & DCPATH_CLOCKWISE) != 0);
|
|
|
|
/* Check that path is open */
|
|
if ( pPath->state != PATH_Open )
|
|
{
|
|
Ret = FALSE;
|
|
goto ArcExit;
|
|
}
|
|
|
|
/* Check for zero height / width */
|
|
/* FIXME: Only in GM_COMPATIBLE? */
|
|
if ( x1==x2 || y1==y2 )
|
|
{
|
|
Ret = TRUE;
|
|
goto ArcExit;
|
|
}
|
|
/* Convert points to device coordinates */
|
|
corners[0].x=(FLOAT)x1;
|
|
corners[0].y=(FLOAT)y1;
|
|
corners[1].x=(FLOAT)x2;
|
|
corners[1].y=(FLOAT)y2;
|
|
pointStart.x=(FLOAT)xStart;
|
|
pointStart.y=(FLOAT)yStart;
|
|
pointEnd.x=(FLOAT)xEnd;
|
|
pointEnd.y=(FLOAT)yEnd;
|
|
INTERNAL_LPTODP_FLOAT(dc, corners);
|
|
INTERNAL_LPTODP_FLOAT(dc, corners+1);
|
|
INTERNAL_LPTODP_FLOAT(dc, &pointStart);
|
|
INTERNAL_LPTODP_FLOAT(dc, &pointEnd);
|
|
|
|
/* Make sure first corner is top left and second corner is bottom right */
|
|
if ( corners[0].x > corners[1].x )
|
|
{
|
|
temp=corners[0].x;
|
|
corners[0].x=corners[1].x;
|
|
corners[1].x=temp;
|
|
}
|
|
if ( corners[0].y > corners[1].y )
|
|
{
|
|
temp=corners[0].y;
|
|
corners[0].y=corners[1].y;
|
|
corners[1].y=temp;
|
|
}
|
|
|
|
/* Compute start and end angle */
|
|
PATH_NormalizePoint(corners, &pointStart, &x, &y);
|
|
angleStart=atan2(y, x);
|
|
PATH_NormalizePoint(corners, &pointEnd, &x, &y);
|
|
angleEnd=atan2(y, x);
|
|
|
|
/* Make sure the end angle is "on the right side" of the start angle */
|
|
if ( clockwise )
|
|
{
|
|
if ( angleEnd <= angleStart )
|
|
{
|
|
angleEnd+=2*M_PI;
|
|
ASSERT(angleEnd>=angleStart);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(angleEnd>=angleStart)
|
|
{
|
|
angleEnd-=2*M_PI;
|
|
ASSERT(angleEnd<=angleStart);
|
|
}
|
|
}
|
|
|
|
/* In GM_COMPATIBLE, don't include bottom and right edges */
|
|
if (dc->pdcattr->iGraphicsMode == GM_COMPATIBLE )
|
|
{
|
|
corners[1].x--;
|
|
corners[1].y--;
|
|
}
|
|
|
|
/* arcto: Add a PT_MOVETO only if this is the first entry in a stroke */
|
|
if(lines==GdiTypeArcTo && pPath->newStroke) // -1
|
|
{
|
|
pPath->newStroke=FALSE;
|
|
IntGetCurrentPositionEx ( dc, &pointCurPos );
|
|
CoordLPtoDP(dc, &pointCurPos);
|
|
if(!PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO))
|
|
{
|
|
Ret = FALSE;
|
|
goto ArcExit;
|
|
}
|
|
}
|
|
|
|
/* Add the arc to the path with one Bezier spline per quadrant that the
|
|
* arc spans */
|
|
start=TRUE;
|
|
end=FALSE;
|
|
do
|
|
{
|
|
/* Determine the start and end angles for this quadrant */
|
|
if(start)
|
|
{
|
|
angleStartQuadrant=angleStart;
|
|
if ( clockwise )
|
|
angleEndQuadrant=(floor(angleStart/M_PI_2)+1.0)*M_PI_2;
|
|
else
|
|
angleEndQuadrant=(ceil(angleStart/M_PI_2)-1.0)*M_PI_2;
|
|
}
|
|
else
|
|
{
|
|
angleStartQuadrant=angleEndQuadrant;
|
|
if ( clockwise )
|
|
angleEndQuadrant+=M_PI_2;
|
|
else
|
|
angleEndQuadrant-=M_PI_2;
|
|
}
|
|
|
|
/* Have we reached the last part of the arc? */
|
|
if ( (clockwise && angleEnd<angleEndQuadrant)
|
|
|| (!clockwise && angleEnd>angleEndQuadrant)
|
|
)
|
|
{
|
|
/* Adjust the end angle for this quadrant */
|
|
angleEndQuadrant = angleEnd;
|
|
end = TRUE;
|
|
}
|
|
|
|
/* Add the Bezier spline to the path */
|
|
PATH_DoArcPart ( pPath, corners, angleStartQuadrant, angleEndQuadrant,
|
|
start ? (lines==GdiTypeArcTo ? PT_LINETO : PT_MOVETO) : FALSE ); // -1
|
|
start = FALSE;
|
|
} while(!end);
|
|
|
|
/* chord: close figure. pie: add line and close figure */
|
|
if (lines==GdiTypeChord) // 1
|
|
{
|
|
IntGdiCloseFigure(pPath);
|
|
}
|
|
else if (lines==GdiTypePie) // 2
|
|
{
|
|
centre.x = (corners[0].x+corners[1].x)/2;
|
|
centre.y = (corners[0].y+corners[1].y)/2;
|
|
if(!PATH_AddEntry(pPath, ¢re, PT_LINETO | PT_CLOSEFIGURE))
|
|
Ret = FALSE;
|
|
}
|
|
ArcExit:
|
|
PATH_UnlockPath( pPath );
|
|
return Ret;
|
|
}
|
|
|
|
BOOL
|
|
FASTCALL
|
|
PATH_PolyBezierTo ( PDC dc, const POINT *pts, DWORD cbPoints )
|
|
{
|
|
POINT pt;
|
|
ULONG i;
|
|
PPATH pPath;
|
|
|
|
ASSERT ( dc );
|
|
ASSERT ( pts );
|
|
ASSERT ( cbPoints );
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
/* Check that path is open */
|
|
if ( pPath->state != PATH_Open )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
/* Add a PT_MOVETO if necessary */
|
|
if ( pPath->newStroke )
|
|
{
|
|
pPath->newStroke=FALSE;
|
|
IntGetCurrentPositionEx ( dc, &pt );
|
|
CoordLPtoDP ( dc, &pt );
|
|
if ( !PATH_AddEntry(pPath, &pt, PT_MOVETO) )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
for(i = 0; i < cbPoints; i++)
|
|
{
|
|
pt = pts[i];
|
|
CoordLPtoDP ( dc, &pt );
|
|
PATH_AddEntry(pPath, &pt, PT_BEZIERTO);
|
|
}
|
|
PATH_UnlockPath( pPath );
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL
|
|
FASTCALL
|
|
PATH_PolyBezier ( PDC dc, const POINT *pts, DWORD cbPoints )
|
|
{
|
|
POINT pt;
|
|
ULONG i;
|
|
PPATH pPath;
|
|
|
|
ASSERT ( dc );
|
|
ASSERT ( pts );
|
|
ASSERT ( cbPoints );
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
/* Check that path is open */
|
|
if ( pPath->state != PATH_Open )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
for ( i = 0; i < cbPoints; i++ )
|
|
{
|
|
pt = pts[i];
|
|
CoordLPtoDP ( dc, &pt );
|
|
PATH_AddEntry ( pPath, &pt, (i == 0) ? PT_MOVETO : PT_BEZIERTO );
|
|
}
|
|
PATH_UnlockPath( pPath );
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL
|
|
FASTCALL
|
|
PATH_Polyline ( PDC dc, const POINT *pts, DWORD cbPoints )
|
|
{
|
|
POINT pt;
|
|
ULONG i;
|
|
PPATH pPath;
|
|
|
|
ASSERT ( dc );
|
|
ASSERT ( pts );
|
|
ASSERT ( cbPoints );
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
/* Check that path is open */
|
|
if ( pPath->state != PATH_Open )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
for ( i = 0; i < cbPoints; i++ )
|
|
{
|
|
pt = pts[i];
|
|
CoordLPtoDP ( dc, &pt );
|
|
PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_LINETO);
|
|
}
|
|
PATH_UnlockPath( pPath );
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL
|
|
FASTCALL
|
|
PATH_PolylineTo ( PDC dc, const POINT *pts, DWORD cbPoints )
|
|
{
|
|
POINT pt;
|
|
ULONG i;
|
|
PPATH pPath;
|
|
|
|
ASSERT ( dc );
|
|
ASSERT ( pts );
|
|
ASSERT ( cbPoints );
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
/* Check that path is open */
|
|
if ( pPath->state != PATH_Open )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
/* Add a PT_MOVETO if necessary */
|
|
if ( pPath->newStroke )
|
|
{
|
|
pPath->newStroke = FALSE;
|
|
IntGetCurrentPositionEx ( dc, &pt );
|
|
CoordLPtoDP ( dc, &pt );
|
|
if ( !PATH_AddEntry(pPath, &pt, PT_MOVETO) )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
for(i = 0; i < cbPoints; i++)
|
|
{
|
|
pt = pts[i];
|
|
CoordLPtoDP ( dc, &pt );
|
|
PATH_AddEntry(pPath, &pt, PT_LINETO);
|
|
}
|
|
PATH_UnlockPath( pPath );
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
BOOL
|
|
FASTCALL
|
|
PATH_Polygon ( PDC dc, const POINT *pts, DWORD cbPoints )
|
|
{
|
|
POINT pt;
|
|
ULONG i;
|
|
PPATH pPath;
|
|
|
|
ASSERT ( dc );
|
|
ASSERT ( pts );
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
/* Check that path is open */
|
|
if ( pPath->state != PATH_Open )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
for(i = 0; i < cbPoints; i++)
|
|
{
|
|
pt = pts[i];
|
|
CoordLPtoDP ( dc, &pt );
|
|
PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO :
|
|
((i == cbPoints-1) ? PT_LINETO | PT_CLOSEFIGURE :
|
|
PT_LINETO));
|
|
}
|
|
PATH_UnlockPath( pPath );
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL
|
|
FASTCALL
|
|
PATH_PolyPolygon ( PDC dc, const POINT* pts, const INT* counts, UINT polygons )
|
|
{
|
|
POINT pt, startpt;
|
|
ULONG poly, point, i;
|
|
PPATH pPath;
|
|
|
|
ASSERT ( dc );
|
|
ASSERT ( pts );
|
|
ASSERT ( counts );
|
|
ASSERT ( polygons );
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
/* Check that path is open */
|
|
if ( pPath->state != PATH_Open )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
for(i = 0, poly = 0; poly < polygons; poly++)
|
|
{
|
|
for(point = 0; point < (ULONG) counts[poly]; point++, i++)
|
|
{
|
|
pt = pts[i];
|
|
CoordLPtoDP ( dc, &pt );
|
|
if(point == 0) startpt = pt;
|
|
PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO);
|
|
}
|
|
/* win98 adds an extra line to close the figure for some reason */
|
|
PATH_AddEntry(pPath, &startpt, PT_LINETO | PT_CLOSEFIGURE);
|
|
}
|
|
PATH_UnlockPath( pPath );
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL
|
|
FASTCALL
|
|
PATH_PolyPolyline ( PDC dc, const POINT* pts, const DWORD* counts, DWORD polylines )
|
|
{
|
|
POINT pt;
|
|
ULONG poly, point, i;
|
|
PPATH pPath;
|
|
|
|
ASSERT ( dc );
|
|
ASSERT ( pts );
|
|
ASSERT ( counts );
|
|
ASSERT ( polylines );
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
/* Check that path is open */
|
|
if ( pPath->state != PATH_Open )
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
for(i = 0, poly = 0; poly < polylines; poly++)
|
|
{
|
|
for(point = 0; point < counts[poly]; point++, i++)
|
|
{
|
|
pt = pts[i];
|
|
CoordLPtoDP ( dc, &pt );
|
|
PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO);
|
|
}
|
|
}
|
|
PATH_UnlockPath( pPath );
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* PATH_CheckCorners
|
|
*
|
|
* Helper function for PATH_RoundRect() and PATH_Rectangle()
|
|
*/
|
|
BOOL PATH_CheckCorners(DC *dc, POINT corners[], INT x1, INT y1, INT x2, INT y2)
|
|
{
|
|
INT temp;
|
|
PDC_ATTR pdcattr = dc->pdcattr;
|
|
|
|
/* Convert points to device coordinates */
|
|
corners[0].x=x1;
|
|
corners[0].y=y1;
|
|
corners[1].x=x2;
|
|
corners[1].y=y2;
|
|
CoordLPtoDP(dc, &corners[0]);
|
|
CoordLPtoDP(dc, &corners[1]);
|
|
|
|
/* Make sure first corner is top left and second corner is bottom right */
|
|
if(corners[0].x>corners[1].x)
|
|
{
|
|
temp=corners[0].x;
|
|
corners[0].x=corners[1].x;
|
|
corners[1].x=temp;
|
|
}
|
|
if(corners[0].y>corners[1].y)
|
|
{
|
|
temp=corners[0].y;
|
|
corners[0].y=corners[1].y;
|
|
corners[1].y=temp;
|
|
}
|
|
|
|
/* In GM_COMPATIBLE, don't include bottom and right edges */
|
|
if(pdcattr->iGraphicsMode==GM_COMPATIBLE)
|
|
{
|
|
corners[1].x--;
|
|
corners[1].y--;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* PATH_AddFlatBezier
|
|
*
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_AddFlatBezier ( PPATH pPath, POINT *pt, BOOL closed )
|
|
{
|
|
POINT *pts;
|
|
INT no, i;
|
|
|
|
pts = GDI_Bezier( pt, 4, &no );
|
|
if ( !pts ) return FALSE;
|
|
|
|
for(i = 1; i < no; i++)
|
|
PATH_AddEntry(pPath, &pts[i], (i == no-1 && closed) ? PT_LINETO | PT_CLOSEFIGURE : PT_LINETO);
|
|
|
|
ExFreePoolWithTag(pts, TAG_BEZIER);
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_FlattenPath
|
|
*
|
|
* Replaces Beziers with line segments
|
|
*
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_FlattenPath(PPATH pPath)
|
|
{
|
|
PATH newPath;
|
|
INT srcpt;
|
|
|
|
RtlZeroMemory(&newPath, sizeof(newPath));
|
|
newPath.state = PATH_Open;
|
|
for(srcpt = 0; srcpt < pPath->numEntriesUsed; srcpt++) {
|
|
switch(pPath->pFlags[srcpt] & ~PT_CLOSEFIGURE) {
|
|
case PT_MOVETO:
|
|
case PT_LINETO:
|
|
PATH_AddEntry(&newPath, &pPath->pPoints[srcpt], pPath->pFlags[srcpt]);
|
|
break;
|
|
case PT_BEZIERTO:
|
|
PATH_AddFlatBezier(&newPath, &pPath->pPoints[srcpt-1], pPath->pFlags[srcpt+2] & PT_CLOSEFIGURE);
|
|
srcpt += 2;
|
|
break;
|
|
}
|
|
}
|
|
newPath.state = PATH_Closed;
|
|
PATH_AssignGdiPath(pPath, &newPath);
|
|
PATH_EmptyPath(&newPath);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* PATH_PathToRegion
|
|
*
|
|
* Creates a region from the specified path using the specified polygon
|
|
* filling mode. The path is left unchanged. A handle to the region that
|
|
* was created is stored in *pHrgn. If successful, TRUE is returned; if an
|
|
* error occurs, SetLastError is called with the appropriate value and
|
|
* FALSE is returned.
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_PathToRegion ( PPATH pPath, INT nPolyFillMode, HRGN *pHrgn )
|
|
{
|
|
int numStrokes, iStroke, i;
|
|
PULONG pNumPointsInStroke;
|
|
HRGN hrgn = 0;
|
|
|
|
ASSERT(pPath!=NULL);
|
|
ASSERT(pHrgn!=NULL);
|
|
|
|
PATH_FlattenPath ( pPath );
|
|
|
|
/* FIXME: What happens when number of points is zero? */
|
|
|
|
/* First pass: Find out how many strokes there are in the path */
|
|
/* FIXME: We could eliminate this with some bookkeeping in GdiPath */
|
|
numStrokes=0;
|
|
for(i=0; i<pPath->numEntriesUsed; i++)
|
|
if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO)
|
|
numStrokes++;
|
|
|
|
/* Allocate memory for number-of-points-in-stroke array */
|
|
pNumPointsInStroke = ExAllocatePoolWithTag(PagedPool, sizeof(ULONG) * numStrokes, TAG_PATH);
|
|
if(!pNumPointsInStroke)
|
|
{
|
|
SetLastWin32Error(ERROR_NOT_ENOUGH_MEMORY);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Second pass: remember number of points in each polygon */
|
|
iStroke=-1; /* Will get incremented to 0 at beginning of first stroke */
|
|
for(i=0; i<pPath->numEntriesUsed; i++)
|
|
{
|
|
/* Is this the beginning of a new stroke? */
|
|
if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO)
|
|
{
|
|
iStroke++;
|
|
pNumPointsInStroke[iStroke]=0;
|
|
}
|
|
|
|
pNumPointsInStroke[iStroke]++;
|
|
}
|
|
|
|
/* Create a region from the strokes */
|
|
hrgn = IntCreatePolyPolygonRgn( pPath->pPoints,
|
|
pNumPointsInStroke,
|
|
numStrokes,
|
|
nPolyFillMode);
|
|
if(hrgn==(HRGN)0)
|
|
{
|
|
SetLastWin32Error(ERROR_NOT_ENOUGH_MEMORY);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Free memory for number-of-points-in-stroke array */
|
|
ExFreePoolWithTag(pNumPointsInStroke, TAG_PATH);
|
|
|
|
/* Success! */
|
|
*pHrgn=hrgn;
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_EmptyPath
|
|
*
|
|
* Removes all entries from the path and sets the path state to PATH_Null.
|
|
*/
|
|
VOID
|
|
FASTCALL
|
|
PATH_EmptyPath ( PPATH pPath )
|
|
{
|
|
ASSERT(pPath!=NULL);
|
|
|
|
pPath->state=PATH_Null;
|
|
pPath->numEntriesUsed=0;
|
|
}
|
|
|
|
/* PATH_AddEntry
|
|
*
|
|
* Adds an entry to the path. For "flags", pass either PT_MOVETO, PT_LINETO
|
|
* or PT_BEZIERTO, optionally ORed with PT_CLOSEFIGURE. Returns TRUE if
|
|
* successful, FALSE otherwise (e.g. if not enough memory was available).
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_AddEntry ( PPATH pPath, const POINT *pPoint, BYTE flags )
|
|
{
|
|
ASSERT(pPath!=NULL);
|
|
|
|
/* FIXME: If newStroke is true, perhaps we want to check that we're
|
|
* getting a PT_MOVETO
|
|
*/
|
|
|
|
/* Check that path is open */
|
|
if ( pPath->state != PATH_Open )
|
|
return FALSE;
|
|
|
|
/* Reserve enough memory for an extra path entry */
|
|
if ( !PATH_ReserveEntries(pPath, pPath->numEntriesUsed+1) )
|
|
return FALSE;
|
|
|
|
/* Store information in path entry */
|
|
pPath->pPoints[pPath->numEntriesUsed]=*pPoint;
|
|
pPath->pFlags[pPath->numEntriesUsed]=flags;
|
|
|
|
/* If this is PT_CLOSEFIGURE, we have to start a new stroke next time */
|
|
if((flags & PT_CLOSEFIGURE) == PT_CLOSEFIGURE)
|
|
pPath->newStroke=TRUE;
|
|
|
|
/* Increment entry count */
|
|
pPath->numEntriesUsed++;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_ReserveEntries
|
|
*
|
|
* Ensures that at least "numEntries" entries (for points and flags) have
|
|
* been allocated; allocates larger arrays and copies the existing entries
|
|
* to those arrays, if necessary. Returns TRUE if successful, else FALSE.
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_ReserveEntries ( PPATH pPath, INT numEntries )
|
|
{
|
|
INT numEntriesToAllocate;
|
|
POINT *pPointsNew;
|
|
BYTE *pFlagsNew;
|
|
|
|
ASSERT(pPath!=NULL);
|
|
ASSERT(numEntries>=0);
|
|
|
|
/* Do we have to allocate more memory? */
|
|
if(numEntries > pPath->numEntriesAllocated)
|
|
{
|
|
/* Find number of entries to allocate. We let the size of the array
|
|
* grow exponentially, since that will guarantee linear time
|
|
* complexity. */
|
|
if(pPath->numEntriesAllocated)
|
|
{
|
|
numEntriesToAllocate=pPath->numEntriesAllocated;
|
|
while(numEntriesToAllocate<numEntries)
|
|
numEntriesToAllocate=numEntriesToAllocate*GROW_FACTOR_NUMER/GROW_FACTOR_DENOM;
|
|
} else
|
|
numEntriesToAllocate=numEntries;
|
|
|
|
/* Allocate new arrays */
|
|
pPointsNew=(POINT *)ExAllocatePoolWithTag(PagedPool, numEntriesToAllocate * sizeof(POINT), TAG_PATH);
|
|
if(!pPointsNew)
|
|
return FALSE;
|
|
pFlagsNew=(BYTE *)ExAllocatePoolWithTag(PagedPool, numEntriesToAllocate * sizeof(BYTE), TAG_PATH);
|
|
if(!pFlagsNew)
|
|
{
|
|
ExFreePoolWithTag(pPointsNew, TAG_PATH);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Copy old arrays to new arrays and discard old arrays */
|
|
if(pPath->pPoints)
|
|
{
|
|
ASSERT(pPath->pFlags);
|
|
|
|
memcpy(pPointsNew, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed);
|
|
memcpy(pFlagsNew, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed);
|
|
|
|
ExFreePoolWithTag(pPath->pPoints, TAG_PATH);
|
|
ExFreePoolWithTag(pPath->pFlags, TAG_PATH);
|
|
}
|
|
pPath->pPoints=pPointsNew;
|
|
pPath->pFlags=pFlagsNew;
|
|
pPath->numEntriesAllocated=numEntriesToAllocate;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_DoArcPart
|
|
*
|
|
* Creates a Bezier spline that corresponds to part of an arc and appends the
|
|
* corresponding points to the path. The start and end angles are passed in
|
|
* "angleStart" and "angleEnd"; these angles should span a quarter circle
|
|
* at most. If "startEntryType" is non-zero, an entry of that type for the first
|
|
* control point is added to the path; otherwise, it is assumed that the current
|
|
* position is equal to the first control point.
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_DoArcPart ( PPATH pPath, FLOAT_POINT corners[],
|
|
double angleStart, double angleEnd, BYTE startEntryType )
|
|
{
|
|
double halfAngle, a;
|
|
double xNorm[4], yNorm[4];
|
|
POINT point;
|
|
int i;
|
|
|
|
ASSERT(fabs(angleEnd-angleStart)<=M_PI_2);
|
|
|
|
/* FIXME: Is there an easier way of computing this? */
|
|
|
|
/* Compute control points */
|
|
halfAngle=(angleEnd-angleStart)/2.0;
|
|
if(fabs(halfAngle)>1e-8)
|
|
{
|
|
a=4.0/3.0*(1-cos(halfAngle))/sin(halfAngle);
|
|
xNorm[0]=cos(angleStart);
|
|
yNorm[0]=sin(angleStart);
|
|
xNorm[1]=xNorm[0] - a*yNorm[0];
|
|
yNorm[1]=yNorm[0] + a*xNorm[0];
|
|
xNorm[3]=cos(angleEnd);
|
|
yNorm[3]=sin(angleEnd);
|
|
xNorm[2]=xNorm[3] + a*yNorm[3];
|
|
yNorm[2]=yNorm[3] - a*xNorm[3];
|
|
} else
|
|
for(i=0; i<4; i++)
|
|
{
|
|
xNorm[i]=cos(angleStart);
|
|
yNorm[i]=sin(angleStart);
|
|
}
|
|
|
|
/* Add starting point to path if desired */
|
|
if(startEntryType)
|
|
{
|
|
PATH_ScaleNormalizedPoint(corners, xNorm[0], yNorm[0], &point);
|
|
if(!PATH_AddEntry(pPath, &point, startEntryType))
|
|
return FALSE;
|
|
}
|
|
|
|
/* Add remaining control points */
|
|
for(i=1; i<4; i++)
|
|
{
|
|
PATH_ScaleNormalizedPoint(corners, xNorm[i], yNorm[i], &point);
|
|
if(!PATH_AddEntry(pPath, &point, PT_BEZIERTO))
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_ScaleNormalizedPoint
|
|
*
|
|
* Scales a normalized point (x, y) with respect to the box whose corners are
|
|
* passed in "corners". The point is stored in "*pPoint". The normalized
|
|
* coordinates (-1.0, -1.0) correspond to corners[0], the coordinates
|
|
* (1.0, 1.0) correspond to corners[1].
|
|
*/
|
|
VOID
|
|
FASTCALL
|
|
PATH_ScaleNormalizedPoint ( FLOAT_POINT corners[], double x,
|
|
double y, POINT *pPoint )
|
|
{
|
|
ASSERT ( corners );
|
|
ASSERT ( pPoint );
|
|
pPoint->x=GDI_ROUND( (double)corners[0].x + (double)(corners[1].x-corners[0].x)*0.5*(x+1.0) );
|
|
pPoint->y=GDI_ROUND( (double)corners[0].y + (double)(corners[1].y-corners[0].y)*0.5*(y+1.0) );
|
|
}
|
|
|
|
/* PATH_NormalizePoint
|
|
*
|
|
* Normalizes a point with respect to the box whose corners are passed in
|
|
* corners. The normalized coordinates are stored in *pX and *pY.
|
|
*/
|
|
VOID
|
|
FASTCALL
|
|
PATH_NormalizePoint ( FLOAT_POINT corners[],
|
|
const FLOAT_POINT *pPoint,
|
|
double *pX, double *pY)
|
|
{
|
|
ASSERT ( corners );
|
|
ASSERT ( pPoint );
|
|
ASSERT ( pX );
|
|
ASSERT ( pY );
|
|
*pX=(double)(pPoint->x-corners[0].x)/(double)(corners[1].x-corners[0].x) * 2.0 - 1.0;
|
|
*pY=(double)(pPoint->y-corners[0].y)/(double)(corners[1].y-corners[0].y) * 2.0 - 1.0;
|
|
}
|
|
|
|
|
|
BOOL FASTCALL PATH_StrokePath(DC *dc, PPATH pPath)
|
|
{
|
|
BOOL ret = FALSE;
|
|
INT i=0;
|
|
INT nLinePts, nAlloc;
|
|
POINT *pLinePts = NULL;
|
|
POINT ptViewportOrg, ptWindowOrg;
|
|
SIZE szViewportExt, szWindowExt;
|
|
DWORD mapMode, graphicsMode;
|
|
XFORM xform;
|
|
PDC_ATTR pdcattr = dc->pdcattr;
|
|
|
|
DPRINT("Enter %s\n", __FUNCTION__);
|
|
|
|
if (pPath->state != PATH_Closed)
|
|
return FALSE;
|
|
|
|
/* Save the mapping mode info */
|
|
mapMode = pdcattr->iMapMode;
|
|
|
|
DC_vUpdateViewportExt(dc);
|
|
szViewportExt = dc->pdcattr->szlViewportExt;
|
|
ptViewportOrg = dc->pdcattr->ptlViewportOrg;
|
|
szWindowExt = dc->pdcattr->szlWindowExt;
|
|
ptWindowOrg = dc->pdcattr->ptlWindowOrg;
|
|
|
|
MatrixS2XForm(&xform, &dc->dclevel.mxWorldToPage);
|
|
|
|
/* Set MM_TEXT */
|
|
pdcattr->iMapMode = MM_TEXT;
|
|
pdcattr->ptlViewportOrg.x = 0;
|
|
pdcattr->ptlViewportOrg.y = 0;
|
|
pdcattr->ptlWindowOrg.x = 0;
|
|
pdcattr->ptlWindowOrg.y = 0;
|
|
graphicsMode = pdcattr->iGraphicsMode;
|
|
pdcattr->iGraphicsMode = GM_ADVANCED;
|
|
IntGdiModifyWorldTransform(dc, &xform, MWT_IDENTITY);
|
|
pdcattr->iGraphicsMode = graphicsMode;
|
|
|
|
/* Allocate enough memory for the worst case without beziers (one PT_MOVETO
|
|
* and the rest PT_LINETO with PT_CLOSEFIGURE at the end) plus some buffer
|
|
* space in case we get one to keep the number of reallocations small. */
|
|
nAlloc = pPath->numEntriesUsed + 1 + 300;
|
|
pLinePts = ExAllocatePoolWithTag(PagedPool, nAlloc * sizeof(POINT), TAG_PATH);
|
|
if(!pLinePts)
|
|
{
|
|
DPRINT1("Can't allocate pool!\n");
|
|
SetLastWin32Error(ERROR_NOT_ENOUGH_MEMORY);
|
|
goto end;
|
|
}
|
|
nLinePts = 0;
|
|
|
|
for(i = 0; i < pPath->numEntriesUsed; i++)
|
|
{
|
|
if((i == 0 || (pPath->pFlags[i-1] & PT_CLOSEFIGURE))
|
|
&& (pPath->pFlags[i] != PT_MOVETO))
|
|
{
|
|
DPRINT1("Expected PT_MOVETO %s, got path flag %d\n",
|
|
i == 0 ? "as first point" : "after PT_CLOSEFIGURE",
|
|
(INT)pPath->pFlags[i]);
|
|
goto end;
|
|
}
|
|
|
|
switch(pPath->pFlags[i])
|
|
{
|
|
case PT_MOVETO:
|
|
DPRINT("Got PT_MOVETO (%ld, %ld)\n",
|
|
pPath->pPoints[i].x, pPath->pPoints[i].y);
|
|
if(nLinePts >= 2) IntGdiPolyline(dc, pLinePts, nLinePts);
|
|
nLinePts = 0;
|
|
pLinePts[nLinePts++] = pPath->pPoints[i];
|
|
break;
|
|
case PT_LINETO:
|
|
case (PT_LINETO | PT_CLOSEFIGURE):
|
|
DPRINT("Got PT_LINETO (%ld, %ld)\n",
|
|
pPath->pPoints[i].x, pPath->pPoints[i].y);
|
|
pLinePts[nLinePts++] = pPath->pPoints[i];
|
|
break;
|
|
case PT_BEZIERTO:
|
|
DPRINT("Got PT_BEZIERTO\n");
|
|
if(pPath->pFlags[i+1] != PT_BEZIERTO ||
|
|
(pPath->pFlags[i+2] & ~PT_CLOSEFIGURE) != PT_BEZIERTO)
|
|
{
|
|
DPRINT1("Path didn't contain 3 successive PT_BEZIERTOs\n");
|
|
ret = FALSE;
|
|
goto end;
|
|
}
|
|
else
|
|
{
|
|
INT nBzrPts, nMinAlloc;
|
|
POINT *pBzrPts = GDI_Bezier(&pPath->pPoints[i-1], 4, &nBzrPts);
|
|
/* Make sure we have allocated enough memory for the lines of
|
|
* this bezier and the rest of the path, assuming we won't get
|
|
* another one (since we won't reallocate again then). */
|
|
nMinAlloc = nLinePts + (pPath->numEntriesUsed - i) + nBzrPts;
|
|
if(nAlloc < nMinAlloc)
|
|
{
|
|
// Reallocate memory
|
|
|
|
POINT *Realloc = NULL;
|
|
nAlloc = nMinAlloc * 2;
|
|
|
|
Realloc = ExAllocatePoolWithTag(PagedPool,
|
|
nAlloc * sizeof(POINT),
|
|
TAG_PATH);
|
|
|
|
if(!Realloc)
|
|
{
|
|
DPRINT1("Can't allocate pool!\n");
|
|
goto end;
|
|
}
|
|
|
|
memcpy(Realloc, pLinePts, nLinePts*sizeof(POINT));
|
|
ExFreePoolWithTag(pLinePts, TAG_PATH);
|
|
pLinePts = Realloc;
|
|
}
|
|
memcpy(&pLinePts[nLinePts], &pBzrPts[1], (nBzrPts - 1) * sizeof(POINT));
|
|
nLinePts += nBzrPts - 1;
|
|
ExFreePoolWithTag(pBzrPts, TAG_BEZIER);
|
|
i += 2;
|
|
}
|
|
break;
|
|
default:
|
|
DPRINT1("Got path flag %d (not supported)\n", (INT)pPath->pFlags[i]);
|
|
goto end;
|
|
}
|
|
|
|
if(pPath->pFlags[i] & PT_CLOSEFIGURE)
|
|
{
|
|
pLinePts[nLinePts++] = pLinePts[0];
|
|
}
|
|
}
|
|
if(nLinePts >= 2)
|
|
IntGdiPolyline(dc, pLinePts, nLinePts);
|
|
|
|
ret = TRUE;
|
|
|
|
end:
|
|
if(pLinePts) ExFreePoolWithTag(pLinePts, TAG_PATH);
|
|
|
|
/* Restore the old mapping mode */
|
|
pdcattr->iMapMode = mapMode;
|
|
pdcattr->szlWindowExt.cx = szWindowExt.cx;
|
|
pdcattr->szlWindowExt.cy = szWindowExt.cy;
|
|
pdcattr->ptlWindowOrg.x = ptWindowOrg.x;
|
|
pdcattr->ptlWindowOrg.y = ptWindowOrg.y;
|
|
|
|
pdcattr->szlViewportExt.cx = szViewportExt.cx;
|
|
pdcattr->szlViewportExt.cy = szViewportExt.cy;
|
|
pdcattr->ptlViewportOrg.x = ptViewportOrg.x;
|
|
pdcattr->ptlViewportOrg.y = ptViewportOrg.y;
|
|
|
|
/* Restore the world transform */
|
|
XForm2MatrixS(&dc->dclevel.mxWorldToPage, &xform);
|
|
|
|
/* If we've moved the current point then get its new position
|
|
which will be in device (MM_TEXT) co-ords, convert it to
|
|
logical co-ords and re-set it. This basically updates
|
|
dc->CurPosX|Y so that their values are in the correct mapping
|
|
mode.
|
|
*/
|
|
if(i > 0)
|
|
{
|
|
POINT pt;
|
|
IntGetCurrentPositionEx(dc, &pt);
|
|
IntDPtoLP(dc, &pt, 1);
|
|
IntGdiMoveToEx(dc, pt.x, pt.y, NULL, FALSE);
|
|
}
|
|
DPRINT("Leave %s, ret=%d\n", __FUNCTION__, ret);
|
|
return ret;
|
|
}
|
|
|
|
#define round(x) ((int)((x)>0?(x)+0.5:(x)-0.5))
|
|
|
|
static
|
|
BOOL
|
|
FASTCALL
|
|
PATH_WidenPath(DC *dc)
|
|
{
|
|
INT i, j, numStrokes, penWidth, penWidthIn, penWidthOut, size, penStyle;
|
|
BOOL ret = FALSE;
|
|
PPATH pPath, pNewPath, *pStrokes = NULL, *pOldStrokes, pUpPath, pDownPath;
|
|
EXTLOGPEN *elp;
|
|
DWORD obj_type, joint, endcap, penType;
|
|
PDC_ATTR pdcattr = dc->pdcattr;
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath) return FALSE;
|
|
|
|
if(pPath->state == PATH_Open)
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
|
|
return FALSE;
|
|
}
|
|
|
|
PATH_FlattenPath(pPath);
|
|
|
|
size = IntGdiGetObject( pdcattr->hpen, 0, NULL);
|
|
if (!size)
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
|
|
return FALSE;
|
|
}
|
|
|
|
elp = ExAllocatePoolWithTag(PagedPool, size, TAG_PATH);
|
|
(VOID) IntGdiGetObject( pdcattr->hpen, size, elp);
|
|
|
|
obj_type = GDIOBJ_GetObjectType(pdcattr->hpen);
|
|
if(obj_type == GDI_OBJECT_TYPE_PEN)
|
|
{
|
|
penStyle = ((LOGPEN*)elp)->lopnStyle;
|
|
}
|
|
else if(obj_type == GDI_OBJECT_TYPE_EXTPEN)
|
|
{
|
|
penStyle = elp->elpPenStyle;
|
|
}
|
|
else
|
|
{
|
|
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
|
|
ExFreePoolWithTag(elp, TAG_PATH);
|
|
PATH_UnlockPath( pPath );
|
|
return FALSE;
|
|
}
|
|
|
|
penWidth = elp->elpWidth;
|
|
ExFreePoolWithTag(elp, TAG_PATH);
|
|
|
|
endcap = (PS_ENDCAP_MASK & penStyle);
|
|
joint = (PS_JOIN_MASK & penStyle);
|
|
penType = (PS_TYPE_MASK & penStyle);
|
|
|
|
/* The function cannot apply to cosmetic pens */
|
|
if(obj_type == GDI_OBJECT_TYPE_EXTPEN && penType == PS_COSMETIC)
|
|
{
|
|
PATH_UnlockPath( pPath );
|
|
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
|
|
return FALSE;
|
|
}
|
|
|
|
penWidthIn = penWidth / 2;
|
|
penWidthOut = penWidth / 2;
|
|
if(penWidthIn + penWidthOut < penWidth)
|
|
penWidthOut++;
|
|
|
|
numStrokes = 0;
|
|
|
|
for(i = 0, j = 0; i < pPath->numEntriesUsed; i++, j++)
|
|
{
|
|
POINT point;
|
|
if((i == 0 || (pPath->pFlags[i-1] & PT_CLOSEFIGURE)) &&
|
|
(pPath->pFlags[i] != PT_MOVETO))
|
|
{
|
|
DPRINT1("Expected PT_MOVETO %s, got path flag %c\n",
|
|
i == 0 ? "as first point" : "after PT_CLOSEFIGURE",
|
|
pPath->pFlags[i]);
|
|
return FALSE;
|
|
}
|
|
switch(pPath->pFlags[i])
|
|
{
|
|
case PT_MOVETO:
|
|
if(numStrokes > 0)
|
|
{
|
|
pStrokes[numStrokes - 1]->state = PATH_Closed;
|
|
}
|
|
numStrokes++;
|
|
j = 0;
|
|
if (numStrokes == 1)
|
|
pStrokes = ExAllocatePoolWithTag(PagedPool, numStrokes * sizeof(PPATH), TAG_PATH);
|
|
else
|
|
{
|
|
pOldStrokes = pStrokes; // Save old pointer.
|
|
pStrokes = ExAllocatePoolWithTag(PagedPool, numStrokes * sizeof(PPATH), TAG_PATH);
|
|
if (!pStrokes) return FALSE;
|
|
RtlCopyMemory(pStrokes, pOldStrokes, numStrokes * sizeof(PPATH));
|
|
ExFreePoolWithTag(pOldStrokes, TAG_PATH); // Free old pointer.
|
|
}
|
|
if (!pStrokes) return FALSE;
|
|
pStrokes[numStrokes - 1] = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH);
|
|
|
|
PATH_InitGdiPath(pStrokes[numStrokes - 1]);
|
|
pStrokes[numStrokes - 1]->state = PATH_Open;
|
|
case PT_LINETO:
|
|
case (PT_LINETO | PT_CLOSEFIGURE):
|
|
point.x = pPath->pPoints[i].x;
|
|
point.y = pPath->pPoints[i].y;
|
|
PATH_AddEntry(pStrokes[numStrokes - 1], &point, pPath->pFlags[i]);
|
|
break;
|
|
case PT_BEZIERTO:
|
|
/* should never happen because of the FlattenPath call */
|
|
DPRINT1("Should never happen\n");
|
|
break;
|
|
default:
|
|
DPRINT1("Got path flag %c\n", pPath->pFlags[i]);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
pNewPath = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH);
|
|
PATH_InitGdiPath(pNewPath);
|
|
pNewPath->state = PATH_Open;
|
|
|
|
for(i = 0; i < numStrokes; i++)
|
|
{
|
|
pUpPath = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH);
|
|
PATH_InitGdiPath(pUpPath);
|
|
pUpPath->state = PATH_Open;
|
|
pDownPath = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH);
|
|
PATH_InitGdiPath(pDownPath);
|
|
pDownPath->state = PATH_Open;
|
|
|
|
for(j = 0; j < pStrokes[i]->numEntriesUsed; j++)
|
|
{
|
|
/* Beginning or end of the path if not closed */
|
|
if((!(pStrokes[i]->pFlags[pStrokes[i]->numEntriesUsed - 1] & PT_CLOSEFIGURE)) && (j == 0 || j == pStrokes[i]->numEntriesUsed - 1) )
|
|
{
|
|
/* Compute segment angle */
|
|
double xo, yo, xa, ya, theta;
|
|
POINT pt;
|
|
FLOAT_POINT corners[2];
|
|
if(j == 0)
|
|
{
|
|
xo = pStrokes[i]->pPoints[j].x;
|
|
yo = pStrokes[i]->pPoints[j].y;
|
|
xa = pStrokes[i]->pPoints[1].x;
|
|
ya = pStrokes[i]->pPoints[1].y;
|
|
}
|
|
else
|
|
{
|
|
xa = pStrokes[i]->pPoints[j - 1].x;
|
|
ya = pStrokes[i]->pPoints[j - 1].y;
|
|
xo = pStrokes[i]->pPoints[j].x;
|
|
yo = pStrokes[i]->pPoints[j].y;
|
|
}
|
|
theta = atan2( ya - yo, xa - xo );
|
|
switch(endcap)
|
|
{
|
|
case PS_ENDCAP_SQUARE :
|
|
pt.x = xo + round(sqrt(2) * penWidthOut * cos(M_PI_4 + theta));
|
|
pt.y = yo + round(sqrt(2) * penWidthOut * sin(M_PI_4 + theta));
|
|
PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO) );
|
|
pt.x = xo + round(sqrt(2) * penWidthIn * cos(- M_PI_4 + theta));
|
|
pt.y = yo + round(sqrt(2) * penWidthIn * sin(- M_PI_4 + theta));
|
|
PATH_AddEntry(pUpPath, &pt, PT_LINETO);
|
|
break;
|
|
case PS_ENDCAP_FLAT :
|
|
pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) );
|
|
pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) );
|
|
PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO));
|
|
pt.x = xo - round( penWidthIn * cos(theta + M_PI_2) );
|
|
pt.y = yo - round( penWidthIn * sin(theta + M_PI_2) );
|
|
PATH_AddEntry(pUpPath, &pt, PT_LINETO);
|
|
break;
|
|
case PS_ENDCAP_ROUND :
|
|
default :
|
|
corners[0].x = xo - penWidthIn;
|
|
corners[0].y = yo - penWidthIn;
|
|
corners[1].x = xo + penWidthOut;
|
|
corners[1].y = yo + penWidthOut;
|
|
PATH_DoArcPart(pUpPath ,corners, theta + M_PI_2 , theta + 3 * M_PI_4, (j == 0 ? PT_MOVETO : FALSE));
|
|
PATH_DoArcPart(pUpPath ,corners, theta + 3 * M_PI_4 , theta + M_PI, FALSE);
|
|
PATH_DoArcPart(pUpPath ,corners, theta + M_PI, theta + 5 * M_PI_4, FALSE);
|
|
PATH_DoArcPart(pUpPath ,corners, theta + 5 * M_PI_4 , theta + 3 * M_PI_2, FALSE);
|
|
break;
|
|
}
|
|
}
|
|
/* Corpse of the path */
|
|
else
|
|
{
|
|
/* Compute angle */
|
|
INT previous, next;
|
|
double xa, ya, xb, yb, xo, yo;
|
|
double alpha, theta, miterWidth;
|
|
DWORD _joint = joint;
|
|
POINT pt;
|
|
PPATH pInsidePath, pOutsidePath;
|
|
if(j > 0 && j < pStrokes[i]->numEntriesUsed - 1)
|
|
{
|
|
previous = j - 1;
|
|
next = j + 1;
|
|
}
|
|
else if (j == 0)
|
|
{
|
|
previous = pStrokes[i]->numEntriesUsed - 1;
|
|
next = j + 1;
|
|
}
|
|
else
|
|
{
|
|
previous = j - 1;
|
|
next = 0;
|
|
}
|
|
xo = pStrokes[i]->pPoints[j].x;
|
|
yo = pStrokes[i]->pPoints[j].y;
|
|
xa = pStrokes[i]->pPoints[previous].x;
|
|
ya = pStrokes[i]->pPoints[previous].y;
|
|
xb = pStrokes[i]->pPoints[next].x;
|
|
yb = pStrokes[i]->pPoints[next].y;
|
|
theta = atan2( yo - ya, xo - xa );
|
|
alpha = atan2( yb - yo, xb - xo ) - theta;
|
|
if (alpha > 0) alpha -= M_PI;
|
|
else alpha += M_PI;
|
|
if(_joint == PS_JOIN_MITER && dc->dclevel.laPath.eMiterLimit < fabs(1 / sin(alpha/2)))
|
|
{
|
|
_joint = PS_JOIN_BEVEL;
|
|
}
|
|
if(alpha > 0)
|
|
{
|
|
pInsidePath = pUpPath;
|
|
pOutsidePath = pDownPath;
|
|
}
|
|
else if(alpha < 0)
|
|
{
|
|
pInsidePath = pDownPath;
|
|
pOutsidePath = pUpPath;
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
/* Inside angle points */
|
|
if(alpha > 0)
|
|
{
|
|
pt.x = xo - round( penWidthIn * cos(theta + M_PI_2) );
|
|
pt.y = yo - round( penWidthIn * sin(theta + M_PI_2) );
|
|
}
|
|
else
|
|
{
|
|
pt.x = xo + round( penWidthIn * cos(theta + M_PI_2) );
|
|
pt.y = yo + round( penWidthIn * sin(theta + M_PI_2) );
|
|
}
|
|
PATH_AddEntry(pInsidePath, &pt, PT_LINETO);
|
|
if(alpha > 0)
|
|
{
|
|
pt.x = xo + round( penWidthIn * cos(M_PI_2 + alpha + theta) );
|
|
pt.y = yo + round( penWidthIn * sin(M_PI_2 + alpha + theta) );
|
|
}
|
|
else
|
|
{
|
|
pt.x = xo - round( penWidthIn * cos(M_PI_2 + alpha + theta) );
|
|
pt.y = yo - round( penWidthIn * sin(M_PI_2 + alpha + theta) );
|
|
}
|
|
PATH_AddEntry(pInsidePath, &pt, PT_LINETO);
|
|
/* Outside angle point */
|
|
switch(_joint)
|
|
{
|
|
case PS_JOIN_MITER :
|
|
miterWidth = fabs(penWidthOut / cos(M_PI_2 - fabs(alpha) / 2));
|
|
pt.x = xo + round( miterWidth * cos(theta + alpha / 2) );
|
|
pt.y = yo + round( miterWidth * sin(theta + alpha / 2) );
|
|
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
|
|
break;
|
|
case PS_JOIN_BEVEL :
|
|
if(alpha > 0)
|
|
{
|
|
pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) );
|
|
pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) );
|
|
}
|
|
else
|
|
{
|
|
pt.x = xo - round( penWidthOut * cos(theta + M_PI_2) );
|
|
pt.y = yo - round( penWidthOut * sin(theta + M_PI_2) );
|
|
}
|
|
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
|
|
if(alpha > 0)
|
|
{
|
|
pt.x = xo - round( penWidthOut * cos(M_PI_2 + alpha + theta) );
|
|
pt.y = yo - round( penWidthOut * sin(M_PI_2 + alpha + theta) );
|
|
}
|
|
else
|
|
{
|
|
pt.x = xo + round( penWidthOut * cos(M_PI_2 + alpha + theta) );
|
|
pt.y = yo + round( penWidthOut * sin(M_PI_2 + alpha + theta) );
|
|
}
|
|
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
|
|
break;
|
|
case PS_JOIN_ROUND :
|
|
default :
|
|
if(alpha > 0)
|
|
{
|
|
pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) );
|
|
pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) );
|
|
}
|
|
else
|
|
{
|
|
pt.x = xo - round( penWidthOut * cos(theta + M_PI_2) );
|
|
pt.y = yo - round( penWidthOut * sin(theta + M_PI_2) );
|
|
}
|
|
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
|
|
pt.x = xo + round( penWidthOut * cos(theta + alpha / 2) );
|
|
pt.y = yo + round( penWidthOut * sin(theta + alpha / 2) );
|
|
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
|
|
if(alpha > 0)
|
|
{
|
|
pt.x = xo - round( penWidthOut * cos(M_PI_2 + alpha + theta) );
|
|
pt.y = yo - round( penWidthOut * sin(M_PI_2 + alpha + theta) );
|
|
}
|
|
else
|
|
{
|
|
pt.x = xo + round( penWidthOut * cos(M_PI_2 + alpha + theta) );
|
|
pt.y = yo + round( penWidthOut * sin(M_PI_2 + alpha + theta) );
|
|
}
|
|
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for(j = 0; j < pUpPath->numEntriesUsed; j++)
|
|
{
|
|
POINT pt;
|
|
pt.x = pUpPath->pPoints[j].x;
|
|
pt.y = pUpPath->pPoints[j].y;
|
|
PATH_AddEntry(pNewPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO));
|
|
}
|
|
for(j = 0; j < pDownPath->numEntriesUsed; j++)
|
|
{
|
|
POINT pt;
|
|
pt.x = pDownPath->pPoints[pDownPath->numEntriesUsed - j - 1].x;
|
|
pt.y = pDownPath->pPoints[pDownPath->numEntriesUsed - j - 1].y;
|
|
PATH_AddEntry(pNewPath, &pt, ( (j == 0 && (pStrokes[i]->pFlags[pStrokes[i]->numEntriesUsed - 1] & PT_CLOSEFIGURE)) ? PT_MOVETO : PT_LINETO));
|
|
}
|
|
|
|
PATH_DestroyGdiPath(pStrokes[i]);
|
|
ExFreePoolWithTag(pStrokes[i], TAG_PATH);
|
|
PATH_DestroyGdiPath(pUpPath);
|
|
ExFreePoolWithTag(pUpPath, TAG_PATH);
|
|
PATH_DestroyGdiPath(pDownPath);
|
|
ExFreePoolWithTag(pDownPath, TAG_PATH);
|
|
}
|
|
ExFreePoolWithTag(pStrokes, TAG_PATH);
|
|
|
|
pNewPath->state = PATH_Closed;
|
|
if (!(ret = PATH_AssignGdiPath(pPath, pNewPath)))
|
|
DPRINT1("Assign path failed\n");
|
|
PATH_DestroyGdiPath(pNewPath);
|
|
ExFreePoolWithTag(pNewPath, TAG_PATH);
|
|
return ret;
|
|
}
|
|
|
|
static inline INT int_from_fixed(FIXED f)
|
|
{
|
|
return (f.fract >= 0x8000) ? (f.value + 1) : f.value;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* PATH_BezierTo
|
|
*
|
|
* internally used by PATH_add_outline
|
|
*/
|
|
static
|
|
VOID
|
|
FASTCALL
|
|
PATH_BezierTo(PPATH pPath, POINT *lppt, INT n)
|
|
{
|
|
if (n < 2) return;
|
|
|
|
if (n == 2)
|
|
{
|
|
PATH_AddEntry(pPath, &lppt[1], PT_LINETO);
|
|
}
|
|
else if (n == 3)
|
|
{
|
|
PATH_AddEntry(pPath, &lppt[0], PT_BEZIERTO);
|
|
PATH_AddEntry(pPath, &lppt[1], PT_BEZIERTO);
|
|
PATH_AddEntry(pPath, &lppt[2], PT_BEZIERTO);
|
|
}
|
|
else
|
|
{
|
|
POINT pt[3];
|
|
INT i = 0;
|
|
|
|
pt[2] = lppt[0];
|
|
n--;
|
|
|
|
while (n > 2)
|
|
{
|
|
pt[0] = pt[2];
|
|
pt[1] = lppt[i+1];
|
|
pt[2].x = (lppt[i+2].x + lppt[i+1].x) / 2;
|
|
pt[2].y = (lppt[i+2].y + lppt[i+1].y) / 2;
|
|
PATH_BezierTo(pPath, pt, 3);
|
|
n--;
|
|
i++;
|
|
}
|
|
|
|
pt[0] = pt[2];
|
|
pt[1] = lppt[i+1];
|
|
pt[2] = lppt[i+2];
|
|
PATH_BezierTo(pPath, pt, 3);
|
|
}
|
|
}
|
|
|
|
static
|
|
BOOL
|
|
FASTCALL
|
|
PATH_add_outline(PDC dc, INT x, INT y, TTPOLYGONHEADER *header, DWORD size)
|
|
{
|
|
PPATH pPath;
|
|
TTPOLYGONHEADER *start;
|
|
POINT pt;
|
|
|
|
start = header;
|
|
|
|
pPath = PATH_LockPath(dc->dclevel.hPath);
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
while ((char *)header < (char *)start + size)
|
|
{
|
|
TTPOLYCURVE *curve;
|
|
|
|
if (header->dwType != TT_POLYGON_TYPE)
|
|
{
|
|
DPRINT1("Unknown header type %d\n", header->dwType);
|
|
return FALSE;
|
|
}
|
|
|
|
pt.x = x + int_from_fixed(header->pfxStart.x);
|
|
pt.y = y - int_from_fixed(header->pfxStart.y);
|
|
IntLPtoDP(dc, &pt, 1);
|
|
PATH_AddEntry(pPath, &pt, PT_MOVETO);
|
|
|
|
curve = (TTPOLYCURVE *)(header + 1);
|
|
|
|
while ((char *)curve < (char *)header + header->cb)
|
|
{
|
|
/*DPRINT1("curve->wType %d\n", curve->wType);*/
|
|
|
|
switch(curve->wType)
|
|
{
|
|
case TT_PRIM_LINE:
|
|
{
|
|
WORD i;
|
|
|
|
for (i = 0; i < curve->cpfx; i++)
|
|
{
|
|
pt.x = x + int_from_fixed(curve->apfx[i].x);
|
|
pt.y = y - int_from_fixed(curve->apfx[i].y);
|
|
IntLPtoDP(dc, &pt, 1);
|
|
PATH_AddEntry(pPath, &pt, PT_LINETO);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TT_PRIM_QSPLINE:
|
|
case TT_PRIM_CSPLINE:
|
|
{
|
|
WORD i;
|
|
POINTFX ptfx;
|
|
POINT *pts = ExAllocatePoolWithTag(PagedPool, (curve->cpfx + 1) * sizeof(POINT), TAG_PATH);
|
|
|
|
if (!pts) return FALSE;
|
|
|
|
ptfx = *(POINTFX *)((char *)curve - sizeof(POINTFX));
|
|
|
|
pts[0].x = x + int_from_fixed(ptfx.x);
|
|
pts[0].y = y - int_from_fixed(ptfx.y);
|
|
IntLPtoDP(dc, &pts[0], 1);
|
|
|
|
for (i = 0; i < curve->cpfx; i++)
|
|
{
|
|
pts[i + 1].x = x + int_from_fixed(curve->apfx[i].x);
|
|
pts[i + 1].y = y - int_from_fixed(curve->apfx[i].y);
|
|
IntLPtoDP(dc, &pts[i + 1], 1);
|
|
}
|
|
|
|
PATH_BezierTo(pPath, pts, curve->cpfx + 1);
|
|
|
|
ExFreePoolWithTag(pts, TAG_PATH);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
DPRINT1("Unknown curve type %04x\n", curve->wType);
|
|
return FALSE;
|
|
}
|
|
|
|
curve = (TTPOLYCURVE *)&curve->apfx[curve->cpfx];
|
|
}
|
|
header = (TTPOLYGONHEADER *)((char *)header + header->cb);
|
|
}
|
|
|
|
IntGdiCloseFigure( pPath );
|
|
PATH_UnlockPath( pPath );
|
|
return TRUE;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* PATH_ExtTextOut
|
|
*/
|
|
BOOL
|
|
FASTCALL
|
|
PATH_ExtTextOut(PDC dc, INT x, INT y, UINT flags, const RECTL *lprc,
|
|
LPCWSTR str, UINT count, const INT *dx)
|
|
{
|
|
unsigned int idx;
|
|
double cosEsc, sinEsc;
|
|
PDC_ATTR pdcattr;
|
|
PTEXTOBJ TextObj;
|
|
LOGFONTW lf;
|
|
POINTL org;
|
|
INT offset = 0, xoff = 0, yoff = 0;
|
|
|
|
if (!count) return TRUE;
|
|
|
|
pdcattr = dc->pdcattr;
|
|
|
|
TextObj = RealizeFontInit( pdcattr->hlfntNew);
|
|
if ( !TextObj ) return FALSE;
|
|
|
|
FontGetObject( TextObj, sizeof(lf), &lf);
|
|
|
|
if (lf.lfEscapement != 0)
|
|
{
|
|
cosEsc = cos(lf.lfEscapement * M_PI / 1800);
|
|
sinEsc = sin(lf.lfEscapement * M_PI / 1800);
|
|
} else
|
|
{
|
|
cosEsc = 1;
|
|
sinEsc = 0;
|
|
}
|
|
|
|
IntGdiGetDCOrg(dc, &org);
|
|
|
|
for (idx = 0; idx < count; idx++)
|
|
{
|
|
GLYPHMETRICS gm;
|
|
DWORD dwSize;
|
|
void *outline;
|
|
|
|
dwSize = ftGdiGetGlyphOutline( dc,
|
|
str[idx],
|
|
GGO_GLYPH_INDEX | GGO_NATIVE,
|
|
&gm,
|
|
0,
|
|
NULL,
|
|
NULL,
|
|
TRUE);
|
|
if (!dwSize) return FALSE;
|
|
|
|
outline = ExAllocatePoolWithTag(PagedPool, dwSize, TAG_PATH);
|
|
if (!outline) return FALSE;
|
|
|
|
ftGdiGetGlyphOutline( dc,
|
|
str[idx],
|
|
GGO_GLYPH_INDEX | GGO_NATIVE,
|
|
&gm,
|
|
dwSize,
|
|
outline,
|
|
NULL,
|
|
TRUE);
|
|
|
|
PATH_add_outline(dc, org.x + x + xoff, org.x + y + yoff, outline, dwSize);
|
|
|
|
ExFreePoolWithTag(outline, TAG_PATH);
|
|
|
|
if (dx)
|
|
{
|
|
offset += dx[idx];
|
|
xoff = offset * cosEsc;
|
|
yoff = offset * -sinEsc;
|
|
}
|
|
else
|
|
{
|
|
xoff += gm.gmCellIncX;
|
|
yoff += gm.gmCellIncY;
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* Exported functions
|
|
*/
|
|
|
|
BOOL
|
|
APIENTRY
|
|
NtGdiAbortPath(HDC hDC)
|
|
{
|
|
PPATH pPath;
|
|
PDC dc = DC_LockDc ( hDC );
|
|
if ( !dc )
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_HANDLE);
|
|
return FALSE;
|
|
}
|
|
|
|
pPath = PATH_LockPath(dc->dclevel.hPath);
|
|
{
|
|
DC_UnlockDc(dc);
|
|
return FALSE;
|
|
}
|
|
|
|
PATH_EmptyPath(pPath);
|
|
|
|
PATH_UnlockPath(pPath);
|
|
DC_UnlockDc ( dc );
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL
|
|
APIENTRY
|
|
NtGdiBeginPath( HDC hDC )
|
|
{
|
|
PPATH pPath;
|
|
PDC dc;
|
|
|
|
dc = DC_LockDc ( hDC );
|
|
if ( !dc )
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_HANDLE);
|
|
return FALSE;
|
|
}
|
|
|
|
/* If path is already open, do nothing. Check if not Save DC state */
|
|
if ((dc->dclevel.flPath & DCPATH_ACTIVE) && !(dc->dclevel.flPath & DCPATH_SAVE))
|
|
{
|
|
DC_UnlockDc ( dc );
|
|
return TRUE;
|
|
}
|
|
|
|
if ( dc->dclevel.hPath )
|
|
{
|
|
DPRINT1("BeginPath 1 0x%x\n", dc->dclevel.hPath);
|
|
if ( !(dc->dclevel.flPath & DCPATH_SAVE) )
|
|
{ // Remove previous handle.
|
|
if (!PATH_Delete(dc->dclevel.hPath))
|
|
{
|
|
DC_UnlockDc ( dc );
|
|
return FALSE;
|
|
}
|
|
}
|
|
else
|
|
{ // Clear flags and Handle.
|
|
dc->dclevel.flPath &= ~(DCPATH_SAVE|DCPATH_ACTIVE);
|
|
dc->dclevel.hPath = NULL;
|
|
}
|
|
}
|
|
pPath = PATH_AllocPathWithHandle();
|
|
if (!pPath)
|
|
{
|
|
SetLastWin32Error(ERROR_NOT_ENOUGH_MEMORY);
|
|
return FALSE;
|
|
}
|
|
dc->dclevel.flPath |= DCPATH_ACTIVE; // Set active ASAP!
|
|
|
|
dc->dclevel.hPath = pPath->BaseObject.hHmgr;
|
|
|
|
DPRINT1("BeginPath 2 h 0x%x p 0x%x\n", dc->dclevel.hPath, pPath);
|
|
// Path handles are shared. Also due to recursion with in the same thread.
|
|
GDIOBJ_UnlockObjByPtr((POBJ)pPath); // Unlock
|
|
pPath = PATH_LockPath(dc->dclevel.hPath); // Share Lock.
|
|
|
|
/* Make sure that path is empty */
|
|
PATH_EmptyPath( pPath );
|
|
|
|
/* Initialize variables for new path */
|
|
pPath->newStroke = TRUE;
|
|
pPath->state = PATH_Open;
|
|
|
|
PATH_UnlockPath(pPath);
|
|
DC_UnlockDc ( dc );
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL
|
|
APIENTRY
|
|
NtGdiCloseFigure(HDC hDC)
|
|
{
|
|
BOOL Ret = FALSE; // default to failure
|
|
PDC pDc;
|
|
PPATH pPath;
|
|
|
|
DPRINT("Enter %s\n", __FUNCTION__);
|
|
|
|
pDc = DC_LockDc(hDC);
|
|
if (!pDc)
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
pPath = PATH_LockPath( pDc->dclevel.hPath );
|
|
if (!pPath)
|
|
{
|
|
DC_UnlockDc(pDc);
|
|
return FALSE;
|
|
}
|
|
|
|
if (pPath->state==PATH_Open)
|
|
{
|
|
IntGdiCloseFigure(pPath);
|
|
Ret = TRUE;
|
|
}
|
|
else
|
|
{
|
|
// FIXME: check if lasterror is set correctly
|
|
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
|
|
}
|
|
|
|
PATH_UnlockPath( pPath );
|
|
DC_UnlockDc(pDc);
|
|
return Ret;
|
|
}
|
|
|
|
BOOL
|
|
APIENTRY
|
|
NtGdiEndPath(HDC hDC)
|
|
{
|
|
BOOL ret = TRUE;
|
|
PPATH pPath;
|
|
PDC dc = DC_LockDc ( hDC );
|
|
|
|
if ( !dc )
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_HANDLE);
|
|
return FALSE;
|
|
}
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath)
|
|
{
|
|
DC_UnlockDc ( dc );
|
|
return FALSE;
|
|
}
|
|
/* Check that path is currently being constructed */
|
|
if ( (pPath->state != PATH_Open) || !(dc->dclevel.flPath & DCPATH_ACTIVE) )
|
|
{
|
|
DPRINT1("EndPath ERROR! 0x%x\n", dc->dclevel.hPath);
|
|
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
|
|
ret = FALSE;
|
|
}
|
|
/* Set flag to indicate that path is finished */
|
|
else
|
|
{
|
|
DPRINT1("EndPath 0x%x\n", dc->dclevel.hPath);
|
|
pPath->state = PATH_Closed;
|
|
dc->dclevel.flPath &= ~DCPATH_ACTIVE;
|
|
}
|
|
PATH_UnlockPath( pPath );
|
|
DC_UnlockDc ( dc );
|
|
return ret;
|
|
}
|
|
|
|
BOOL
|
|
APIENTRY
|
|
NtGdiFillPath(HDC hDC)
|
|
{
|
|
BOOL ret = FALSE;
|
|
PPATH pPath;
|
|
PDC_ATTR pdcattr;
|
|
PDC dc = DC_LockDc ( hDC );
|
|
|
|
if ( !dc )
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath)
|
|
{
|
|
DC_UnlockDc ( dc );
|
|
return FALSE;
|
|
}
|
|
|
|
DC_vPrepareDCsForBlit(dc, dc->rosdc.CombinedClip->rclBounds,
|
|
NULL, dc->rosdc.CombinedClip->rclBounds);
|
|
|
|
pdcattr = dc->pdcattr;
|
|
|
|
if (pdcattr->ulDirty_ & (DIRTY_LINE | DC_PEN_DIRTY))
|
|
DC_vUpdateLineBrush(dc);
|
|
|
|
if (pdcattr->ulDirty_ & (DIRTY_FILL | DC_BRUSH_DIRTY))
|
|
DC_vUpdateFillBrush(dc);
|
|
|
|
ret = PATH_FillPath( dc, pPath );
|
|
if ( ret )
|
|
{
|
|
/* FIXME: Should the path be emptied even if conversion
|
|
failed? */
|
|
PATH_EmptyPath( pPath );
|
|
}
|
|
|
|
PATH_UnlockPath( pPath );
|
|
DC_vFinishBlit(dc, NULL);
|
|
DC_UnlockDc ( dc );
|
|
return ret;
|
|
}
|
|
|
|
BOOL
|
|
APIENTRY
|
|
NtGdiFlattenPath(HDC hDC)
|
|
{
|
|
BOOL Ret = FALSE;
|
|
DC *pDc;
|
|
PPATH pPath;
|
|
|
|
DPRINT("Enter %s\n", __FUNCTION__);
|
|
|
|
pDc = DC_LockDc(hDC);
|
|
if (!pDc)
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_HANDLE);
|
|
return FALSE;
|
|
}
|
|
|
|
pPath = PATH_LockPath( pDc->dclevel.hPath );
|
|
if (!pPath)
|
|
{
|
|
DC_UnlockDc ( pDc );
|
|
return FALSE;
|
|
}
|
|
if (pPath->state == PATH_Open)
|
|
Ret = PATH_FlattenPath(pPath);
|
|
|
|
PATH_UnlockPath( pPath );
|
|
DC_UnlockDc(pDc);
|
|
return Ret;
|
|
}
|
|
|
|
|
|
BOOL
|
|
APIENTRY
|
|
NtGdiGetMiterLimit(
|
|
IN HDC hdc,
|
|
OUT PDWORD pdwOut)
|
|
{
|
|
DC *pDc;
|
|
gxf_long worker;
|
|
NTSTATUS Status = STATUS_SUCCESS;
|
|
|
|
if (!(pDc = DC_LockDc(hdc)))
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
|
|
worker.f = pDc->dclevel.laPath.eMiterLimit;
|
|
|
|
if (pdwOut)
|
|
{
|
|
_SEH2_TRY
|
|
{
|
|
ProbeForWrite(pdwOut,
|
|
sizeof(DWORD),
|
|
1);
|
|
*pdwOut = worker.l;
|
|
}
|
|
_SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
|
|
{
|
|
Status = _SEH2_GetExceptionCode();
|
|
}
|
|
_SEH2_END;
|
|
if (!NT_SUCCESS(Status))
|
|
{
|
|
SetLastNtError(Status);
|
|
DC_UnlockDc(pDc);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
DC_UnlockDc(pDc);
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
INT
|
|
APIENTRY
|
|
NtGdiGetPath(
|
|
HDC hDC,
|
|
LPPOINT Points,
|
|
LPBYTE Types,
|
|
INT nSize)
|
|
{
|
|
INT ret = -1;
|
|
PPATH pPath;
|
|
|
|
DC *dc = DC_LockDc(hDC);
|
|
if (!dc)
|
|
{
|
|
DPRINT1("Can't lock dc!\n");
|
|
SetLastWin32Error(ERROR_INVALID_PARAMETER);
|
|
return -1;
|
|
}
|
|
|
|
pPath = PATH_LockPath( dc->dclevel.hPath );
|
|
if (!pPath)
|
|
{
|
|
DC_UnlockDc ( dc );
|
|
return -1;
|
|
}
|
|
|
|
if (pPath->state != PATH_Closed)
|
|
{
|
|
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
|
|
goto done;
|
|
}
|
|
|
|
if (nSize==0)
|
|
{
|
|
ret = pPath->numEntriesUsed;
|
|
}
|
|
else if(nSize<pPath->numEntriesUsed)
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_PARAMETER);
|
|
goto done;
|
|
}
|
|
else
|
|
{
|
|
_SEH2_TRY
|
|
{
|
|
memcpy(Points, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed);
|
|
memcpy(Types, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed);
|
|
|
|
/* Convert the points to logical coordinates */
|
|
IntDPtoLP(dc, Points, pPath->numEntriesUsed);
|
|
|
|
ret = pPath->numEntriesUsed;
|
|
}
|
|
_SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
|
|
{
|
|
SetLastNtError(_SEH2_GetExceptionCode());
|
|
}
|
|
_SEH2_END
|
|
}
|
|
|
|
done:
|
|
PATH_UnlockPath( pPath );
|
|
DC_UnlockDc(dc);
|
|
return ret;
|
|
}
|
|
|
|
HRGN
|
|
APIENTRY
|
|
NtGdiPathToRegion(HDC hDC)
|
|
{
|
|
PPATH pPath;
|
|
HRGN hrgnRval = 0;
|
|
DC *pDc;
|
|
PDC_ATTR pdcattr;
|
|
|
|
DPRINT("Enter %s\n", __FUNCTION__);
|
|
|
|
pDc = DC_LockDc(hDC);
|
|
if (!pDc)
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_PARAMETER);
|
|
return NULL;
|
|
}
|
|
|
|
pdcattr = pDc->pdcattr;
|
|
|
|
pPath = PATH_LockPath( pDc->dclevel.hPath );
|
|
if (!pPath)
|
|
{
|
|
DC_UnlockDc ( pDc );
|
|
return NULL;
|
|
}
|
|
|
|
if (pPath->state!=PATH_Closed)
|
|
{
|
|
//FIXME: check that setlasterror is being called correctly
|
|
SetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
|
|
}
|
|
else
|
|
{
|
|
/* FIXME: Should we empty the path even if conversion failed? */
|
|
if(PATH_PathToRegion(pPath, pdcattr->jFillMode, &hrgnRval))
|
|
PATH_EmptyPath(pPath);
|
|
}
|
|
|
|
PATH_UnlockPath( pPath );
|
|
DC_UnlockDc(pDc);
|
|
return hrgnRval;
|
|
}
|
|
|
|
BOOL
|
|
APIENTRY
|
|
NtGdiSetMiterLimit(
|
|
IN HDC hdc,
|
|
IN DWORD dwNew,
|
|
IN OUT OPTIONAL PDWORD pdwOut)
|
|
{
|
|
DC *pDc;
|
|
gxf_long worker, worker1;
|
|
NTSTATUS Status = STATUS_SUCCESS;
|
|
|
|
if (!(pDc = DC_LockDc(hdc)))
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
|
|
worker.l = dwNew;
|
|
worker1.f = pDc->dclevel.laPath.eMiterLimit;
|
|
pDc->dclevel.laPath.eMiterLimit = worker.f;
|
|
|
|
if (pdwOut)
|
|
{
|
|
_SEH2_TRY
|
|
{
|
|
ProbeForWrite(pdwOut,
|
|
sizeof(DWORD),
|
|
1);
|
|
*pdwOut = worker1.l;
|
|
}
|
|
_SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
|
|
{
|
|
Status = _SEH2_GetExceptionCode();
|
|
}
|
|
_SEH2_END;
|
|
if (!NT_SUCCESS(Status))
|
|
{
|
|
SetLastNtError(Status);
|
|
DC_UnlockDc(pDc);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
DC_UnlockDc(pDc);
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL
|
|
APIENTRY
|
|
NtGdiStrokeAndFillPath(HDC hDC)
|
|
{
|
|
DC *pDc;
|
|
PDC_ATTR pdcattr;
|
|
PPATH pPath;
|
|
BOOL bRet = FALSE;
|
|
|
|
DPRINT1("Enter %s\n", __FUNCTION__);
|
|
|
|
if (!(pDc = DC_LockDc(hDC)))
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
pPath = PATH_LockPath( pDc->dclevel.hPath );
|
|
if (!pPath)
|
|
{
|
|
DC_UnlockDc ( pDc );
|
|
return FALSE;
|
|
}
|
|
|
|
DC_vPrepareDCsForBlit(pDc, pDc->rosdc.CombinedClip->rclBounds,
|
|
NULL, pDc->rosdc.CombinedClip->rclBounds);
|
|
|
|
pdcattr = pDc->pdcattr;
|
|
|
|
if (pdcattr->ulDirty_ & (DIRTY_FILL | DC_BRUSH_DIRTY))
|
|
DC_vUpdateFillBrush(pDc);
|
|
|
|
if (pdcattr->ulDirty_ & (DIRTY_LINE | DC_PEN_DIRTY))
|
|
DC_vUpdateLineBrush(pDc);
|
|
|
|
bRet = PATH_FillPath(pDc, pPath);
|
|
if (bRet) bRet = PATH_StrokePath(pDc, pPath);
|
|
if (bRet) PATH_EmptyPath(pPath);
|
|
|
|
PATH_UnlockPath( pPath );
|
|
DC_vFinishBlit(pDc, NULL);
|
|
DC_UnlockDc(pDc);
|
|
return bRet;
|
|
}
|
|
|
|
BOOL
|
|
APIENTRY
|
|
NtGdiStrokePath(HDC hDC)
|
|
{
|
|
DC *pDc;
|
|
PDC_ATTR pdcattr;
|
|
PPATH pPath;
|
|
BOOL bRet = FALSE;
|
|
|
|
DPRINT("Enter %s\n", __FUNCTION__);
|
|
|
|
if (!(pDc = DC_LockDc(hDC)))
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
pPath = PATH_LockPath( pDc->dclevel.hPath );
|
|
if (!pPath)
|
|
{
|
|
DC_UnlockDc ( pDc );
|
|
return FALSE;
|
|
}
|
|
|
|
DC_vPrepareDCsForBlit(pDc, pDc->rosdc.CombinedClip->rclBounds,
|
|
NULL, pDc->rosdc.CombinedClip->rclBounds);
|
|
|
|
pdcattr = pDc->pdcattr;
|
|
|
|
if (pdcattr->ulDirty_ & (DIRTY_LINE | DC_PEN_DIRTY))
|
|
DC_vUpdateLineBrush(pDc);
|
|
|
|
bRet = PATH_StrokePath(pDc, pPath);
|
|
|
|
DC_vFinishBlit(pDc, NULL);
|
|
PATH_EmptyPath(pPath);
|
|
|
|
PATH_UnlockPath( pPath );
|
|
DC_UnlockDc(pDc);
|
|
return bRet;
|
|
}
|
|
|
|
BOOL
|
|
APIENTRY
|
|
NtGdiWidenPath(HDC hDC)
|
|
{
|
|
BOOL Ret;
|
|
PDC pdc = DC_LockDc ( hDC );
|
|
if ( !pdc )
|
|
{
|
|
SetLastWin32Error(ERROR_INVALID_PARAMETER);
|
|
return FALSE;
|
|
}
|
|
Ret = PATH_WidenPath(pdc);
|
|
DC_UnlockDc ( pdc );
|
|
return Ret;
|
|
}
|
|
|
|
/* EOF */
|