reactos/sdk/lib/ucrt/convert/cfout.cpp

367 lines
13 KiB
C++

//
// cfout.cpp
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// Floating point binary to decimal conversion routines
//
#include <corecrt_internal_fltintrn.h>
#include <corecrt_internal_big_integer.h>
#include <fenv.h>
#include <string.h>
using namespace __crt_strtox;
namespace
{
// Guard class for floating point control word modifications in the interrupt exception mask.
class fp_control_word_guard
{
public:
explicit fp_control_word_guard(unsigned int const mask = ~0u) : _mask(mask)
{
_controlfp_s(&_original_control_word, 0, 0);
}
fp_control_word_guard(unsigned int const new_control, unsigned int const mask) : _mask(mask)
{
unsigned int float_control;
_controlfp_s(&_original_control_word, 0, 0);
_controlfp_s(&float_control, new_control, _mask);
}
~fp_control_word_guard()
{
unsigned int reset_cw;
_controlfp_s(&reset_cw, _original_control_word, _mask);
}
private:
unsigned int _original_control_word;
unsigned int _mask;
};
class scoped_fp_state_reset
{
public:
scoped_fp_state_reset() throw()
{
// The calls to feholdexcept and fesetenv are relatively expensive,
// so we only call them if there are any unmasked exceptions.
fegetenv(&_environment);
if ((_environment._Fe_ctl & FE_ALL_EXCEPT) == FE_ALL_EXCEPT)
{
_requires_reset = false;
}
else
{
feholdexcept(&_environment);
_requires_reset = true;
}
}
~scoped_fp_state_reset() throw()
{
if (_requires_reset)
{
fesetenv(&_environment);
}
}
private:
scoped_fp_state_reset(scoped_fp_state_reset const&);
scoped_fp_state_reset& operator=(scoped_fp_state_reset const&);
fenv_t _environment;
bool _requires_reset;
};
}
// This function converts a finite, positive floating point value into its
// decimal representation. The decimal mantissa and exponent are returned
// via the out parameters and the return value affirms if there were trailing
// digits. If the value is zero, negative, infinity, or nan, the behavior is
// undefined.
//
// This function is based on the digit generation algorithm described in the
// paper "Printing floating point numbers quickly and accurately," by Robert G.
// Burger and R. Kent Dybvig, from ACM SIGPLAN 1996 Conference on Programming
// Language Design and Implementation, June 1996. This function deviates from
// that algorithm in its termination conditions: the Burger-Dybvig algorithm
// terminates when it runs out of significant digits; this function continues
// generating digits, even if they are insignificant (this allows us to print
// large, exactly representable values exactly, e.g. large powers of two).
//
// This function stops generating digits when the first of the following
// conditions is true: [1] the mantissa buffer is exhausted, [2] sufficient
// digits have been generated for a %f specifier with the requested precision,
// or [3] all remaining digits are known to be zero.
template <typename FloatingType>
__forceinline static __acrt_has_trailing_digits __cdecl convert_to_fos_high_precision(
FloatingType const value,
uint32_t const precision,
__acrt_precision_style const precision_style,
int* const exponent,
char* const mantissa_buffer,
size_t const mantissa_buffer_count
) throw()
{
using floating_traits = __acrt_floating_type_traits<FloatingType>;
using components_type = typename floating_traits::components_type;
_ASSERTE(mantissa_buffer_count > 0);
components_type const& value_components = reinterpret_cast<components_type const&>(value);
// Special handling is required for denormal values: because the implicit
// high order bit is a zero, not a one, we need to [1] not set that bit when
// we expand the mantissa, and [2] increment the exponent to account for the
// extra shift.
bool const is_denormal = value_components._exponent == 0;
uint64_t const mantissa_adjustment = is_denormal
? 0
: static_cast<uint64_t>(1) << (floating_traits::mantissa_bits - 1);
int32_t const exponent_adjustment = is_denormal
? 2
: 1;
// f and e are the unbiased mantissa and exponent, respectively. (Where one-
// -letter variable names are used, they match the same variables from the
// Burger-Dybvig paper.)
uint64_t const f = value_components._mantissa + mantissa_adjustment;
int32_t const e =
static_cast<int32_t>(value_components._exponent) -
floating_traits::exponent_bias -
floating_traits::mantissa_bits +
exponent_adjustment;
// k is the decimal exponent, such that the resulting decimal number is of
// the form 0.mmmmm * 10^k, where mmmm are the mantissa digits we generate.
// Note that the use of log10 here may not give the correct result: it may
// be off by one, e.g. as is the case for powers of ten (log10(100) is two,
// but the correct value of k for 100 is 3). We detect off-by-one errors
// later and correct for them.
int32_t k = static_cast<int32_t>(ceil(log10(value)));
if (k == INT32_MAX || k == INT32_MIN)
{
_ASSERTE(("unexpected input value; log10 failed", 0));
k = 0;
}
// The floating point number is represented as a fraction, r / s. The
// initialization of these two values is as described in the Burger-Dybvig
// paper.
big_integer r = make_big_integer(f);
big_integer s{};
if (e >= 0)
{
if (r != make_big_integer_power_of_two(floating_traits::mantissa_bits - 1))
{
shift_left(r, e + 1); // f * b^e * 2
s = make_big_integer(2); // 2
}
else
{
shift_left(r, e + 2); // f * b^(e+1) * 2
s = make_big_integer(4); // b * 2
}
}
else
{
if (e == floating_traits::minimum_binary_exponent ||
r != make_big_integer_power_of_two(floating_traits::mantissa_bits - 1))
{
shift_left(r, 1); // f * 2
s = make_big_integer_power_of_two(-e + 1); // b^-e * 2
}
else
{
shift_left(r, 2); // f * b * 2
s = make_big_integer_power_of_two(-e + 2); // b^(-e+1) * 2
}
}
if (k >= 0)
{
multiply_by_power_of_ten(s, k);
}
else
{
multiply_by_power_of_ten(r, -k);
}
char* mantissa_it = mantissa_buffer;
// Perform a trial digit generation to handle off-by-one errors in the
// computation of 'k': There are three possible cases, which we handle
// in turn:
multiply(r, 10);
uint32_t const initial_digit = static_cast<uint32_t>(divide(r, s));
// If the initial digit was computed as 10, k is too small. We increment k
// and adjust s as if it had been computed with the correct k above. We
// then treat the digit as a one, which is what it would have been extracted
// as had k, r, and s been correct to begin with.
if (initial_digit == 10)
{
++k;
*mantissa_it++ = '1';
multiply(s, 10);
}
// If the initial digit is zero, k is too large. We decrement k and ignore
// the zero that we read (the next digit that we read will be the "real"
// initial digit.
else if (initial_digit == 0)
{
--k;
}
// Otherwise, k was correct and the digit we read was the actual initial
// digit of the number; just store it.
else
{
*mantissa_it++ = static_cast<char>('0' + initial_digit);
}
*exponent = k; // k is now correct; store it for our caller
// convert_to_fos_high_precision() generates digits assuming we're formatting with %f
// When %e is the format specifier, adding the exponent to the number of required digits
// is not needed.
uint32_t const required_digits = k >= 0 && precision <= INT_MAX && precision_style == __acrt_precision_style::fixed
? k + precision
: precision;
char* const mantissa_last = mantissa_buffer + __min(mantissa_buffer_count - 1, required_digits);
// We must track whether there are any non-zero digits that were not written to the mantissa,
// since just checking whether 'r' is zero is insufficient for knowing whether there are any
// remaining zeros after the generated digits.
bool unwritten_nonzero_digits_in_chunk = false;
for (;;)
{
if (mantissa_it == mantissa_last)
{
break;
}
if (is_zero(r))
{
break;
}
// To reduce the number of expensive high precision division operations,
// we generate multiple digits per iteration. Our quotient type is a
// uint32_t, and the largest power of ten representable by a uint32_t is
// 10^9, so we generate nine digits per iteration.
uint32_t const digits_per_iteration = 9;
uint32_t const digits_per_iteration_multiplier = 1000 * 1000 * 1000;
multiply(r, digits_per_iteration_multiplier);
uint32_t quotient = static_cast<uint32_t>(divide(r, s));
_ASSERTE(quotient < digits_per_iteration_multiplier);
// Decompose the quotient into its nine component digits by repeatedly
// dividing by ten. This generates digits in reverse order.
#pragma warning(suppress: 6293) // For-loop counts down from minimum
for (uint32_t i = digits_per_iteration - 1; i != static_cast<uint32_t>(-1); --i)
{
char const d = static_cast<char>('0' + quotient % 10);
quotient /= 10;
// We may not have room in the mantissa buffer for all of the digits.
// Ignore the ones for which we do not have room.
// Last value in mantissa must be null terminator, account for one place after digit generation.
if (static_cast<uint32_t>(mantissa_last - mantissa_it) <= i)
{
if (d != '0')
{
unwritten_nonzero_digits_in_chunk = true;
}
continue;
}
mantissa_it[i] = d;
}
mantissa_it += __min(digits_per_iteration, mantissa_last - mantissa_it);
}
*mantissa_it = '\0';
// To detect whether there are zeros after the generated digits for the purposes of rounding,
// we must check whether 'r' is zero, but also whether there were any non-zero numbers that were
// not written to the mantissa in the last evaluated chunk.
bool const all_zeros_after_chunk = is_zero(r);
if (all_zeros_after_chunk && !unwritten_nonzero_digits_in_chunk)
{
return __acrt_has_trailing_digits::no_trailing;
}
return __acrt_has_trailing_digits::trailing;
}
extern "C" __acrt_has_trailing_digits __cdecl __acrt_fltout(
_CRT_DOUBLE value,
unsigned const precision,
__acrt_precision_style const precision_style,
STRFLT const flt,
char* const result,
size_t const result_count
)
{
using floating_traits = __acrt_floating_type_traits<double>;
using components_type = floating_traits::components_type;
scoped_fp_state_reset const reset_fp_state;
components_type& components = reinterpret_cast<components_type&>(value);
flt->sign = components._sign == 1 ? '-' : ' ';
flt->mantissa = result;
unsigned int float_control;
_controlfp_s(&float_control, 0, 0);
bool const value_is_zero = components._exponent == 0 && (components._mantissa == 0 || float_control & _DN_FLUSH);
if (value_is_zero)
{
flt->decpt = 0;
_ERRCHECK(strcpy_s(result, result_count, "0"));
return __acrt_has_trailing_digits::no_trailing;
}
// Handle special cases:
__acrt_fp_class const classification = __acrt_fp_classify(value.x);
if (classification != __acrt_fp_class::finite)
{
flt->decpt = 1;
}
switch (classification)
{
case __acrt_fp_class::infinity: _ERRCHECK(strcpy_s(result, result_count, "1#INF" )); return __acrt_has_trailing_digits::trailing;
case __acrt_fp_class::quiet_nan: _ERRCHECK(strcpy_s(result, result_count, "1#QNAN")); return __acrt_has_trailing_digits::no_trailing;
case __acrt_fp_class::signaling_nan: _ERRCHECK(strcpy_s(result, result_count, "1#SNAN")); return __acrt_has_trailing_digits::no_trailing;
case __acrt_fp_class::indeterminate: _ERRCHECK(strcpy_s(result, result_count, "1#IND" )); return __acrt_has_trailing_digits::no_trailing;
}
// Make the number positive before we pass it to the digit generator:
components._sign = 0;
// The digit generator produces a truncated sequence of digits. To allow
// our caller to correctly round the mantissa, we need to generate an extra
// digit.
fp_control_word_guard const fpc(_MCW_EM, _MCW_EM);
return convert_to_fos_high_precision(value.x, precision + 1, precision_style, &flt->decpt, result, result_count);
}