reactos/drivers/filesystems/fastfat_new/fatinit.c
Pierre Schweitzer aeadcaf515
[FASTFAT] Import the MS FastFAT sample from WXP.
Modified it so that it builds in trunk (with GCC, though).
Not to be switched for now, as it doesn't work in ReactOS (yet?).
2017-11-23 12:35:51 +01:00

676 lines
19 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1989-2000 Microsoft Corporation
Module Name:
FatInit.c
Abstract:
This module implements the DRIVER_INITIALIZATION routine for Fat
--*/
#include "fatprocs.h"
NTSTATUS
NTAPI
DriverEntry(
IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath
);
VOID
NTAPI
FatUnload(
IN PDRIVER_OBJECT DriverObject
);
NTSTATUS
FatGetCompatibilityModeValue(
IN PUNICODE_STRING ValueName,
IN OUT PULONG Value
);
BOOLEAN
FatIsFujitsuFMR (
);
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT, DriverEntry)
#pragma alloc_text(INIT, FatGetCompatibilityModeValue)
#pragma alloc_text(INIT, FatIsFujitsuFMR)
//#pragma alloc_text(PAGE, FatUnload)
#endif
#define COMPATIBILITY_MODE_KEY_NAME L"\\Registry\\Machine\\System\\CurrentControlSet\\Control\\FileSystem"
#define COMPATIBILITY_MODE_VALUE_NAME L"Win31FileSystem"
#define CODE_PAGE_INVARIANCE_VALUE_NAME L"FatDisableCodePageInvariance"
#define KEY_WORK_AREA ((sizeof(KEY_VALUE_FULL_INFORMATION) + \
sizeof(ULONG)) + 64)
#define REGISTRY_HARDWARE_DESCRIPTION_W \
L"\\Registry\\Machine\\Hardware\\DESCRIPTION\\System"
#define REGISTRY_MACHINE_IDENTIFIER_W L"Identifier"
#define FUJITSU_FMR_NAME_W L"FUJITSU FMR-"
NTSTATUS
NTAPI
DriverEntry(
IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath
)
/*++
Routine Description:
This is the initialization routine for the Fat file system
device driver. This routine creates the device object for the FileSystem
device and performs all other driver initialization.
Arguments:
DriverObject - Pointer to driver object created by the system.
Return Value:
NTSTATUS - The function value is the final status from the initialization
operation.
--*/
{
USHORT MaxDepth;
NTSTATUS Status;
UNICODE_STRING UnicodeString;
UNICODE_STRING ValueName;
ULONG Value;
//
// Create the device object for disks. To avoid problems with filters who
// know this name, we must keep it.
//
RtlInitUnicodeString( &UnicodeString, L"\\Fat" );
Status = IoCreateDevice( DriverObject,
0,
&UnicodeString,
FILE_DEVICE_DISK_FILE_SYSTEM,
0,
FALSE,
&FatDiskFileSystemDeviceObject );
if (!NT_SUCCESS( Status )) {
return Status;
}
//
// Create the device object for "cdroms".
//
RtlInitUnicodeString( &UnicodeString, L"\\FatCdrom" );
Status = IoCreateDevice( DriverObject,
0,
&UnicodeString,
FILE_DEVICE_CD_ROM_FILE_SYSTEM,
0,
FALSE,
&FatCdromFileSystemDeviceObject );
if (!NT_SUCCESS( Status )) {
IoDeleteDevice( FatDiskFileSystemDeviceObject);
return Status;
}
DriverObject->DriverUnload = FatUnload;
#ifdef _PNP_POWER_
//
// This driver doesn't talk directly to a device, and (at the moment)
// isn't otherwise concerned about power management.
//
FatDiskFileSystemDeviceObject->DeviceObjectExtension->PowerControlNeeded = FALSE;
FatCdromFileSystemDeviceObject->DeviceObjectExtension->PowerControlNeeded = FALSE;
#endif
//
// Note that because of the way data caching is done, we set neither
// the Direct I/O or Buffered I/O bit in DeviceObject->Flags. If
// data is not in the cache, or the request is not buffered, we may,
// set up for Direct I/O by hand.
//
//
// Initialize the driver object with this driver's entry points.
//
DriverObject->MajorFunction[IRP_MJ_CREATE] = (PDRIVER_DISPATCH)FatFsdCreate;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = (PDRIVER_DISPATCH)FatFsdClose;
DriverObject->MajorFunction[IRP_MJ_READ] = (PDRIVER_DISPATCH)FatFsdRead;
DriverObject->MajorFunction[IRP_MJ_WRITE] = (PDRIVER_DISPATCH)FatFsdWrite;
DriverObject->MajorFunction[IRP_MJ_QUERY_INFORMATION] = (PDRIVER_DISPATCH)FatFsdQueryInformation;
DriverObject->MajorFunction[IRP_MJ_SET_INFORMATION] = (PDRIVER_DISPATCH)FatFsdSetInformation;
DriverObject->MajorFunction[IRP_MJ_QUERY_EA] = (PDRIVER_DISPATCH)FatFsdQueryEa;
DriverObject->MajorFunction[IRP_MJ_SET_EA] = (PDRIVER_DISPATCH)FatFsdSetEa;
DriverObject->MajorFunction[IRP_MJ_FLUSH_BUFFERS] = (PDRIVER_DISPATCH)FatFsdFlushBuffers;
DriverObject->MajorFunction[IRP_MJ_QUERY_VOLUME_INFORMATION] = (PDRIVER_DISPATCH)FatFsdQueryVolumeInformation;
DriverObject->MajorFunction[IRP_MJ_SET_VOLUME_INFORMATION] = (PDRIVER_DISPATCH)FatFsdSetVolumeInformation;
DriverObject->MajorFunction[IRP_MJ_CLEANUP] = (PDRIVER_DISPATCH)FatFsdCleanup;
DriverObject->MajorFunction[IRP_MJ_DIRECTORY_CONTROL] = (PDRIVER_DISPATCH)FatFsdDirectoryControl;
DriverObject->MajorFunction[IRP_MJ_FILE_SYSTEM_CONTROL] = (PDRIVER_DISPATCH)FatFsdFileSystemControl;
DriverObject->MajorFunction[IRP_MJ_LOCK_CONTROL] = (PDRIVER_DISPATCH)FatFsdLockControl;
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = (PDRIVER_DISPATCH)FatFsdDeviceControl;
DriverObject->MajorFunction[IRP_MJ_SHUTDOWN] = (PDRIVER_DISPATCH)FatFsdShutdown;
DriverObject->MajorFunction[IRP_MJ_PNP] = (PDRIVER_DISPATCH)FatFsdPnp;
DriverObject->FastIoDispatch = &FatFastIoDispatch;
RtlZeroMemory(&FatFastIoDispatch, sizeof(FatFastIoDispatch));
FatFastIoDispatch.SizeOfFastIoDispatch = sizeof(FAST_IO_DISPATCH);
FatFastIoDispatch.FastIoCheckIfPossible = FatFastIoCheckIfPossible; // CheckForFastIo
FatFastIoDispatch.FastIoRead = FsRtlCopyRead; // Read
FatFastIoDispatch.FastIoWrite = FsRtlCopyWrite; // Write
FatFastIoDispatch.FastIoQueryBasicInfo = FatFastQueryBasicInfo; // QueryBasicInfo
FatFastIoDispatch.FastIoQueryStandardInfo = FatFastQueryStdInfo; // QueryStandardInfo
FatFastIoDispatch.FastIoLock = FatFastLock; // Lock
FatFastIoDispatch.FastIoUnlockSingle = FatFastUnlockSingle; // UnlockSingle
FatFastIoDispatch.FastIoUnlockAll = FatFastUnlockAll; // UnlockAll
FatFastIoDispatch.FastIoUnlockAllByKey = FatFastUnlockAllByKey; // UnlockAllByKey
FatFastIoDispatch.FastIoQueryNetworkOpenInfo = FatFastQueryNetworkOpenInfo;
FatFastIoDispatch.AcquireForCcFlush = FatAcquireForCcFlush;
FatFastIoDispatch.ReleaseForCcFlush = FatReleaseForCcFlush;
//
// Initialize the global data structures
//
//
// The FatData record
//
RtlZeroMemory( &FatData, sizeof(FAT_DATA));
FatData.NodeTypeCode = FAT_NTC_DATA_HEADER;
FatData.NodeByteSize = sizeof(FAT_DATA);
InitializeListHead(&FatData.VcbQueue);
FatData.DriverObject = DriverObject;
FatData.DiskFileSystemDeviceObject = FatDiskFileSystemDeviceObject;
FatData.CdromFileSystemDeviceObject = FatCdromFileSystemDeviceObject;
//
// This list head keeps track of closes yet to be done.
//
InitializeListHead( &FatData.AsyncCloseList );
InitializeListHead( &FatData.DelayedCloseList );
FatData.FatCloseItem = IoAllocateWorkItem( FatDiskFileSystemDeviceObject);
if (FatData.FatCloseItem == NULL) {
IoDeleteDevice (FatDiskFileSystemDeviceObject);
IoDeleteDevice (FatCdromFileSystemDeviceObject);
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Now initialize our general purpose spinlock (gag) and figure out how
// deep and wide we want our delayed lists (along with fooling ourselves
// about the lookaside depths).
//
KeInitializeSpinLock( &FatData.GeneralSpinLock );
switch ( MmQuerySystemSize() ) {
case MmSmallSystem:
MaxDepth = 4;
FatMaxDelayedCloseCount = FAT_MAX_DELAYED_CLOSES;
break;
case MmMediumSystem:
MaxDepth = 8;
FatMaxDelayedCloseCount = 4 * FAT_MAX_DELAYED_CLOSES;
break;
case MmLargeSystem:
MaxDepth = 16;
FatMaxDelayedCloseCount = 16 * FAT_MAX_DELAYED_CLOSES;
break;
}
//
// Initialize the cache manager callback routines
//
FatData.CacheManagerCallbacks.AcquireForLazyWrite = &FatAcquireFcbForLazyWrite;
FatData.CacheManagerCallbacks.ReleaseFromLazyWrite = &FatReleaseFcbFromLazyWrite;
FatData.CacheManagerCallbacks.AcquireForReadAhead = &FatAcquireFcbForReadAhead;
FatData.CacheManagerCallbacks.ReleaseFromReadAhead = &FatReleaseFcbFromReadAhead;
FatData.CacheManagerNoOpCallbacks.AcquireForLazyWrite = &FatNoOpAcquire;
FatData.CacheManagerNoOpCallbacks.ReleaseFromLazyWrite = &FatNoOpRelease;
FatData.CacheManagerNoOpCallbacks.AcquireForReadAhead = &FatNoOpAcquire;
FatData.CacheManagerNoOpCallbacks.ReleaseFromReadAhead = &FatNoOpRelease;
//
// Set up global pointer to our process.
//
FatData.OurProcess = PsGetCurrentProcess();
//
// Read the registry to determine if we are in ChicagoMode.
//
ValueName.Buffer = COMPATIBILITY_MODE_VALUE_NAME;
ValueName.Length = sizeof(COMPATIBILITY_MODE_VALUE_NAME) - sizeof(WCHAR);
ValueName.MaximumLength = sizeof(COMPATIBILITY_MODE_VALUE_NAME);
Status = FatGetCompatibilityModeValue( &ValueName, &Value );
if (NT_SUCCESS(Status) && FlagOn(Value, 1)) {
FatData.ChicagoMode = FALSE;
} else {
FatData.ChicagoMode = TRUE;
}
//
// Read the registry to determine if we are going to generate LFNs
// for valid 8.3 names with extended characters.
//
ValueName.Buffer = CODE_PAGE_INVARIANCE_VALUE_NAME;
ValueName.Length = sizeof(CODE_PAGE_INVARIANCE_VALUE_NAME) - sizeof(WCHAR);
ValueName.MaximumLength = sizeof(CODE_PAGE_INVARIANCE_VALUE_NAME);
Status = FatGetCompatibilityModeValue( &ValueName, &Value );
if (NT_SUCCESS(Status) && FlagOn(Value, 1)) {
FatData.CodePageInvariant = FALSE;
} else {
FatData.CodePageInvariant = TRUE;
}
//
// Initialize our global resource and fire up the lookaside lists.
//
ExInitializeResourceLite( &FatData.Resource );
ExInitializeNPagedLookasideList( &FatIrpContextLookasideList,
NULL,
NULL,
POOL_RAISE_IF_ALLOCATION_FAILURE,
sizeof(IRP_CONTEXT),
TAG_IRP_CONTEXT,
MaxDepth );
ExInitializeNPagedLookasideList( &FatNonPagedFcbLookasideList,
NULL,
NULL,
POOL_RAISE_IF_ALLOCATION_FAILURE,
sizeof(NON_PAGED_FCB),
TAG_FCB_NONPAGED,
MaxDepth );
ExInitializeNPagedLookasideList( &FatEResourceLookasideList,
NULL,
NULL,
POOL_RAISE_IF_ALLOCATION_FAILURE,
sizeof(ERESOURCE),
TAG_ERESOURCE,
MaxDepth );
ExInitializeSListHead( &FatCloseContextSList );
ExInitializeFastMutex( &FatCloseQueueMutex );
KeInitializeEvent( &FatReserveEvent, SynchronizationEvent, TRUE );
//
// Register the file system with the I/O system
//
IoRegisterFileSystem(FatDiskFileSystemDeviceObject);
ObReferenceObject (FatDiskFileSystemDeviceObject);
IoRegisterFileSystem(FatCdromFileSystemDeviceObject);
ObReferenceObject (FatCdromFileSystemDeviceObject);
//
// Find out if we are running an a FujitsuFMR machine.
//
FatData.FujitsuFMR = FatIsFujitsuFMR();
//
// And return to our caller
//
return( STATUS_SUCCESS );
}
VOID
NTAPI
FatUnload(
IN PDRIVER_OBJECT DriverObject
)
/*++
Routine Description:
This is the unload routine for the filesystem
Arguments:
DriverObject - Pointer to driver object created by the system.
Return Value:
None
--*/
{
ExDeleteNPagedLookasideList (&FatEResourceLookasideList);
ExDeleteNPagedLookasideList (&FatNonPagedFcbLookasideList);
ExDeleteNPagedLookasideList (&FatIrpContextLookasideList);
ExDeleteResourceLite( &FatData.Resource );
IoFreeWorkItem (FatData.FatCloseItem);
ObDereferenceObject( FatDiskFileSystemDeviceObject);
ObDereferenceObject( FatCdromFileSystemDeviceObject);
}
//
// Local Support routine
//
NTSTATUS
FatGetCompatibilityModeValue (
IN PUNICODE_STRING ValueName,
IN OUT PULONG Value
)
/*++
Routine Description:
Given a unicode value name this routine will go into the registry
location for the Chicago compatibilitymode information and get the
value.
Arguments:
ValueName - the unicode name for the registry value located in the registry.
Value - a pointer to the ULONG for the result.
Return Value:
NTSTATUS
If STATUS_SUCCESSFUL is returned, the location *Value will be
updated with the DWORD value from the registry. If any failing
status is returned, this value is untouched.
--*/
{
HANDLE Handle;
NTSTATUS Status;
ULONG RequestLength;
ULONG ResultLength;
UCHAR Buffer[KEY_WORK_AREA];
UNICODE_STRING KeyName;
OBJECT_ATTRIBUTES ObjectAttributes;
PKEY_VALUE_FULL_INFORMATION KeyValueInformation;
KeyName.Buffer = COMPATIBILITY_MODE_KEY_NAME;
KeyName.Length = sizeof(COMPATIBILITY_MODE_KEY_NAME) - sizeof(WCHAR);
KeyName.MaximumLength = sizeof(COMPATIBILITY_MODE_KEY_NAME);
InitializeObjectAttributes(&ObjectAttributes,
&KeyName,
OBJ_CASE_INSENSITIVE,
NULL,
NULL);
Status = ZwOpenKey(&Handle,
KEY_READ,
&ObjectAttributes);
if (!NT_SUCCESS(Status)) {
return Status;
}
RequestLength = KEY_WORK_AREA;
KeyValueInformation = (PKEY_VALUE_FULL_INFORMATION)Buffer;
while (1) {
Status = ZwQueryValueKey(Handle,
ValueName,
KeyValueFullInformation,
KeyValueInformation,
RequestLength,
&ResultLength);
ASSERT( Status != STATUS_BUFFER_OVERFLOW );
if (Status == STATUS_BUFFER_OVERFLOW) {
//
// Try to get a buffer big enough.
//
if (KeyValueInformation != (PKEY_VALUE_FULL_INFORMATION)Buffer) {
ExFreePool(KeyValueInformation);
}
RequestLength += 256;
KeyValueInformation = (PKEY_VALUE_FULL_INFORMATION)
ExAllocatePoolWithTag(PagedPool,
RequestLength,
' taF');
if (!KeyValueInformation) {
return STATUS_NO_MEMORY;
}
} else {
break;
}
}
ZwClose(Handle);
if (NT_SUCCESS(Status)) {
if (KeyValueInformation->DataLength != 0) {
PULONG DataPtr;
//
// Return contents to the caller.
//
DataPtr = (PULONG)
((PUCHAR)KeyValueInformation + KeyValueInformation->DataOffset);
*Value = *DataPtr;
} else {
//
// Treat as if no value was found
//
Status = STATUS_OBJECT_NAME_NOT_FOUND;
}
}
if (KeyValueInformation != (PKEY_VALUE_FULL_INFORMATION)Buffer) {
ExFreePool(KeyValueInformation);
}
return Status;
}
//
// Local Support routine
//
BOOLEAN
FatIsFujitsuFMR (
)
/*++
Routine Description:
This routine tells if is we running on a FujitsuFMR machine.
Arguments:
Return Value:
BOOLEAN - TRUE is we are and FALSE otherwise
--*/
{
#ifndef __REACTOS__
ULONG Value;
#endif
BOOLEAN Result;
HANDLE Handle;
NTSTATUS Status;
ULONG RequestLength;
ULONG ResultLength;
UCHAR Buffer[KEY_WORK_AREA];
UNICODE_STRING KeyName;
UNICODE_STRING ValueName;
OBJECT_ATTRIBUTES ObjectAttributes;
PKEY_VALUE_FULL_INFORMATION KeyValueInformation;
//
// Set default as PC/AT
//
KeyName.Buffer = REGISTRY_HARDWARE_DESCRIPTION_W;
KeyName.Length = sizeof(REGISTRY_HARDWARE_DESCRIPTION_W) - sizeof(WCHAR);
KeyName.MaximumLength = sizeof(REGISTRY_HARDWARE_DESCRIPTION_W);
InitializeObjectAttributes(&ObjectAttributes,
&KeyName,
OBJ_CASE_INSENSITIVE,
NULL,
NULL);
Status = ZwOpenKey(&Handle,
KEY_READ,
&ObjectAttributes);
if (!NT_SUCCESS(Status)) {
return FALSE;
}
ValueName.Buffer = REGISTRY_MACHINE_IDENTIFIER_W;
ValueName.Length = sizeof(REGISTRY_MACHINE_IDENTIFIER_W) - sizeof(WCHAR);
ValueName.MaximumLength = sizeof(REGISTRY_MACHINE_IDENTIFIER_W);
RequestLength = KEY_WORK_AREA;
KeyValueInformation = (PKEY_VALUE_FULL_INFORMATION)Buffer;
while (1) {
Status = ZwQueryValueKey(Handle,
&ValueName,
KeyValueFullInformation,
KeyValueInformation,
RequestLength,
&ResultLength);
// ASSERT( Status != STATUS_BUFFER_OVERFLOW );
if (Status == STATUS_BUFFER_OVERFLOW) {
//
// Try to get a buffer big enough.
//
if (KeyValueInformation != (PKEY_VALUE_FULL_INFORMATION)Buffer) {
ExFreePool(KeyValueInformation);
}
RequestLength += 256;
KeyValueInformation = (PKEY_VALUE_FULL_INFORMATION)
ExAllocatePool(PagedPool, RequestLength);
if (!KeyValueInformation) {
return FALSE;
}
} else {
break;
}
}
ZwClose(Handle);
if (NT_SUCCESS(Status) &&
(KeyValueInformation->DataLength >= sizeof(FUJITSU_FMR_NAME_W)) &&
(RtlCompareMemory((PUCHAR)KeyValueInformation + KeyValueInformation->DataOffset,
FUJITSU_FMR_NAME_W,
sizeof(FUJITSU_FMR_NAME_W) - sizeof(WCHAR)) ==
sizeof(FUJITSU_FMR_NAME_W) - sizeof(WCHAR))) {
Result = TRUE;
} else {
Result = FALSE;
}
if (KeyValueInformation != (PKEY_VALUE_FULL_INFORMATION)Buffer) {
ExFreePool(KeyValueInformation);
}
return Result;
}